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Representing initial uncertainty by an

ensemble of states

Forecast uncertainty in weather models: \

? |Initial condition uncertainty RMS error
7 Model uncertainty

72 Boundary condition uncertainty

Represent initial forecast uncertainty by /\’
ensemble of states T _ \

Reliable forecast system: Spread should
grow like ensemble mean error fo

v Predictable states with small error
should have small spread

72  Unpredictable states with large error
should have large spread

ensemble mean [
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Stochastic parameter perturbations (SPP)
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* Stochastically perturbs parameters in convection and PBL scheme
»  Grell convection scheme: Closure tendencies
»  MYNN PBL: Turbulent mixing length, subgrid cloud fraction,
thermal and moisture roughness lengths (perturbations
correlated and anti-correlated informed by expert knowledge)
* Results from RAP ensemble system @15km, currently tested in 3km

Jankov et al., 2017




Kinetic energy spectra
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Limited vs unlimited predictability in
Lorenz 196¢
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FIG. 1. Error energy per unit wavenumber, K~ ' Z(K, t) for t = 0, 2 in steps of 0.1 for (a) SQG

turbulence and (b) 2DV turbulence. The heavy solid line indicates the base-state kinetic
energy spectra per unit wavenumber, K~ 'X(K), which has a —5/3 slope for SQG and a —3

slope for 2DV.

Rotunno and Snyder, 2008

see also: Tribbia and Baumhefner 2004




Weather timescales: Kinetic-energy

spectra
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The problem (1)

Best estimates of initial condition uncertainty do not
introduce the necessary spread for reliable forecasts on
the short-, medium- and seasonal scales.

2 One source of model-error are uncertainties in the physical
parameterization schemes.

Our best estimate of parameterization uncertainties does
not yield sufficient spread.

? There are other sources of model-error, e.g. the absence of
a -5/3 slope in the kinetic energy spectra, leading to
incorrect dispersion between any two ensemble members.

Some ad-hoc stochastic parameterization schemes
address this issue and yield more reliable ensemble
systems.



Predictability on sub-seasonal timescales

Some knowledge of initial condition (Sun 2011,
Vitart 2014)

2 Ocean state

# Stratospheric state
?2 Tropical MJO

Conditional predictability, Regime-transitions



Regime-behavior, dynamical systems
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Predictability, geographic differences
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The problem (2)

In climate simulations, there remain biases in the
mean and variance (and higher-order moments),
which will affect the results in “signal-to-noise”
calculations (e.g. effect of stratosphere on the
troposphere) as well as climate change projections.



Bias in SST variability
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The problem (2)

In climate simulations, there remain biases in the
mean and variance (and higher-order moments?),
which will affect the results in “signal-to-noise”
calculations, e.g. effect of stratosphere on the
troposphere.

2 What is the effect of using such models for estimating

predictability limits of the real atmosphere on sub-
seasonal and longer timescales ?

2 How does this effect estimates for climate change
distributions and especially their tails?

(but maybe trends okay)



Toward a solution

/
Potential

Stochastic Weaki noise Strong noise
parameterizations can | |
change the mean and
variance of a PDF

72 Impacts variability

72 Impacts mean bias

Unimodal Multi-modal




Forecast error spectra

a)

10'
£
S 10’
©
(]
= 1
@ 107"}
(]
=
c

107

107

10° 10’ 10° 10° 10’ 10°
Total Wavenumber n Total Wavenumber n

FIG. 8. Power spectrum of the error of the ensemble-mean forecast (thin solid lines) and spread (thick lines) in 500
hPa for fixed forecast lead times of 12 h, 2 days, S days, and 10 days for (a) the operational ensemble configuration
(spread in OPER: thick solid line) and (b) the ensemble system with a stochastic backscatter scheme and reduced
initial perturbations (spread in SSBS: thick dashed line). SSBS is short for SSBS-FULLDISS. Lines for forecast lead
times of 12 h and 5 days are shown in black and for 2 days and 10 days in gray. See text for details.

Berner et al. 2009




Bias in SST variability
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Judith’s perspective: Potential of stochastic

parameterizations (and open questions)

2 Can change the kinetic-energy spectra and divergence
properties in ensemble systems.

Does a model with an artificial -5/3 slope have the same
limited predictability as theory.

2 Can change the bias in the mean and variance.
But for right reasons? Compensating model-errors.

? Sub-seasonal prediction is a hot topic right now.

How does regime-behavior fit in with classical predictability
views and studies? (IC and/or BC — depends on system)?

Stochastic parameterization improve sub-seasonal forecasts,
since they are underdispersive, but is there more?

Linear inverse models make excellent predictions on this
timescale. Why and what can we learn from it?




Bulletin of the American Society, March

STOCHASTIC PARAMETERIZATION

Toward a New View of Weather and Climate Models

JuDITH BERNER, ULRICH ACHATZ, LAURIANE BATTE, LisA BENGTSSON, ALVARO DE LA CAMARA,
HANNAH M. CHRISTENSEN, MATTEO CoLANGELI, DANIELLE R. B. CoLeMAN, DAAN CROMMELIN,
STAMEN |. DoLAPTCHIEV, CHRISTIAN L. E. FRANZKE, PETRA FRIEDERICHS, PETER IMKELLER, HEIKKI JARVINEN,
STEPHAN JURICKE, VAssILI KiTsios, FRANGOIS LOTT, VALERIO LucARINI, SALIL MAHAJAN, TiMOTHY N. PALMER,
CeciLe PENLAND, MIRJANA SAKRADZIJA, JIN-SONG VON STORCH, ANTJE WEISHEIMER,

MicHAEL WENIGER, PauL D. WiLLiAMs, AND JuN-IcHI YanO

Stochastic parameterizations—empirically derived or based on rigorous
mathematical and statistical concepts—have great potential to increase the
predictive capability of next-generation weather and climate models.



Thank youl



Evidence
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Nino3.4 Power spectra

Christensen et al. 2017
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Judith’s definition of “perfect”

A stochastic parameterization is perfect, if
simulations with a low-resolution model with
stochastic parameterization are statistically
indistinguishable from a high-resolution model



Information theory

Comes from comparing distributions, e..g. using information theory
7?2 Kleeman 2002; Majda 2002; Abramov et al. 2005;
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Spread and error near the surface
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Subseasonal predictability

OLR Anomaly Correlation forecast skill, 1999-2009 (Daily start dates)
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