
A New Implementation of Fletcher’s Exact Merit
Function for Nonlinear Optimization (12rit180)

Michael P. Friedlander (Vancouver, Canada),
Dominique Orban (Montréal, Canada)

May 27–June 3, 2012

1 Overview
Consider the general nonlinear optmization problem

minimize f(x) subject to c(x) = 0, (1)

where f : !n → ! and c : !n → !m are twice-continuously differentiable functions. A fundamental
challenge in developing iterative algorithms for this solution of this problem is the inherent tradeoff between
minimizing the objective function f , and satisfying the constraint c(x) = 0. Penalty functions encapsulate
these competing demands by providing a measure of progress towards the solution, and provide for a way of
transforming the constrained (and difficult) problem into an unconstrained (and easier problem). A penalty
function may be either exact—i.e., its unconstrainedminimizer coincides with a solution of (1)—or inexact—
i.e., its unconstrained minimizer is only an approximate solution, and an infinite sequence of unconstrained
problems must be solved. Exact-penalty functions, however, are generally nonsmooth, which entail a host of
complicating factors.

The method that we consider is rooted in a smooth and exact penalty function first proposed by [2] for
equality-constrained problems. There has been a long-held view that that Fletcher’s penalty function is not
practicable because it is costly to compute; see comments by Bertsekas (1976), [1], and [3]. Our aim in this
project is to challenge that notion, and to demonstrate that the computational kernels are no more expensive
than other well-accepted methods for nonlinear optimization, such as sequential quadratic programming.

The penalty function that we consider for (1)

φσ(x) := f(x)− c(x)T yσ(x), (2)

where yσ(x) are Lagrange multiplier estimates defined as the solution of the least-squares problem

minimizey
1

2
‖A(x)y − g(x)|22 + σc(x)T y, (3)

where we used the notation

g(x) := ∇f(x), A(x) := ∇c(x), and Yσ(x) := ∇yσ(x). (4)

Note that A and Yσ are n-by-mmatrices. In our initial exploration, we make the simplifying assumption that
A(x) is full rank for all x. Hence, the solution yσ(x) and its gradient Yσ(x) are uniquely defined.

1



2

1.1 Notation
LetH(x) = ∇2f(x) andHi(x) = ∇2ci(x). We also define

gσ(x) := g(x)−A(x)yσ(x), (5a)

Hσ(x) := H(x)−
m
∑

i=1

[yσ(x)]iHi(x), (5b)

which we recognize as the gradient and Hessian, respectively, of the usual Lagrangian function L(x, y)
evaluated at x and y(x). Also, define the matrix operators

S(x, v) := ∇x[A(x)
T v] = ∇x







∇c1(x)T v
...

∇cm(x)T v







=







vTH1(x)
...

vTHm(x)







;

T (x,w) := ∇x[A(x)w] = ∇x

[

m
∑

i=1

∇ci(x)wi

]

=
m
∑

i=1

wiHi(x),

for all v ∈ !n and w ∈ !m. In particular, note that for all u ∈ !m, all v ∈ !n and all w ∈ !m,

S(x, v)T u =

[

m
∑

i=1

uiHi(x)

]

v = T (x, u)v ,

S(x, v)w =







vTH1(x)w
...

vTHm(x)w






,

and

T (x,w)T v =

[

m
∑

i=1

wiHi(x)

]

v = T (x,w)v .

If A has full rank at some feasible x∗, the operators

P = A(x∗)
(

A(x∗)TA(x∗)
)

−1
A(x∗)T and P̄ := I − P (6)

define orthogonal projectors onto range(A(x∗)) and its complement, respectively.
The gradient and Hessian of φσ may be written as

∇φσ(x) = gσ(x)− Yσ(x)c(x), (7a)
∇2φσ(x) = Hσ(x) −A(x)Yσ(x)

T − Yσ(x)A(x)
T −∇ [Yσ(x)c] , (7b)

whereH(x) = ∇2f(x) andHi(x) = ∇2ci(x) are the Hessians of the objective and each constraint function,
respectively. The last term ∇x[Yσ(x)c] in the expression for ∇2φσ purposefully drops the argument on c to
emphasize that this gradient is made on the product Y (x)c, with c := c(x) held fixed. This term involves
third derivatives of f and c, and as Fletcher shows, it is both convenient and computationally efficient to
ignore this term; we leave this term unexpanded.

2 Scientific Progress Made
During our workshop we established a better understanding of how an algorithm might dynamically update
the penalty parameter. In this section we give explicit expressions for threshold values of the penalty param-
eter.

It follows directly from the gradient and Hessian expressions (7) of φσ and the definition (3) of yσ that the
following definitions are equivalent to the usual optimality conditions defined via the Lagrangian function;
see, e.g., [3, Ch. 12].



3

First-order KKT point A point x∗ is a first-order KKT point of (1) if for any σ ≥ 0 the following hold:

c(x∗) = 0, (8a)
∇φσ(x

∗) = 0. (8b)

The elements of y∗ := yσ(x∗) comprise the vector of Lagrange multipliers of (1) associated to x∗.
We can similarly derive second-order optimality conditions based on the Hessian of φσ .
Second-order KKT point The first-order KKT point x∗ satisfies the second-order necessary KKT con-

dition for (1) if for any σ ≥ 0

pT∇2φσ(x
∗)p ≥ 0 for all p such that A(x∗)T p = 0. (9)

The condition is sufficient if

pT∇2φσ(x
∗)p > 0 for all p (= 0 such that A(x∗)T p = 0. (10)

The second-order KKT condition holds for all σ ≥ 0, and only requires the correct curvature of φσ in
directions in the tangent space of the constraints. However, we can explicitly derive a threshold value of σ
that causes a stationary point of φσ to be feasible, or causes φσ to be locally convex at a second-order KKT
point x∗. For a given first or second-order KKT point x∗ for (1), we define

σ∗ :=
1

2
‖PHσ(x

∗)P‖. (11)

Theorem 1. If∇φσ(x̄) = 0 for some x̄, then

σ > ‖A(x̄)TYσ(x̄)‖ =⇒ g(x̄) = A(x̄)yσ(x̄), c(x̄) = 0. (12a)

If x∗ is a first-order KKT point for (1), then

σ ≥ ‖A(x∗)Yσ(x
∗)T ‖ =⇒ σ ≥ σ∗. (12b)

If x∗ is a second-order necessary KKT point for (1), then

∇2φσ(x
∗) * 0 ⇐⇒ σ ≥ σ∗, (12c)

If x∗ is second-order sufficient, then the inequalities in (12c) hold strictly.

Proof. We prove, in order, (12a), (12c), and (12b). First note that for any x, the vector of Lagrange multiplier
estimates yσ(x) satisfies the linear system

A(x)TA(x)yσ(x) = A(x)T g(x)− σc(x), (13)

which define necessary and sufficient optimality conditions for (3).
Proof of (12a). The condition∇φσ(x̄) = 0 implies that

g(x̄) = A(x̄)yσ(x̄) + Yσ(x̄)c(x̄).

Using this equation in (13) evaluated at x̄, yields, after simplifying,

A(x̄)TYσ(x̄)c(x̄) = σc(x̄).

Taking norms of both sides and using the triangle inequality gives σ‖c(x̄)‖ ≤ ‖A(x̄)TYσ(x̄)‖ ‖c(x̄)‖, which
immediately implies that c(x̄) = 0. The condition ∇φσ(x̄) = 0 then becomes gσ(x̄) = 0, which completes
the proof of (12a).

Proof of (12c). We first obtain an expression for A(x)Yσ(x)T in terms of Hσ(x) by differentiating both
sides of (13), which yields

S(x,A(x)yσ(x)) +A(x)T
[

T (x, yσ(x)) +A(x)Yσ(x)
T
]

= S(x, g(x)) +A(x)T [H(x) − σI].



4

Isolating the termA(x)TA(x)Yσ(x) on the left-hand side, and using the linearity of S in its second argument,
we rearrange terms to arrive at

A(x)TA(x)Y (x)T = S(x, g(x) −A(x)yσ(x)) +A(x)T [H(x)− T (x, yσ(x)) − σI].

Using the definitions (5), this can be expressed as

A(x)TA(x)Y (x)T = A(x)T [Hσ(x) − σI] + S(x, gσ(x)). (14)

Because x∗ satisifes the first-order conditions (8), gσ(x∗) = 0, and it follows from the above equation and
the definition of P that

A(x∗)Yσ(x
∗)T = P (Hσ(x

∗)− σI). (15)

We substitute this equation into (7b) and use the relation P + P̄ = I to obtain the expression

∇2φσ(x
∗) = P̄Hσ(x

∗)P̄ − PHσ(x
∗)P + 2σP. (16)

Because ‖P‖ ≤ 1, the relationship (12c) follows.
Proof of (12b). Again using properties of the projector P , it follows from (15) that

σ ≥ ‖A(x∗)Yσ(x
∗)T ‖

= ‖P (Hσ(x
∗)− σI)‖

≥ ‖P (Hσ(x
∗)− σI)P‖

≥ ‖PHσ(x
∗)P‖ − σ‖P‖

≥ 2σ∗ − σ.

Thus, σ ≥ σ∗, as required.

3 Outcome of the Meeting
Theorem 1 gives us a concrete method for testing if a candidiate threshold parameter is sufficiently large.
Other crucial items completed during this workshop included

• A method for computing the gradient and Hessians in (7) that has a cost of factorizing only a single
projection matrix;

• Extensions of the penalty function to handle more general constraints, including affine and bound
constraints.

References
[1] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-RegionMethods. MPS-SIAM Series on Optimization.

Society of Industrial and Applied Mathematics, Philadelphia, 2000.

[2] R. Fletcher. A class of methods for nonlinear programming with termination and convergence properties.
In J. Abadie, editor, Integer and nonlinear programming, pages 157–175. North-Holland, Amsterdam,
1970.

[3] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, second edition, 2006.


