
ì

Transport in Unsteady Flows: from Deterministic Structures to Stochastic 

Models and Back Again



Outline 

ì Sources	of	predictability	in	weather	and	climate	
simulations.

ì Theoretical	limits	of	predictability	
ì Additional	limits	due	to	the	presence	of	model-error
ì Potential	remedy	by

ì Stochastic	parameterizations	
ì Increasing	numerical	resolution	
ì Improving	physical	parameterizations
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WeatherFor	atmospheric	system: ClimateSuseasonal/seasonal

For	coupled	a/o	system: ClimateDecadal	timescalesWeather



Representing initial uncertainty by an 
ensemble of states 

ì Forecast	uncertainty	in	weather	models:
ì Initial	condition	uncertainty
ì Model	uncertainty	
ì Boundary	condition	uncertainty

ì Represent	initial	forecast	uncertainty	by	
ensemble	of	states

ì Reliable	forecast	system:	Spread	should	
grow	like	ensemble	mean	error
ì Predictable	states	with	small	error	

should	have	small	spread
ì Unpredictable	states	with	large	error	

should	have	large	spread
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Stochastic parameter perturbations (SPP)
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• Stochastically	perturbs	parameters	in	convection	and	PBL	scheme
Ø Grell convection	scheme:	Closure	tendencies	
Ø MYNN	PBL:	Turbulent	mixing	length,	subgrid cloud	fraction,	

thermal	and	moisture	roughness	lengths	(perturbations	
correlated	and	anti-correlated	informed	by	expert	knowledge)

• Results	from	RAP	ensemble	system	@15km,	currently	tested	in	3km

Jankov et	al.,	2017



Kinetic energy spectra

Nastrom and Gage, 1985



Limited vs unlimited predictability in 
Lorenz 1969

Rotunno and	Snyder,	2008	

see	also:	Tribbia and	Baumhefner 2004	



Weather timescales: Kinetic-energy 
spectra

Skamarock et	al. 2014	



The problem (1)

ì Best	estimates	of	initial	condition	uncertainty	do	not	
introduce	the	necessary	spread	for	reliable	forecasts	on	
the	short-,	medium- and	seasonal	scales.
ì One	source	of	model-error	are	uncertainties	in	the	physical	

parameterization	schemes.
ì Our	best	estimate	of	parameterization	uncertainties	does	

not	yield	sufficient	spread.
ì There	are	other	sources	of	model-error,	e.g.	the	absence	of	

a	-5/3	slope	in	the	kinetic	energy	spectra,	leading	to	
incorrect	dispersion	between	any	two	ensemble	members.
ì Some	ad-hoc	stochastic	parameterization	schemes	

address	this	issue	and	yield	more	reliable	ensemble	
systems.



Predictability on sub-seasonal timescales

ì Some	knowledge	of	initial	condition	(Sun	2011,	
Vitart 2014)
ì Ocean	state	
ì Stratospheric	state
ì Tropical	MJO

ì Conditional	predictability,	Regime-transitions



Regime-behavior, dynamical systems
Kimoto and	Ghil ‘93

Monahan and	Pandolfo 2001	 Crommelin 2003



Ferranti and	Corti ,	2015



Predictability, geographic differences  

Straus	and	Paolino 2008



The problem (2)

ì In	climate	simulations,	there	remain	biases	in	the	
mean	and	variance	(and	higher-order	moments),	
which	will	affect	the	results	in	“signal-to-noise”	
calculations	(e.g.	effect	of	stratosphere	on	the	
troposphere)	as	well	as	climate	change	projections.



Bias in SST variability

Christensen	et	al.	2017



The problem (2)

ì In	climate	simulations,	there	remain	biases	in	the	
mean	and	variance	(and	higher-order	moments?),	
which	will	affect	the	results	in	“signal-to-noise”	
calculations,	e.g.	effect	of	stratosphere	on	the	
troposphere.	
ì What	is	the	effect	of	using	such	models	for	estimating	

predictability	limits	of	the	real	atmosphere	on	sub-
seasonal	and	longer	timescales	?

ì How	does	this	effect	estimates	for	climate	change	
distributions	and	especially	their	tails?
ì (but	maybe	trends	okay)



Toward a solution

Weak noise

Multi-modalUnimodal

Potential

PDF

Strong noiseì Stochastic	
parameterizations	can	
change	the	mean	and	
variance	of	a	PDF
ì Impacts	variability
ì Impacts	mean	bias



Forecast error spectra

Berner et	al.	2009



Bias in SST variability



Judith’s perspective: Potential of stochastic 
parameterizations (and open questions)

ì Can	change	the	kinetic-energy	spectra	and	divergence	
properties	in	ensemble	systems.
ì Does	a	model	with	an	artificial	-5/3	slope	have	the	same	

limited	predictability	as	theory.
ì Can	change	the	bias	in	the	mean	and	variance.

ì But	for	right	reasons?	Compensating	model-errors.
ì Sub-seasonal	prediction	is	a	hot	topic	right	now.	

ì How	does	regime-behavior	fit	in	with	classical	predictability	
views	and	studies?	(IC	and/or	BC	– depends	on	system)?

ì Stochastic	parameterization	improve	sub-seasonal	forecasts,	
since	they	are	underdispersive,	but	is	there	more?

ì Linear	inverse	models	make	excellent	predictions	on	this	
timescale.	Why	and	what	can	we	learn	from	it?



Bulletin of the American Society, March





Evidence



Nino3.4 Power spectra

Christensen	et	al.	2017



Judith’s definition of “perfect”

ì A	stochastic	parameterization	is	perfect,	if	
simulations	with	a	low-resolution	model	with	
stochastic	parameterization	are	statistically	
indistinguishable	from	a	high-resolution	model



Information theory

ì Comes	from	comparing	distributions,	e..g.	using	information	theory
ì Kleeman 2002;	Majda 2002;		Abramov	et	al.	2005;	



Spread and error near the surface

0.5
1

1.5
2

2.5

Zonal Wind U at 10m

S
pr

ea
d;

E
rr

or

a)

0.2

0.22

0.24

0.26

0.28

B
rie

r S
co

re

c)

0.02

0.04

0.06

R
el

ia
bi

lit
y

e)

0.02

0.03

0.04

R
es

ol
ut

io
n

g)

0 12 24 36 48 60

0

0.1

0.2
B

rie
r S

ki
ll 

S
co

re

Forecast Lead time

i)

1

2

3

Temperature at 2mb)

 

 

0.12

0.14

0.16

0.18

0.2

d)

0.01

0.02

0.03

f)

0.05
0.06
0.07
0.08
0.09

h)

0 12 24 36 48 60
0

0.1

0.2

0.3

Forecast Lead time

j)

CNTL
PARAM
SKEBS
PHYS10
PHYS10_SKEBS
PHYS3_SKEBS_PAR

0.5
1

1.5
2

2.5

Zonal Wind U at 10m

S
pr

ea
d;

E
rr

or

a)

0.2

0.22

0.24

0.26

0.28

B
rie

r S
co

re

c)

0.02

0.04

0.06

R
el

ia
bi

lit
y

e)

0.02

0.03

0.04

R
es

ol
ut

io
n

g)

0 12 24 36 48 60

0

0.1

0.2

B
rie

r S
ki

ll 
S

co
re

Forecast Lead time

i)

1

2

3

Temperature at 2mb)

 

 

0.12

0.14

0.16

0.18

0.2

d)

0.01

0.02

0.03

f)

0.05
0.06
0.07
0.08
0.09

h)

0 12 24 36 48 60
0

0.1

0.2

0.3

Forecast Lead time

j)

CNTL
PARAM
SKEBS
PHYS10
PHYS10_SKEBS
PHYS3_SKEBS_PAR

0

10

20

Brier Skill Score

R
aw

Reliability Resolution

 

 
CNTL

PARAM

SKEBS

PHYS10

PHYS10_SKEBS

PHYS3_SKEBS_PARAM

0

10

20

C
al

ib
ra

te
d

0

10

20

D
eb

ia
se

d

0

10

20

C
al

ib
ra

te
d 

&
 D

eb
ia

se
d

U700 T700  U10   T2

0

10

20

C
ha

ng
e 

of
M

od
el

 V
er

si
on

U700 T700  U10   T2 U700 T700  U10   T2

ì Ensemble	is	underdispersive (=	not	enough	
spread)
ì Unreliable	and	over-confident
ì Depending	on	cost-loss	ration	potentially	large	

socio-economic	impact	(e.g.	should	roads	be	
salted)

Solid	lines:	 rms
error	of	ensemble	
mean

Dashed:	spread



Subseasonal predictability 

Newmann and Sardeshmukh


