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1 Conference at BIRS

1.1 Rationale and Goals
The first Women in Numbers workshop was held at BIRS in 2008, with the explicit goals of increasing the
participation of women in number theory research and highlighting the contributions of women who were
already doing high-quality research in the field. In their original proposal, the organizers cited the lack of
representation of women in major institutions and at major international conferences.

Since that first workshop, 84 different women have participated in three WIN conferences at BIRS, with
more than 60 other participants at the Women in Numbers – Europe conferences held at CIRM in Luminy and
at the Lorentz Center. The number of women doing research in number theory is steadily growing. Though
it is difficult to know exactly how much of this increase is due (directly or indirectly) to WIN, the visibility
of the WIN conferences — due both to the community that has developed and the high quality of research
output from these workshops — has helped to raise awareness in the broader community of the important
contributions made by these researchers.

Another major indicator of the success of the WIN conferences is the publication output: three proceed-
ings volumes containing a total of 36 papers (including some survey papers), as well as more than 10 journal
articles published elsewhere. This far surpasses the output of a typical research workshop or graduate focused
workshop such as the Arizona Winter School.

Less tangible but equally important outcomes include the lasting bonds formed between beginning re-
searchers and their mentors, and the invigorating effect of the conferences on this mathematical community.
WIN created a new model of working research conference designed to build supportive networks for women.
Inspired by the success of WIN conferences, women in other fields have organized similar conferences at
math institutes over the past few years, each focused on building collaboration groups consisting of senior
and junior women in a given area. These include: Algebraic Combinatorixx and Women in Topology (WIT)
at BIRS; Women in Shape (WiSh) at IPAM; and two Women in Applied Math conferences at IMA, Dy-
namical Systems with Applications to Biology and Medicine (WhAM!) and Numerical PDEs and Scientific
Computing (WhAM2!). Each of these conferences has resulted in new, high-quality mathematics research as
well as lasting collaborations among attendees.

These are positive changes, but our work is not done. Visibility of women at international number theory
workshops and conferences, though increasing, continues to be low, with percentages of speakers who are
women rarely exceeding 20%. Women are still underrepresented in major research universities, especially at
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the most prestigious institutions. Women receive disproportionately less grant money from the NSF than their
peers. It is imperative that we continue to build on the success of the WIN and other research collaboration
conferences for women, creating supportive networks for women at the early stage of their careers. The
WIN4 workshop was the next step in this continuing story.

The specific goals of the workshop were:

• to generate research in significant topics in number theory;

• to broaden the research programs of women and gender minorities working in number theory, espe-
cially pre-tenure;

• to train graduate students and postdocs in number theory, by providing experience with collaborative
research and the publication process;

• to strengthen and extend a research network of potential collaborators in number theory and related
fields;

• to enable faculty at small colleges to participate actively in research activities including mentoring
graduate students and postdocs; and

• to highlight research activities of women in number theory.

We would like to thank the following organizations for their support of this workshop: the Association
for Women in Mathematics, BIRS, the Clay Mathematics Institute, Microsoft Research, the National Science
Foundation, the Number Theory Foundation, and the Pacific Institute for the Mathematical Sciences.

1.2 Participants and Format
The focus of the workshop was on supporting new research collaborations within small groups. Before the
workshop, each participant was assigned to a working group according to her research interests. Each group
had two leaders chosen for their skill in both research and communication. These leaders designed projects
and provided background reading and references for their groups. At the conference, there were a few talks,
but most of the time was dedicated to working groups. Each group also submitted a short written progress
report on their project. These reports, along with the project title and the names of the group members, are
included in Section 2.

There were a total of forty-two participants (with sixteen of those project leaders1), all women or gender
minorities. Of those, we had:

• 16 in tenured or tenure-track faculty positions,

• 12 early-career faculty or postdocs,

• 13 graduate students, and

• 1 industry mathematician.

Significant effort was made to enlarge the WIN community as much as possible: we had 4 project leaders
who had never attended a WIN before and 24 out of 26 group members were first-time WIN-ers.

13 additional project leaders participated remotely.
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1.3 Schedule
Sunday
16:00 – 17:30 Check-in begins
18:00 – 19:30 Dinner
20:00 – 22:00 Informal Gathering

Monday
07:00 – 08:45 Breakfast
08:45 – 09:00 Introduction and Welcome by

BIRS Station Manager
09:00 – 10:00 Introduction and Welcome

by Organizers
10:00 – 10:30 Coffee Break
10:30 – 12:00 Group Work
12:00 – 13:30 Lunch
13:30 – 14:30 Group Work
14:30 – 15:30 Coffee Break
15:30 – 16:30 Group Work
16:30 – 17:50 Project Introductions
18:00 – 19:30 Dinner

Tuesday Thursday
07:00 – 09:00 Breakfast 07:00 – 09:00 Breakfast
09:00 – 10:00 Group Work 09:00 – 10:00 Group Work
10:00 – 11:00 Coffee Break 10:00 – 11:00 Coffee Break
11:00 – 12:00 Group Work 11:00 – 12:00 Group Work
12:00 – 13:30 Lunch 12:00 – 13:30 Lunch
13:30 – 14:30 Group Work 13:30 – 14:30 Group Work
14:30 – 15:30 Coffee Break 14:30 – 15:30 Coffee Break
15:30 – 16:30 Group Work 15:30 – 16:30 Group Work
16:30 – 17:50 Project Introductions 16:30 – 16:35 Group Photo
18:00 – 19:30 Dinner 16:35 – 17:55 Project Introductions
20:30 – 21:30 Panel Discussion 18:00 – 19:30 Dinner

Wednesday Friday
07:00 – 09:00 Breakfast 07:00 – 09:00 Breakfast
09:00 – 10:00 Group Work 09:00 – 10:10 Project Presentations
10:00 – 11:00 Coffee Break 10:15 – 10:45 Coffee Break
11:00 – 12:00 Group Work 10:50 – 11:20 Project Presentations
12:00 – 13:30 Lunch 11:30 – 12:00 Checkout by Noon
13:30 – 17:30 Free Afternoon 12:00 – 13:30 Lunch
18:00 – 19:30 Dinner
20:30 – 21:30 Panel Discussion

1.3.1 Outcomes

The obvious outcomes of WIN4 are the research advances made by each of the nine working groups. As with
the previous WIN workshops, these results will appear in peer-reviewed journals over the next few years. In
addition, two of the organizers (Jennifer Balakrishnan and Michelle Manes) together with Amanda Folsom
and Matilde Lalı́n will edit a Proceedings volume. We have recently signed a contract with Springer, and the
Proceedings will appear in their AWM Series. We anticipate that each group will submit at least one paper
— either a survey paper or a paper with new results — for peer review. We have announced a deadline of
March 31, 2018 for submissions, with the Proceedings appearing in 2019.

In our minds, more important than the specific mathematical results that emerge from the conference are
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the collaborations and mentoring that happens there. In particular, we held two after-dinner mentoring panels
in the lounge at BIRS. The first was primarily for early-career mathematicians, focused on job applications,
interviews, publishing, and grant proposals. The second was focused on long-range career planning, relevant
to both early- and mid-career participants.

Only time will prove the success of the WIN4 workshop, but the excitement and energy there were
palpable. Besides plans for the Proceedings volume, plans are already in place for a third WINE (Women
in Number-Europe) conference and potential organizers for a WIN5 workshop are being contacted. We
had a number of WIN4 participants volunteer to help keep the WIN network active, whether it be through
organizing special sessions at AMS or AWM meetings, leading projects at future WIN/WINE workshops,
editing future WIN proceedings volumes, or even organizing a future WIN or WINE workshop. We take the
enthusiasm of these volunteers as additional evidence of the benefits of the mentoring and collaboration of
that occurs at WIN workshops.

2 Project Reports

2.1 Horizontal distribution questions for elliptic curves over Q
Participants: Chantal David, Ayla Gafni, Amita Malik, Lillian Pierce, Neha Prabhu, Caroline Turnage-
Butterbaugh

Let E denote an elliptic curve over Q. There are many “horizontal distribution” questions about elliptic
curves in the literature, that is, questions about the properties of the reduced curves modulo primes p on
average over the primes. Most of them remain open questions, such as the Lang-Trotter conjecture, or
the Koblitz conjecture, while some of were recently solved, as the Sato-Tate conjecture. The following
conjecture for “extremal primes” was considered recently by [25] and [26] (where James and Pollack prove
the conjecture for CM elliptic curves in the second paper). For a non-CM elliptic curve, it is conjectured that

#{p ≤ x : ap(E) = [2
√
p]} ∼ 16

3π

x1/4

log x
. (1)

This conjecture is completely open, and there are not even non-trivial upper bounds for the number of such
primes.

Similar to Birch’s take on the Sato-Tate conjecture [5], one can look at the “vertical distribution” to get
evidence for conjecture (1). This means to consider the number of curves over Fp such that ap(E) = [2

√
p]

on average over the primes. In a recent paper, David, Koukoulopoulos and Smith [13] presented a general
framework to address such vertical distribution, which makes it possible to attack the vertical distribution for
extremal primes.

Our first goal is then to use the axiomatic framework of [13] to prove the “vertical distribution”∑
p≤x

#{E/Fp : ap(E) = [2
√
p]}′

p
∼ 16

3π

x1/4

log x
,

where the dash in the numerator indicates that we are counting the number of curves E up to isogeny.
A key ingredient that is needed to apply the results of [13] is to know that [2

√
p] and p are independently

well distributed modulo `, i.e., a result of the type

#{p ≤ x : [2
√
p] ≡ a mod `, p ≡ b mod `} ∼ π(x)

`(`− 1)
, (2)

with a good error term with sufficient uniformity in `.
This leads to the distribution of the fractional part {√p}. Indeed, it is easy to see that

[2
√
p] = k`+ a ⇐⇒

{
2
√
p

`

}
∈
(
a

`
,
a+ 1

`

)
.

The distribution of {√p} has been studied by Balog [4].



5

The first goal of our project was then to generalize Balog’s result to include more general intervals for
{√p}, to include a congruence condition on the primes p, and with sufficient uniformity in `. We started to
work on that specific problem during the week at BIRS, and have made very good progress: the approach of
Balog generalizes to this case, with more work to control the various parameters involved. This should lead
to a vertical distribution for champion primes, and we are currently writing the details of the argument.

After looking at the vertical distribution, we also want to address the problem of finding a non-trivial
upper bound for (1), and this will lead to mixed distribution between the fractional parts {√p} and primes
splitting in the Galois extensions obtained by adding the `-torsion point of E to Q, i.e. a mix between the
results of Balog and the Chebotarev Density Theorem. This is analogous to (2), which can be seen as the
independence between Balog’s result on the equidistribution of fractional parts and the equidistribution of
primes in arithmetic progressions (which is the Chebotarev Density Theorem for the cyclotomic extensions).

2.2 Apollonian circle packings
Participants: Holley Friedlander, Elena Fuchs, Piper Harron, Catherine Hsu, Damaris Schindler, Katherine
Stange

Apollonian circle packings are fractal sets in the plane which are obtained by repeatedly adding circles
into an initial constellation of three mutually tangent circles. Starting from such a collection of three mutually
tangent circlesC1, C2, C3 one adds all circles that are tangent to all three of those. By a theorem of Apollonius
there are exactly two such circles (viewing a line as a circle with infinite radius). Given those five circles one
can continue the process of adding circles that are tangent to three of the circles that are already in the picture.
We repeat this process ad infinitum and let P be the union of all the circles obtained in this way.

Apollonian circle packings are very interesting from a number theoretic point of view. By a theorem
of Descartes, four mutually tangent circles C1, C2, C3, C4 with curvatures a, b, c, d fulfill the following
quadratic equation

(a+ b+ c+ d)2 − 2(a2 + b2 + c2 + d2) = 0.

From this equation one can deduce that if four mutually tangent circles C1, C2, C3, C4 in the starting con-
figuration have integer curvatures, then all curvatures in the packing P , as constructed above, are integers.
This gives rise to a number of questions on arithmetic properties of the set of curvatures that appear in such
a packing.

It is known that for a fixed primitive integral packing P not all integers m ∈ N can occur as the curvature
of a circle in the packing. As Fuchs showed in [21], for every fixed packing P there is a non-trivial subset
of residue classes modulo 24, say Σ ⊂ Z/24Z, to which the curvatures are restricted, and this is the only
congruence obstruction. The local-global conjecture for Apollonian packings states that every sufficiently
large integer m with m mod 24 ∈ Σ, also occurs as a curvature in P . Building on work of Sarnak [35] and
Bourgain and Fuchs [6], Bourgain and Kontorovich showed in [7] that the local-global conjecture holds for
almost all positive integers m ≤ X , with an exceptional set of size at most O(X1−ε) for some positive ε.

The goal of our project is to understand the local-global conjecture for certain subcomponents of a prim-
itive integral packing P . We start by constructing a “tree” TP,r (it isn’t quite a tree) of tangent circles inside
a primitive integral Apollonian packing P . Fix a positive integer r and two tangent circles Ca, Cc in the
packing of curvatures a and c, such that a and c are both r-almost primes (their existence follows from [35]).
We begin drawing TP,r by drawing the (tangent) circles Ca, Cc of curvature a and c. Now, add into TP,r
all those circles in P that are tangent to either Ca or Cc. Of those, let Wr,1 be the set of the circles in TP,r
so far that have r-almost prime curvature, and add into TP,r all circles tangent to a circle in Wr,1. Of these
new circles, let Wr,2 be the set of the circles that have r-almost prime curvature, and add into TP,r all circles
tangent to a circle in Wr,2. Continue this process indefinitely (this process does indeed continue indefinitely
as shown in [35]) to construct the tree TP,r. Note that if r = 1, when we delete from TP,r(v) all of the circles
whose curvatures are not prime we will get precisely a full prime component as described at the end of [35].

Our question is then, does there exist an r so that the resulting curvatures of circles in TP,r must satisfy
a local-global principle?

During the workshop we worked on numerical experiments to test such a conjecture and we discussed
ways to define Cayley-like graphs (which play an important role in [7]) for r-almost prime trees. Moreover,
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we worked on lower bounds on the number of curvatures less than X appearing in an r-almost prime compo-
nent. Following the methods in Bourgain and Fuchs [6], we expect that we can show that the number N(X)
of curvatures of size at most X that appear in the r-almost prime tree TP,r is at least

N(X)� X

(log logX)1/2
.

We hope to improve this to a positive density result in the future.

2.3 Arithmetic dynamics and Galois representations
Participants: Jamie Juul, Holly Krieger, Nicole Looper, Michelle Manes, Bianca Thompson, Laura Walton

Let K be a number field and f ∈ K(z) a rational function of degree d ≥ 2. Let Tf be the infinite
preimage tree rooted at 0, with absolute Galois group Gf acting as a subgroup of the automorphisms of Tf .
There is a growing body of literature on these arboreal Galois representations. In particular, Joes [28] has a
specific conjecture for quadratic functions:

Conjecture 1 Let K be a number field, and f(z) ∈ K(z) have degree 2. Then the index [Aut(Tf ) : Gf ] is
finite unless one of the following holds:

1. f is post-critically finite

2. f commutes with a non-trivial Möbius transformation that fixes 0

3. the critical points c1, c2 of f satisfy fr(c1) = fr(c2) for some r ≥ 2

4. 0 is a periodic point of f

Cases of this conjecture have been dealt with by Jones [28], Jones-Manes [29], and others. It is known
that if any of these conditions holds, then the arboreal Galois representation cannot be finite index. Our plan
was to investigate this conjecture with an eye towards a very difficult question:

Question 1 F = {ft} be a one-parameter family of quadratic rational maps, defined over Q, and at a
marked point defined over Q̄. Let Tt be the infinite preimage tree rooted at at and Gt the absolute Galois
group, as a subgroup of Aut(Tt). When is

SF := {t : [Aut(Tt) : Gt] =∞}

a set of bounded height?

It is known by Pink [33] that the set SF will not have bounded height if any of the following conditions
are met:

• if the family is a curve of quadratic rational maps defined by a specific critical orbit relation — specif-
ically, there is some iterate r > 0 such that the critical points c1, c2 satisfy fr(c1) = fr(c2) and
at ≡ 0,

• if the family is a curve for which at is periodic, or

• if f commutes with a non-trivial Möbius transformation.

However, there is in all those cases a reasonable alternative to the full automorphism group (for example in the
latter case, the centralizer of Aut(f) in Aut(Tf )) in which the Galois group has finite index, and the question
above can be modified accordingly. The set of post-crticially finite maps in the space of quadratic rational
maps is known to have bounded height by work of Benedetto-Ingram-Jones-Levy. Hence the question can be
viewed as a weaker version of the conjecture; however, the question could be refined to search for a subgroup
for which the index is finite (as in the case of the centralizer for f with nontrivial automorphisms).
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During our week at BIRS, we investigated a particular family of quadratic rational functions. We proved
some results related to height bounds on the parameter outside of which we had an attracting fixed point that
would control much of the dynamics, and for several particular parameter choices we were able to prove
that the image of Galois is the full automorphism group of the tree. We also proved that assuming Vojta’s
Conjecture, a similar set of conditions to those in Conjecture 1 characterizes the set of cubic polynomials
f ∈ K[x] such that [Aut(T ) : GK(f)] < ∞, where K is a number field. To do so, we make use of a result
from [24]. Specifically, we have the following.

Theorem 1 Let K be a number field, and let f ∈ K[x] have degree d ≥ 2, where d is prime. Suppose fn(x)
has at most r irreducible factors over K as n→∞, so that

fN+n(x) = fN,1(fn(x))fN,2(fn(x)) · · · fN,r(fn(x))

is the prime factorization of fn+N (x) in K[x] for any sufficiently large N . Suppose that there is an M such
that the following holds: for all n ≥M , and for all 1 ≤ j ≤ r, there is a multiplicity one critical point γ1 of
f and a prime pn of K such that:

• vpn(fN,j(f
n(γ1))) = 1

• vpn(fN,j(f
n(γt))) = 0 for all t 6= 1

• vpn(fm(γt)) = 0 for all critical points γt, and all m < N + n

• vpn
(d) = 0.

Then [Aut(T ) : GK(f)] <∞.

2.4 Chabauty-Coleman experiments on genus three hyperelliptic curves
Participants: Jennifer Balakrishnan, Francesca Bianchi, Victoria Cantoral-Farfán, Mirela Çiperiani, Anas-
tassia Etropolski

Let C be a hyperelliptic curve of genus g = 3 defined over Q. An affine model for C can be written in
the form y2 = f(x), where f(x) is a polynomial with rational coefficients and 7 ≤ deg f(x) ≤ 8. As a
special case of Faltings’ theorem, we know that C(Q), the set of rational points on C, is finite; moreover, by
the Mordell-Weil theorem, the set of rational points of the Jacobian J of C forms a finitely generated abelian
group, i.e., J(Q) ' Zr ⊕ T .

When r < g, the Chabauty-Coleman method [12] can be used to help compute C(Q). The method
produces a finite set of p-adic points on C containing C(Q), via the construction of p-adic integrals of
annihilating regular 1-forms. In the case when r = 1 (and g = 3), the method produces two independent
regular 1-forms α, β whose (p-adic) Coleman integrals can be used to compute C(Q). It is of interest to see
what other points on C the integrals of α and β cut out.

Indeed, under these hypotheses (hyperelliptic curves with g = 3 and r = 1), our goal is to produce algo-
rithms that would allow us to use the Chabauty-Coleman method to compute the rational points of any such
curve. One fully worked out example of this technique appears in the Ph.D. thesis of Wetherell [39] where he
does various computations on the Jacobian of a genus 3 hyperelliptic curve to carry out Chabauty-Coleman;
our goal is to automate this method, while replacing the computations on the Jacobian with computations
directly on the curve.

We now also fix a prime p of good reduction and a naive height bound B ∈ N. We first determine the set
SB ⊆ C(Q) of points of naive height bounded by B. We proceed if SB is non-empty. Suppose, for ease of
exposition, that we have deg f(x) = 7. Fix the embedding C ↪→ J that sends P to the class [(P )− (∞)] of
the divisor (P ) − (∞). If P ∈ C(Q), then Q := P −∞ gives us a rational point in the Jacobian of C, and
if Q is non-torsion, by computing the three Coleman integrals

∫ P
∞ ω0,

∫ P
∞ ω1,

∫ P
∞ ω2, where {ωi = xidx

2y }
forms a basis of H0(C,Ω1), we may determine α and β.

We then consider the indefinite Coleman integrals of α and β as p-adic power series over all residue disks
of C. The zero locus of these integrals gives a set C(Qp)1 ⊆ C(Qp) such that C(Q) ⊆ C(Qp)1. We want
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to determine, in practice, how much larger C(Qp)1 is than C(Q), and further, if we can describe C(Qp)1 in
terms of C(Q) and other arithmetically relevant p-adic points on C.

During our week at BIRS, we implemented the algorithm described above to determine C(Qp)1 and
studied the data produced by a short list of curves pulled from the genus 3 database of hyperelliptic curves
soon to be in the L-functions and Modular Forms DataBase (LMFDB) [37]. We plan on running these
algorithms on further curves in the LMFDB and analyzing the resulting data.

2.5 Computational aspects of supersingular elliptic curves
Participants: Efrat Bank, Catalina Camacho, Kirsten Eisenträger, Jennifer Park

Project Goal: Our goal during the week at BIRS was to solve the following problem:

Problem: Given a supersingular elliptic curve, compute its endomorphism ring.

Setup and context: One of the methods for computing the endomorphism ring is to study the `-isogeny
graph of supersingular elliptic curves defined over a field of characteristic p, where p and ` are distinct
primes. Kohel’s thesis [30] outlines an algorithm to try to compute this endomorphism ring, but it is not
completely explicit in the sense that some parts of the arguments are only sketched. Thus, we hope to make
this algorithm more concrete, and prove the existence of some extra features in the `-isogeny graph that could
eventually aid in the efficiency of the algorithm to computing the endomorphism rings.

The setup that we will consider is as follows: For distinct primes p and `, we can define the `-isogeny
graph G(p, `) as follows:

1. The vertex set V is the set of isomorphism classes of supersingular elliptic curves over the finite field
Fp2 . (This gives us, up to isomorphism, all supersingular elliptic curves in characteristic p because
every supersingular elliptic curve has a model defined over Fp2 .) We can think of the vertices labeled
by the j-invariants of the supersingular elliptic curves. The number of vertices is roughly p/12 and
depends on the congruence class of p modulo 12 (see [36]).

2. The edge set can be described as follows: given a supersingular j-invariant j, write down an elliptic
curve E in Weierstrass form with j(E) = j. This can be done explicitly.

Choose a subgroup H of E of order `, and let E′ be the elliptic curve E′ = E/H . Now connect the
vertices j = j(E) and j′ = j(E′) by an edge, which represents the `-isogeny with torsion H . Since
the `-torsion on the elliptic curve E is isomorphic to Z/`Z×Z/`Z, there are `+ 1 subgroups of order
`. Hence, with this construction, we get an `+ 1-regular directed graph, and the edges leaving a vertex
j(E) are labelled by subgroups of E of order `. The graph is a multigraph, which means that two
vertices can be connected by more than one edge, and allows self-loops.

In this setup, a loop beginning and ending at a vertex j can be interpreted as an element of the endomor-
phism ring of the supersingular elliptic curve E with j(E) = j.

By Deuring’s theorem, each endomorphism ring corresponds to a maximal order in the unique quaternion
algebra ramified at p and∞. When one can identify the maximal order corresponding to the endomorphism
ring of a particular elliptic curve, we say that the endomorphism ring has been computed.

By identifying the elements of the quaternion algebra corresponding to these loops, one has a chance of
finding the generators of the maximal order, according to Kohel’s thesis [30, Chapter 7].

Parts of the project that were finished during the week at BIRS: During the week, we were able to:

1. Find a short list of at most eight elements of the quaternion algebra that could correspond to a given
loop;

2. For certain primes (p = 31, 101, 103), identify the maximal orders attached to all of the supersingular
elliptic curves over Fp by using the above short list;

3. Identify some criteria for when two given loops generate an order of rank < 4;

4. Identify some criteria for when two given loops generate a non-maximal order;

5. Conjecturally identify some criteria for when two given loops generate an order of rank 4.
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2.6 Quantum modular forms and singular combinatorial series
Participants: Amanda Folsom, Min-Joo Jang, Susie Kimport, Holly Swisher

Mock modular forms are complex-valued functions which share similar transformation properties to or-
dinary modular forms with respect to the action of SL2(Z) on the upper-half complex plane H, but gain
their modular transformation properties on H at the expense of losing their holomorphic properties there.
The theory of mock modular forms, and the more overarching theory of harmonic Maass forms, has largely
developed during this century [9]; however, their origins trace back to both the original Maass forms and
Ramanujan’s mock theta functions from the early-to-mid 1900s. The development of the theory of harmonic
Maass and mock modular forms has been of great importance within the theory of modular forms, itself a ma-
jor area of research in Number Theory related to the Langlands Program, the BSD Conjecture, and Fermat’s
Last Theorem, for example. Applications of harmonic Maass and mock modular forms have also emerged in
the diverse areas of Mathematical Physics, Representation Theory, Topology, and more.

Quantum modular forms were defined by Zagier in 2010 [40]; they are similar to mock modular forms in
that they feign modularity in some way, with the notable exception that their domain is not H, but rather Q.
More precisely, a weight k quantum modular form (k ∈ 1

2Z) is a complex-valued function f on P1(Q) \ S,
for some appropriate S, such that for all γ = ( a bc d ) ∈ Γ ⊆ SL2(Z), the functions hγ(x) = hf,γ(x) :=
f(x)− ε−1(γ)(cx+ d)−kf

(
ax+b
cx+d

)
satisfy a ‘suitable’ property of continuity or analyticity in R (such as real

analyticity). Here, the ε(γ) ∈ C satisfy |ε(γ)| = 1.
Questions of interest to many (see for example [9, 18, 19, 22, 23, 27, 40]) have been to understand spaces

of quantum modular forms, determine explicit examples of and sources of quantum modular forms, and to
understand the relationship, if any, between quantum modular and mock modular forms. Rational cusps are a
natural boundary to the fundamental domain of a mock modular form, so on one hand, the latter problem is a
natural one to study. On the other hand, a relationship is not immediate as the domains and analytic properties
of mock and quantum modular forms are a priori different.

In this project, we address the above questions in our study of a (k+1)-variable combinatorial generating
function Rk(w1, w2; . . . , wk; q), k ≥ 1, for k-marked Durfee symbols introduced by Andrews [3]. Histor-
ically, combinatorial functions are known to occasionally be a source of automorphic functions; likewise,
such automorphic properties can sometimes be used to prove combinatorial theorems. Andrews’ celebrated
(k + 1)-variable function Rk is a vast generalization of the one-variable combinatorial generating function
for integer partitions, an ordinary modular form whose automorphic properties were famously studied and
developed along with the Circle Method by Hardy and Ramanujan. The automorphic properties of Rk when
viewed as a function of τ ∈ H with q = e2πiτ and fixed wj have slowly been uncovered in a series of papers
[8, 10, 17], the last of which was authored by participants Folsom and Kimport. Rk indeed exhibits “mock”
behavior, though the exact type of transformations it exhibits on H depend on k, and also the wj . Our project
seeks to understand the quantum properties of Rk, if any, on Q.

A number of complications arose in our study. First, it is unclear that Rk is even defined when viewed as
a function on Q. Second, the automorphic properties of Rk on H depend on k and the wj . Third, showing
errors to modularity extend to analytic functions on R is non-trivial. Barring these obstacles, our strategy is
to ultimately make use of the mock-automorphic transformation properties possessed by Rk on H, and to use
analytic continuation to obtain quantum transformation properties on Q.

To this end, our first result establishes a quantum set of rationals on which Rk is defined; this involves
working with a (k+1)-fold q-hypergeometric series related toRk by work of Andrews [3]. We then work with
general automorphic transformation properties on H established by Folsom and Kimport in [17] to produce
explicit errors to modularity exhibited by Rk. The errors which emerge are in terms of the non-holomorphic
function

S(z; τ) :=
∑

n∈ 1
2+Z

(
sgn(n)− E

((
n+ Im(z)

Im(τ)

)√
2 Im(τ)

)
(−1)

n− 1
2 e−2πinzq−

n2

2

)
,

where E(z) := 2
∫ z
0
e−πt

2

dt. In certain settings, our errors to modularity in fact involve limiting versions
of S, further complicating their understanding. We next transform our errors to modularity from functions
involving the non-holomorphic S to period integrals

∫ i∞
a/b

g(ρ)(−i(τ + ρ))−
1
2 dρ, where the g are ordinary

modular forms, and a
b ∈ Q. We are also able to turn the limiting versions of S which appear into derivatives
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of period integrals after working with properties of S as proved in [41], among other things. We then employ
delicate analytic arguments to deduce that the errors to modularity indeed extend to analytic functions in R,
and use analytic continuation to establish that theRk is a quantum modular form. As corollaries to our results,
we also obtain – non-trivially – exact formulas for period integrals of modular forms and their derivatives as
evaluations of simple finite q-hypergeometric multi-sums when parameters are specialized to roots of unity.

2.7 Newton polygons of cyclic covers of the projective line
Participants: Wanlin Li, Elena Mantovan, Rachel Pries, Yunqing Tang

A fundamental problem in arithmetic geometry is understanding which abelian varieties arise as Jacobians
of (smooth) curves. This question is equivalent to studying (the interior of) the Torelli locus in Siegel varieties.

In positive characteristic p, there are an abundance of discrete invariants associated with abelian varieties,
e.g., the p-rank, the Newton polygon, and the Ekedahl–Oort type. These invariants give information about the
Frobenius morphism and the number of points of the abelian variety defined over finite fields. It is a natural
question to ask which of these invariants are realized by Jacobians. As each type of discrete invariant yields
a stratification of the reduction modulo p of the Siegel variety, this problem is equivalent to understanding
which strata intersect the Torelli locus, and its interior.

Ultimately, one would like to understand the geometry of the induced stratifications of the Torelli locus
(e.g., the connected components of each stratum and their closure), in the same way that the geometry of the
corresponding stratifications of Siegel varieties is understood. For example, in [16], Faber and van der Geer
prove that for any genus g and prime p, the p-rank strata are non-empty and have the appropriate codimension.
See also [1] and [2].

In the case of the Newton polygon, more precisely the Newton polygon of the characteristic polynomial
of Frobenius, much less is known beyond genus 3. Most interestingly, in 2005, Oort observed that for genus
g ≥ 9, a dimension count suggests that it is unlikely for all Newton polygons to occur for Jacobians.

This project focuses on understanding the Newton polygons of cyclic covers of the project line. In [15],
for any family T of cyclic covers of the projective line, Deligne and Mostow construct a PEL-type Shimura
variety containing T . In [31], Moonen shows that there are precisely twenty families of cyclic covers of the
projective line which give rise to special subvarieties of Siegel varieties, and each of these twenty special
families agrees with the associated Shimura variety constructed in [15]. The Newton polygon and Ekedahl–
Oort stratifications of PEL-type Shimura varieties are well understood by the work of Viehmann and Wedhorn
[38]. Combining these results thus enables us to compile the list of all Newton polygons and Ekedahl–Oort
types of Jacobians in each of the twenty special families in [31]. (Some of the necessary computations were
carried out using MAGMA.)

Given this list, we proceed to investigate which invariants arise for smooth curves in the families. For
the Newton polygon corresponding to the open stratum (i.e., the µ-ordinary polygon) the answer is always
affirmative. Beyond that it is less clear. In the cases when the closed stratum (which corresponds to the
Newton polygon called basic) has codimension 1, a count of the number of connected components of the
boundary implies that the answer is affirmative for sufficiently large primes. These two results yield several
new examples of Newton polygons of Jacobians of smooth curves for low genera for infinitely many p.

Finally, to attack the same questions for arbitrarily large genera, we develop a new induction argument,
similar in flavor to the one initially used in [16] for p-ranks and its most recent refinement for Newton
polygons in [34]. The value of the induction argument is that it yields information about the geometry of
the Newton polygon strata for higher genus, starting from geometric information for the strata in low genus.
This yields new occurrences for Newton polygons of smooth cyclic covers of the projective line varying in
non-special families. Unfortunately, one hypothesis is in general not stable under the inductive argument,
and so far our result only yields finitely many new Newton polygons. As we have not yet exhausted all
possible settings, there is still hope to construct new examples for arbitrary large genera. Either way, we
expect to establish the non-emptiness of many/most/all Newton polygon strata for genera g ≤ 8 under certain
congruence conditions on the prime p.
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2.8 Ramanujan graphs in Cryptography
Participants: Anamaria Costache, Brooke Feigon, Kristin Lauter, Maike Massierer, Anna Puskás

Our WIN4 group studied the security of a new proposal for Post-Quantum Cryptography (PQC) from both
a number theoretic and cryptographic perspective. National Institute of Standards and Technology (NIST)
will be running an international competition over the next few years to select a new system for PQC. One of
the possible candidates is based on the hardness of finding isogenies between supersingular elliptic curves.
This hard problem was first proposed by Charles-Goren-Lauter in 2006 ([11]) as the basis for a new cryp-
tographic hash function construction. A Pizer graph is the isogeny graph of supersingular elliptic curves,
SS(`, p), which can be interpreted in terms of Brandt matrices representing Hecke operators acting on spaces
of modular forms. The idea behind the cryptographic applications is to use the hardness of finding paths
in these Ramanujan graphs (or inverting random walks) as a way to construct a one-way function. The
hard problem is then to find paths in the graph, given the starting and ending point. In the same paper,
Charles-Goren-Lauter also proposed a PQC system based on another family of Ramanujan graphs, those of
Lubotzky-Phillips-Sarnak (LPS). A 2008 paper by Petit-Lauter-Quisquater ([32]) breaks the hash function
based on LPS graphs, whereas recent work has built on the hardness of finding isogenies between super-
singular elliptic curves. In particular, in [14] De Feo-Jao-Plût proposed a cryptographic system based on
supersingular isogeny Diffie-Hellman as well as a set of five hard problems.

Our group had two goals related to the crypto-systems on these Ramanujan graphs. On the one side we
wanted to study the weaknesses and reductions in the problems proposed by De Feo-Jao-Plût. On the other
side we wanted to study the relation between the Pizer and LPS graphs by viewing both from a number
theoretic perspective.

For the first goal, we started to understand the relationships between the 5 problems posed by De Feo-Jao-
Plût and to relate them to the hardness of the Supersingular Isogeny Graph problem which is the foundation
for the CGL hash function.

For the second goal, we started explicating the relation between LPS graphs and Pizer graphs. The vertex
set of both of these graphs can be viewed as a set of double cosets obtained from the adelic points of the
multiplicative group of a particular quaternion algebra, B, acted on by an order of the algebra. The particular
algebra and the order one must choose depend on the graphs. For LPS graphs we must fix B = B2,∞, the
quaternion algebra over Q that is ramified at 2 and∞, and choose a non-maximal order that will depend on a
prime p. Whereas for the Pizer graphs we chooseB = Bp,∞, the quaternion algebra over Q that is ramified at
p and infinity, and take the maximal order in B. Thus we were able to see that the Pizer and LPS considered
in [11] are not isomorphic. However, there are generalizations of both of these graphs that we believe do
come from the same choices of quaternion algebras and orders. We are continuing to explore how explicit we
can make this isomorphism and whether or not this can provide any insight into why the hash-function for
LPS graphs has been broken, but the one for Pizer graphs has not been.

2.9 Torsion structures on elliptic curves
Participants: Abbey Bourdon, Özlem Ejder, Yuan Liu, Frances Odumodu, Bianca Viray

A result of Frey, which relies on Faltings’s theorem about rational points on subvarieties of abelian va-
rieties, states that a curve C/Q has infinitely many points of degree at most d only if 2d is at least the Q-
gonality of C [20]. Moreover, the proof shows that if C has infinitely many points of degree at most d and
d < gonQ(C), then the image of Symd(C) in Jac(C) contains a translate of a positive rank subabelian variety.
One can think of Frey’s result as saying that there are infinitely many points of degree at most d only when
there is an infinite family parametrizing them (e.g., a P1 or a positive rank abelian variety).

Degree d points that are not parametrized by an infinite family are less understood. Such points are called
sporadic; precisely, a closed point x on a curve C is sporadic if C has only finitely many closed points of
degree at most deg(x). In our project, we study sporadic points on the modular curves {X1(N)}N≥1, whose
non-cuspidal points correspond to isomorphism classes of pairs of elliptic curves with a marked point of order
N . In particular, we seek to better understand the properties of elliptic curves that can give rise to sporadic
points on X1(N).
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LetE/Q be an elliptic curve and let ` be a prime. If there is a sporadic point x ∈ X1(`) with j(x) = j(E),
then E must achieve a rational point of order ` in unusually low degree. This in turn implies that the image
of the mod ` Galois representation must be unusually small. Thus one may anticipate that elliptic curves with
complex multiplication (CM) are good candidates for producing sporadic points, and indeed any CM elliptic
curve will give rise to infinitely many sporadic points in

⋃
`X1(`). In contrast, if E/Q is a non-CM elliptic

curve, Serre’s Uniformity Conjecture states that the image of the mod ` Galois representation associated E
is surjective for all primes ` > C, where C is a constant that does not depend on E (a standard guess is
that C = 37). If true, this would imply there are only finitely many non-CM non-cuspidal sporadic points
on ∪`X1(`) that correspond to elliptic curves E with j(E) ∈ Q. This observation inspires the following
question:

Question 2 Does there exist an absolute constant C such that if N > C, there are no non-CM non-cuspidal
sporadic points on X1(N) corresponding to elliptic curves with rational j-invariant?

More generally, one may ask:

Question 3 Fix a positive integer d. Does there exist a constant C = C(d) such that if N > C, there are
no non-CM non-cuspidal sporadic points x on X1(N) with [k(j(x)) : Q] ≤ d, where j : X1(N) → X(1)
denotes the natural map to X(1) = P1

j?

During our week at BIRS, our group succeeding in proving the following partial affirmative answer to
this question. We write Spor(N) for the closed subset of X1(N) consisting of all sporadic points on X1(N).

Theorem 2 Fix a number field k and assume Serre’s Uniformity Conjecture for k. Then there exists a positive
integer A = A(k) such that

j

( ⋃
N∈N

Spor(N)

)
∩ P1

j (k) ⊂ j

⋃
N |A

Spor(N)

 .

In particular, the set of k-rational j-invariants of sporadic points is finite.
Moreover if the constant in Serre’s Uniformity conjecture can be taken to depend only on the degree d of

k for all number fields k of degree d, then the same is true for A. In particular, then there are only finitely
many j-invariants corresponding to sporadic points x with [k(j(x)) : Q] bounded.
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