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Multivariate geostatistical models
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Standard model:
Yi = x(si) + εi,

where Y = (Y1, Y2) is data, x(s) = (x1(s), x2(s)) is a
multivariate random field, and ε is measurement noise.

Computationally demanding, also hard to find valid models.
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Univariate Gaussian random field

A Gaussian random field X(s), is uniquely determined by
µ(s) = E[X(s)]

It covariance function c(s1, s2) = C[X(s1), X(s2)].
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The Gaussian Matérn fields

The most popular covariance model in spatial statistics:

c(s, t) ∝ (κ‖s− t‖)νKν(κ‖s− t‖)

where Kν is a modified Bessel function of the second kind
ν > 0 controls smoothness of the process
κ > 0 controls the covariance range.
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The SPDE connection

Whittle (1963) noted that a Gaussian Matérn fields are stationary
(zero mean) solutions to the SPDE

(κ2 −∆)
α
2 x(s) = Ẇ,

where Ẇ is Gaussian white noise, α = ν + d/2, and s ∈ Rd.

Lindgren et al (2011) used this to

Construct computationally efficient GMRF approximations of
Gaussian Matérn fields.
We will later replace Ẇ to generate Non Gaussain random
field.
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Multivariate Gaussian random field

A d dimensional Gaussian random field X(s), is uniquely
determined by

µ(s) = E[X(s)], which we shall with loss of generality ignore.
It covariance function cij(s1, s2) = C[Xi(s1), Xj(s2)].
The issue is to create a function cij(s1, s2) such that it is
always positive definite.
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The multivariate Matérn model

M (h | κ, ν) =
1

2ν−1Γ(ν)
(κ‖h‖)ν Kν (κ‖h‖)

A multivariate Matérn field is a Gaussian field x(s), with
cij(t, s) = σiσjρijM (t− s | κij , νij).

Not all parameter values are allowed. Gneiting et al. (2012)
and Apanasovich et al. (2012).
One simple choice is the so-called parsimonious Matérn model,
which has κij ≡ κ, νii = νi, and νij = (νi + νj)/2 for i 6= j.
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Multivariate SPDE-based models

Hu et al. (2013) and later Hu and Steinsland (2016) proposed
using systems of the form

K11 K12 · · · K1p

K21 K22 · · · K2p
...

...
. . .

...
Kp1 Kp2 · · · Kpp



x1(s)
x2(s)
...

xp(s)

 =


Ẇ1

Ẇ2
...
Ẇp


where Kij are differential operators, to construct multivariate
Gaussian random fields.

They focused on the triangular system of SPDEs[
L11 L12

L22

] [
x1(s)
x2(s)

]
=

[
Ẇ1(s)

Ẇ2(s)

]
.

where Lij = τi(κ
2
ij −∆)

αij
2 .
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Multivariate SPDE-based models

We can informally invert the operator matrix to obtain[
x1(s)
x2(s)

]
=

[
L−1

11 −L−1
11 L12L−1

22

L−1
22

] [
Ẇ1

Ẇ2

]
.

or equivalently

x2(s) = L−1
22 Ẇ2,

x1(s) = L−1
11 Ẇ1−L−1

11 L12x2(s).

The marginal distribution of x2 is completely determined by
the operator L22 whereas x1 is affected by all operators.
Thus, x2 is marginally a Gaussian Matérn field whereas x1 has
a more complicated covariance structure.
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Multivariate SPDE-based models

[
x1(s)
x2(s)

]
=

[
L−1

11 −L−1
11 L12L−1

22
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22

] [
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.

The full SPDE-system is too general.

Suppose we have a d-dimensional system and we wan’t to
ensure that all the marginal covariances are Matérn. Is this
possible?
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It turns out to be possible:

Definition (Multivariate Matérn SPDE field)

We define a p-variate Multivariate Matérn SPDE field as

D


L1

L2

. . .
Lp−1

Lp




x1(s)
x2(s)
...

xp−1(s)
xp(s)

 =


Ẇ1(s)

Ẇ2(s)
...

Ẇp−1(s)

Ẇp(s)

 .

where Ẇ i(s) are mutually independent white noise processes,
Li = τi(κ

2
i −∆)

αi
2 , and D is a p× p invertible matrix.
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Proposition
A multivariate Matérn-SPDE field, x(s), has the covariance
function

Cov(xi(s), xj(t)) =


Γ(νi)

∑p
j=1R

2
ii

Γ(αi)(4π)d/2κ
2νi
i

M (‖s− t‖ | κi, νi) i = j,

F−1(Sij)(‖s− t‖) i 6= j,

where Ril are the elements of the matrix R = D−1 and

Sij(k) =

∑2
l=1RilRjl
(2π)d

1

(κ2
i + ‖k‖2)

αi
2 (κ2

j + ‖k‖2)
αj
2

. (1)
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Existing non-Gaussian models

There are a few attempts to construct non-Gaussian
multivariate models in the literature:

Multivariate max-stable processes (Genton et al. ,2015)
Multivariate Mittag-Leffler random fields (Ma, 2013a)
An approach for constructing non-Gaussian fields is to view a
Gaussian field with a prior on the marginal variance as a
non-Gaussian random field. Multivariate versions of this
approach are presented by Ma (2013b) and Du et al. (2012).

Most approaches are either too limited, or that they lack
methods for practical applications.
Genton and Kleiber (2015) listed the creation of practically
useful non-Gaussian multivariate models as an open problem.
Our aim is to construct a class of multivariate fields that

have Matérn covariances and flexible marginals.
are easy to estimate using likelihood-based methods.
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Sketch of generation of Non-Gaussian random fields

We working with

D

[
L11

L22

] [
x1(s)
x2(s)

]
=

[
Ẇ1(s)

Ẇ2(s)

]
.

After discretization

K

[
X1

X2

]
=

[
Z1

Z2

]
,

where Zi ∼ N(0, diag(h)), and h comes from the
discretization.

We can generate Non-Gaussian random field by replacing Zi
with diag(

√
Vi)Zi, where Vi is non negative random vector.

Jonas Wallin 14/25



Lund university

Sketch of generation of Non-Gaussian random fields

We working with

D

[
L11

L22

] [
x1(s)
x2(s)

]
=

[
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Type-G1

The first type we consider is Type-G1.
Models used in for instance Ma (2013b) and Du et al. (2012).

Vi = V 1, where V is non negative random variable. For
instance inverse-Gamma, gamma, inverse-Gaussian.
Basically, a prior on the variance of the field. If repeated
measurement mixed-effect model.
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Type-G4

An other version we consider is Type-G4

Used in a univariate setting in Bolin (2014) and Wallin and
Bolin(2015).
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Example: Bivariate NIG Matérn fields

Covariance functions for the solution to the bivariate SPDE[√
1.81 −0.9
0 1

] [
τ1(κ2

1 −∆)
α1
2

τ2(κ2
2 −∆)

α2
2

] [
x1(s)
x2(s)

]
=

[
Ṅ1(s)

Ṅ2(s)

]
.

with κ1 = 2, κ2 = 3, α1 = 2 and α2 = 4.
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Example simulations

Example of simulations (x1 left, x2 right) from a bivariate SPDE[√
1.81 −0.9
0 1

] [
τ1(κ2

1 −∆)
α1
2

τ2(κ2
2 −∆)

α2
2

] [
x1(s)
x2(s)

]
=

[
Ṅ1(s)

Ṅ2(s)

]
.

with κ1 = 2, κ2 = 3, α1 = 2 and α2 = 4.
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Parameterization

K = D1 diag(L1, . . . ,Lp) and K = D2 diag(L1, . . . ,Lp) are
equivalent if QD1 = D2. Where Q is a orthonormal matrix.

In p = 2

Q =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]

θ is not identifiable for Gaussian models, but it is for the
type-G4 fields.
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A general class of bivariate Matérn models

For NIG noise, θ determines bivariate marginals.
Jonas Wallin 20/25
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Bivariate pressure and temperature data

157 observations of pressure (left) and temperature (right) in
the North American Pacific Northwest
The mesh we will use for the SPDE models is also shown.
Data from Gneiting et al. (2012)

Application Jonas Wallin 21/25
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Models for the data

The bivariate observations yi = (yP,i, yT,i)
T are modeled as

yi = x(si) + εi,

where εi are independent Gaussian noise, and
x(s) = (xP (s), xT (s))T .

We test different models for the covariance-structure of x(s):
Standard independent Matérn fields

The Parsimoniuous biviariate Matérn model by Gneiting et al.
SPDE models with Gaussian noise for both components, or
with Gaussian noise for temperature and NIG noise for
pressure.
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Model comparisons

Number of Pressure Temperature
Model parameters (Pascal) (degrees Celcius)

MAE CRPS MAE CRPS
Independent 10 40.585 26.546 0.956 0.598
Parsimonious 10 39.068 27.682 0.921 0.576
GG Diagonal 8 38.624 31.711 0.917 0.594
GG Upper 9 38.856 31.829 0.915 0.580
NG Diagonal 10 37.404 26.231 0.917 0.594
NG Upper 11 38.333 25.823 0.917 0.576
NG Lower 11 37.280 25.859 0.898 0.557
NG General 12 37.928 25.510 0.911 0.555

Results for leave-one-out crossvalidation, where
Values are median values of the 157 locations.
GG denotes Gaussian and NG denotes non-Gaussian SPDEs.
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Kriging estimates: pressure (top) and temperature (bottom)

Parsimonious Matérn NG General Difference
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Thanks for your attention!
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