Space-time characterization of coherence

PÉTER KOLTAI

Institute of Mathematics, FU Berlin

BIRS Workshop on

"Transport in Unsteady Flows: from Deterministic Structures to Stochastic Models and Back Again"

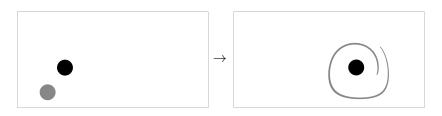
Banff, January 20, 2017

Joint work with GARY FROYLAND (UNSW)

Motivation

Coherent are sets with a particular property in state space with a specific behavior in time

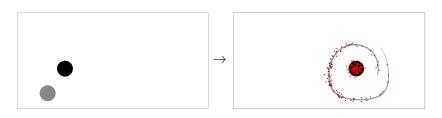
- Bundles of trajectories (Talk by Padberg-Gehle)
- Sets that don't disperse over time under the combined effect of dynamics and diffusion (Talks by Froyland, Junge, and Karrasch)



Motivation

Coherent are sets with a particular property in state space with a specific behavior in time

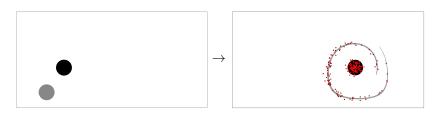
- Bundles of trajectories (Talk by Padberg-Gehle)
- Sets that don't disperse over time under the combined effect of dynamics and diffusion (Talks by Froyland, Junge, and Karrasch)



Motivation

Coherent are sets with a particular property in state space with a specific behavior in time

- Bundles of trajectories (Talk by Padberg-Gehle)
- Sets that don't disperse over time under the combined effect of dynamics and diffusion (Talks by Froyland, Junge, and Karrasch)



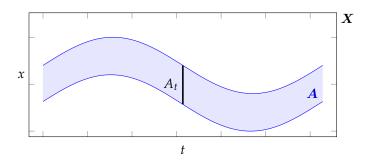
Aim: Try to understand coherent sets in their spatio-temporal entirety.

Augmented system

lackbox With $oldsymbol{x}=(heta,x)\in oldsymbol{X}$ we have the augmented system

$$\begin{array}{rcl}
\dot{\theta}_t & = & 1 \\
dx_t & = & v(\theta_t, x_t)dt + \varepsilon dw_t
\end{array}
\iff dx_t = v(x_t)dt + \sum dw_t$$

- lacktriangle Generates autonomous (homogeneous) augmented system x_t
- ▶ For family of sets $\{A_r\}_{r \in (s,t)}$: augmented set $A = \bigcup_{r \in (s,t)} \{r\} \times A_r$



Transfer operator on augmented space

- ▶ Ensemble of states x_0 with density $f \in L^1(X)$
- ▶ Transfer operator $\mathcal{P}_t : L^1(X) \to L^1(X)$:

$$x_0 \sim f \quad \Longrightarrow \quad x_t \sim {\cal P}_t f$$

- For $s, t \ge 0$, $\mathcal{P}_{s+t} = \mathcal{P}_s \mathcal{P}_t$: one-parameter semigroup Compare with $\exp(s+t) = \exp(s) \exp(t)$
- (Infinitesimal) generator \mathcal{G} , with $\frac{d}{dt}\mathcal{P}_t=\mathcal{GP}_t$. Intuitively

"
$$\mathcal{P}_t = \exp(t\mathcal{G})$$
"

Spatio-temporal Fokker–Planck operator

$$\mathcal{G}f = -\mathrm{div}(fv) + \frac{\varepsilon^2}{2}\Delta_{x}f$$

Coherent families

Escape rates

$$E(A) = -\liminf_{t \to \infty} \frac{1}{t} \log \mathbb{P}(x_r \in A, 0 \le r \le t)$$

$$\updownarrow$$

$$E(\{A_r\}) = -\liminf_{t \to \infty} \frac{1}{t} \log \mathbb{P}(x_r \in A_r, s \le r \le t)$$

▶ Periodic forcing: $v(t, \cdot) = v(t + \tau, \cdot)$

- $egin{aligned} ullet & \mathsf{Let} \; oldsymbol{\mathcal{G}} oldsymbol{f} = \kappa oldsymbol{f} \ & \mathsf{Set} \; oldsymbol{A}^\pm = \{\pm oldsymbol{f} \geq 0\} \end{aligned}$

Then

$$E(A^{\pm}) \leq -\mathfrak{Re}(\kappa)$$

[FROYLAND, K., PREPRINT]

► Cf. evolution semigroups [Howland '74], [Chicone, Latushkin '00] & others; and also the talk by Gonzalez Tokman

State space

Augmented state space

Augmented set $m{A}$ with escape rate $m{E}(m{A}) \leq -\mathfrak{Re}(\kappa)$

$$E(\{A_s\}) \leq -\mathfrak{Re}(\kappa)$$

Family of functions f_s with slow decay:

$$\Lambda_s(f_s)=\mathfrak{Re}(\kappa)$$

Augmented function ${m f}$ with slow decay:

$$\boldsymbol{\mathcal{P}}_t \boldsymbol{f} = e^{\kappa t} \boldsymbol{f}$$

Eigenfunctions of one period transfer operator:

 \leftrightarrow

Eigenfunctions of augmented generator:

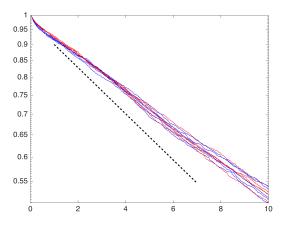
$$\mathcal{P}_{s,s+\tau}f_s=e^{\kappa\tau}f_s$$

Double gyre: real eigenvalues

Double gyre: escape rates

Double gyre: escape rates

Escape rates by numerical simulation: from $\{A_t^+\}$ (blue) and from $\{A_t^-\}$ (red). Dashed line: eigenvalue bound.



Example 1: complex eigenvalue

- $ightharpoonup \mathcal{G}f = \kappa f, \ \kappa \in \mathbb{C}$
- $ullet A_t^\pm = ig\{ \pm \mathfrak{Re}(e^{i\mathfrak{Im}(\kappa)t}f_t) \geq 0 ig\}$ is a coherent family
- ▶ Quasi-periodic family: f_t is τ -periodic, $e^{i\Im\mathfrak{m}(\kappa)t}$ is $\frac{2\pi}{\Im\mathfrak{m}(\kappa)}$ -periodic

Extensions

- ▶ Finite time coherence; $t \in [t_0, t_1]$ ([Froyland, K., Plonka, In Prep.])
- Ergodic base dynamics

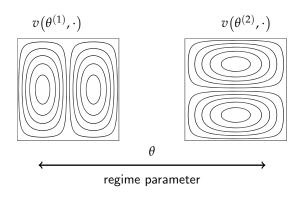
$$\begin{array}{rcl}
\dot{\theta}_t & = & g(\theta_t) \\
dx_t & = & v(\theta_t, x_t)dt + \varepsilon dw_t
\end{array}$$

► Non-deterministic regime dynamics ([K., Plonka, In Prep.])

$$\begin{array}{rcl}
\dot{\theta}_t & = & g(\theta_t) + noise \\
dx_t & = & v(\theta_t, x_t)dt + \varepsilon dw_t
\end{array}$$

Each framework characterizable by augmented generator ${\cal G}$

Turbulent superstructures



Augmented-space dynamics:

$$\dot{\theta}_t = \text{noise/non-trivial dynamics}$$

 $\dot{x}_t = v(\theta_t, x_t) + \text{noise}$

Statistically persistent coherent families = stable sets in augmented space.

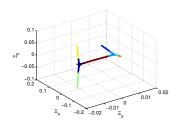
Something different...

"Skeleton of transport" or "Transport coordinates"

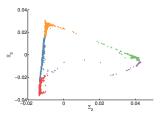
[Banisch, K., To Appear]

Embedding

Clusters / coherent sets



Ocean drifters



Conclusion

Summary:

- Spatio-temporal characterization of coherence
- Transfer operator (generator) in augmented space
- Coherent families for different types of dynamical models
- Skeleton of transport

Acknowledgments:

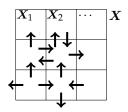
G. Froyland and P. Koltai. Estimating long-term behavior of periodically driven flows without trajectory integration. Preprint, arXiv:1511.07272, 2015.

R. Banisch and P. Koltai. Understanding the geometry of transport: diffusion maps for Lagrangian trajectory data unravel coherent sets. To appear in Chaos, 2016.

G. Froyland, O. Junge, and P. Koltai. Estimating long-term behavior of flows without trajectory integration: The infinitesimal generator approach. SIAM Journal on Numerical Analysis, 51(1):223–247, 2013.

Appendix

Discretization I



Discrete generator $G^{(n)}$:

$$G_{ij}^{(n)} = \begin{cases} \frac{1}{\operatorname{vol}(\boldsymbol{X}_j)} \int_{\partial \boldsymbol{X}_i \cap \partial \boldsymbol{X}_j} \langle \boldsymbol{v}, \boldsymbol{n}_j \rangle^+ d\boldsymbol{\sigma}, & i \neq j \\ -\frac{1}{\operatorname{vol}(\boldsymbol{X}_i)} \int_{\partial \boldsymbol{X}_i} \langle \boldsymbol{v}, \boldsymbol{n}_i \rangle^+ d\boldsymbol{\sigma}, & i = j, \end{cases}$$

- ▶ $G^{(n)}$ computable without trajectory simulation.
- $ightharpoonup G^{(n)}$ is a sparse matrix.
- $ightharpoonup G^{(n)}$ is the spatial discretization of the upwind scheme.
- $ightharpoonup G^{(n)}$ generates Markov jump process, i.e. $e^{tG^{(n)}}$ is a stoch. matrix

Double gyre with Ulam's method

- Eigenfunctions of transition matrix $P^{(n)}$ from Ulam's method for (s,t)=(0,1)
- Same number of vector field evaluations as for the augmented generator

