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ABSTRACT
In the analysis of climate, it is common to build non-stationary
spatio-temporal processes, based on assuming a random walk
behavior over time for the error process. Random walk models
may be a poor description for the temporal dynamics, leading to
inaccurate uncertainty quantification. Likewise, assuming
stationarity in time may also not be a reasonable assumption,
especially under climate change. In our ongoing research, we
present a class of time-varying autoregressive processes that are
stationary in space, but locally stationary in time. We
demonstrate how to parameterize the time-varying model
parameters in terms of a transformation of basis functions. We
present some properties of parameter estimates when the process
is observed at a finite collection of spatial locations, and apply
our methodology to a spatio-temporal analysis of temperature.

MOTIVATION AND OBJECTIVE
Modelling temperatures has become imperative with the
advent of Global warming. Temperature data has inherent
non-stationary elements present in the form for trend and
seasonality. But modeling the residual series even after
removing these can be challenging as the autoregressive
parameters might exhibit a time varying nature. Assuming
stationarity of the process in time and fixed autoregressive
parameters, for example, may lead to inaccurate predictions
and invalid uncertainty quantification. Moreover, a good
model also takes into account the spatial correlations
between the different locations in the region of interest. Our
proposed model takes into account both these aspects.
Moreover, the parameterization of the time varying
autoregressive parameters by taking a non-linear
transformation of a basis function is done to ensure local
stationarity of the process. We run a simulation study to
verify that our model indeed belongs to the class of model
described in Dahlhaus (2000). Finally, we use our model to
estimate the AR parameters from the detrended and
deseasonalized GHCNM temperature data of 31 different
sites in and around the state of Ohio, USA from 1905 to
2004. The estimates are obtained in a Bayesian setting and
compared to the site by site estimates of the univariate
TVAR(1) parameter curves of all 31 sites.

MODEL SIMULATION
For a practical validation of the fact that the asymptotic distribution of the MLE of
the parameter vector 𝜃 looks like (3), we carry out a simulation study.
We know, for any estimate 𝜃"#$ of 𝜃# ∈ 𝜃, 𝑀𝑆𝐸 𝜃"#$ = 𝐵𝐼𝐴𝑆 𝜃"#$

- + 𝑉𝑎𝑟 𝜃"#$ .
Under the correct model specifications, as T → ∞, 𝐵𝐼𝐴𝑆 𝜃"#$ →	0 and thus
𝑀𝑆𝐸 𝜃"#$ → 𝑉𝑎𝑟(𝜃"#$). Thus, the MSE’s are calculated for each of the parameters
in 𝜃 = 𝛾, 𝛽 𝑠; ,⋯ , 𝛽 𝑠= , 𝜎-, 𝜏 for varying time points and compared to the
respective asymptotic variances.
The simulation is done for a two dimensional spatio-temporal model with varying
lengths of time T = 200, …, 3000 with the true parameter vector

𝜃@ = (𝛾@, 𝛽@ 𝑠; , 𝛽@ 𝑠- , 𝜎@-, 𝜌@ = 𝑒 C;/EF )′ where
𝛾@ = 1,2 J, 𝛽@ 𝑠; = 1, 0.5 J, 𝛽@ 𝑠- = 2, 0.5 ′, 𝜎@- = 0.5 and	𝜌@ = 0.2.

The process vector 𝒀 is generated 500 times from the true distribution and for
each such 𝒀, the parameters in 𝜃 are estimated. An approximate value of the MSE
is calculated as

Finally, the above experiment is replicated 100 times and 95% bootstrap intervals
for the MSEs are calculated as a measure of uncertainty.

APPLICATION
Data description: The Global Historical Climatology Network-Monthly (GHCN-
M) dataset, released in 1992, has been an internationally recognized source of data
for the study of observed variability and change in land surface temperature. It
provides monthly mean temperature data for 7280 stations from 226 countries and
territories, ongoing monthly updates of more than 2000 stations to support
monitoring of current and evolving climate conditions, and homogeneity
adjustments to remove non-climatic influences that can bias the observed
temperature record (Peterson and Vose 1997). We pick a subset of 31 locations in
and around the state of Ohio, USA and model the behavior of the mean
temperature over a period of 100 years, from 1905 to 2004.

The sites are colored according to regions of warmer and cooler temperatures.
Preliminary EDA shows the naïve trend and seasonality estimates below along
with the windowed estimates for the TVAR(1) coefficients for all 31 sites after
detrending and deseasonalizing. The trend estimates are obtained by fitting a local
polynomial regression model and the seasonal estimates are from an ANOVA
model fit. The AR(1) parameters are lag-window estimates of window length 10
years.

RESULTS
We now fit our model to the deseasonalized data for each site and estimate the
trend components and the time varying AR parameters. A spline basis with nodes
every 10 years (approximately) is used for both the estimation of the trend and the
estimation of the time-varying AR parameters. Firstly, estimates of the time
varying AR parameters for each of the 31 sites are obtained by minimizing the
univariate conditional log-likelihood corresponding to each site. These estimates
are then used as starting values in a Bayesian model to estimate the time varying
AR parameters.

It is evident that the parametric model smooths out the heavy fluctuations of the
AR parameters seen in the windowed estimates. Overall, the trend and the AR
estimates coincide with the naïve estimates. The AR parameters for sites in
southern Ohio vary more than the regions in northern Ohio indicating higher
temperature fluctuations.

Below , we see a comparison of the uncertainty around the Bayes estimates for the
𝜙(𝑠, 𝑢)’s, 𝑢 ∈ (0,1], for each 𝑠 = 𝑠;,⋯ , 𝑠R@ in our model with the uncertainty
around the univariate site by site estimates of 𝜙(𝑠, 𝑢)’s . As our model learns from
both space and time, it has a much narrower confidence bound around the
estimates which suggests better predictability, but is much smoother than the naïve
estimates due to strong spatial correlation.

FUTURE WORK
• Improve the Bayesian hierarchical model to make spatial predictions and
temporal forecasts.

• Extend the model to a general spatio-temporal model, formulating the
corresponding theory.

• Compare with other contemporary models to see the competence of the model
in terms of uncertainty quantification.
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BACKGROUND

Stationarity has always played a major role in the modeling
of time series. But the weak stationarity assumption is not
always favorable while modeling spatio-temporal data, even
after detrending and deseasonalization. Locally stationary
processes capture non-stationarity of the data in the case
where there is a gradual change in the stochastic properties
of the process. In this situation the classical characteristics
of the process, such as the covariance function at some lag
k, the spectral density at some frequency 𝜆 , of the
parameters for an AR(p) process are curves which change
slowly over time. The idea of having a local approximation
of a stationary process was first suggested by Priestley
(1965). Dahlhaus (1997) introduced the class of locally
stationary processes having a time varying spectral
representation or, alternatively, an infinite time-varying
moving average representation. The theory of locally
stationary processes allows for rigorous inference with time
series and spatio-temporal data.

ASYMPTOTIC RESULTS


