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1 Overview of the Field
The Langlands program was originally formulated as a link between number theory and analysis, but over
the last 40 years it has grown to link together much of pure mathematics and parts of theoretical physics.
Results on the Langlands program have been at the heart of many of the most spectacular developments
in number theory in the last 20 years, including the proofs of Fermat’s Last Theorem, Serre’s Conjecture
and the Sato–Tate conjecture. The p-adic Langlands program is an exciting recent generalisation of the
Langlands program, which has already led to major results in number theory, in particular the proofs of the
two-dimensional Fontaine–Mazur conjecture by Emerton and Kisin ([2],[4]).

2 Recent Developments and Open Problems
The p-adic Langlands program is still at a nascent stage, and at present the local correspondence only exists
for the group GL2 /Qp, and the global correspondence only for GL2 /Q. Experience with the classical
Langlands program has shown that the full strength of the correspondence is only apparent when one works
with multiple groups at once, at which point Langlands’ functoriality principle becomes one of the most
powerful tools available to number theorists. In particular, it is frequently vital to be able to work with other
forms of a given group; for example, when making arguments with modular forms, it is frequently helpful
to be able to pass to quaternion algebras, which are non-split forms of GL2, and the proof of the Sato–Tate
conjecture heavily relies on the use of unitary groups, which are non-split forms of GLn. It is therefore of
great interest to explore the p-adic Langlands correspondence for non-split groups, as one anticipates that
similar advantages will be gained here, just as in the classical case.

3 Scientific Progress Made
Much of our progress was centered around understanding an inertial version of the existing p-adic local
Langlands correspondence for GL2(Qp), and understanding the interaction of the p-adic local Langlands
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correspondence with the Taylor–Wiles–Kisin patching method, with a view towards generalisations to non-
split quaternion algebras, and extensions of Qp.

The classical local Langlands correspondence for GL2(Qp) gives a bijection between Frobenius semi-
simple representations of the Weil–Deligne group of Qp over any algebraically closed field of characteristic
zero, and irreducible smooth representations of GL2(Qp) over the same field. Here we will restrict our
attention to Frobenius semisimple representations of the Weil groupWQp itself (equivalently, Weil–Deligne
representations with trivial monodromy operator); this corresponds to omitting the Steinberg representation
and its twists from the GL2(Qp) side of the correspondence.

The Weil group representations are naturally organized into continuous families, by placing two repre-
sentations into the same component of the family if their restrictions to inertia coincide. (The point is that
the image of inertia under a representation of the Weil group is stipulated to be finite, and it cannot vary
continuously; but the Frobenius eigenvalues can be made to vary in a family.) Similarly, the irreducible
smooth representations of GL2(Qp) can be arranged in families (this is part of the theory of the Bernstein
centre), with two representations lying in the same family if they share a common minimal type. (If π is any
irreducible smooth representation ofGL2(Qp), it decomposes into a direct sum of irreducible subrepresenta-
tions of GL2(Zp), and there is a unique such subrepresentation that is minimally ramified, which we call the
minimal type of π.)

Henniart [3] has shown that there is an inertial local Langlands correspondence between those two-
dimensional representations of the inertia group IQp which extend to representations ofWQp , and those rep-
resentations ofGL2(Zp)which arise as the minimalK-type of a smooth irreducibleGL2(Qp)-representation,
so that the family of Weil group representations with a fixed restriction to inertia matches via local Langlands
with the family of smooth irreducibleGL2(Qp)-representations with the corresponding minimalK-type.

Let Dp denote the unique ramified quaternion algebra over Qp. The local Jacquet–Langlands corre-
spondence induces a bijection between the irreducible smooth representations of D×

p (which are necessarily
finite-dimensional, since D×

p is compact modulo its centre) and those irreducible smooth representations of
GL2(Qp) which are not principal series representations. It may seem surprising that a finite-dimensional
representation of the group D×

p , which is essentially compact, can carry the same amount of information
as an infinite-dimensional representation of GL2(Qp), but one can note that the GL2(Qp)-representations
in the image of the Jacquet–Langlands correspondence are determined up to a twist by their minimal type
(since in the non-principal series case, the family of representations with a fixed minimal type is simply a
family of twists), and so one can essentially regard the local Jacquet–Langlands correspondence as matching
representations of two compact groups (namelyD×

p modulo its centre, and GL2(Zp) modulo its centre).
One project that we emphasised during the workshop is to study analogues of the inertial local Lang-

lands correspondence and of the local Jacquet–Langlands correspondence in the context of the p-adic local
Langlands correspondence for GL2(Qp); recall that this correspondence has been constructed by Colmez
and Paškūnas [1, 5], and associates to any continuous representation ρ : GQp → GL2(E) (with E a finite
extension of Qp) a corresponding admissible continuous unitary Banach space representation of GL2(Qp)
over E.

Whereas a smooth representation ofGL2(Qp) overE will decompose as a direct sum of finite-dimensional
irreducible GL2(Zp)-subrepresentations, this need not be true of a continuous representation of GL2(Qp)
on an E-Banach space. Indeed, if Π(ρ) is the Banach space representation of GL2(Qp) attached to some
continuous ρ : GQp → GL2(E) via p-adic local Langlands, then Π(ρ) does not contain any non-zero finite-
dimensionalGL2(Zp)-subrepresentation unless ρ is de Rham (up to a twist), and even in this case Π(ρ) will
not be semisimple as a GL2(Zp)-representation. In most cases we actually expect Π(ρ) to be topologically
irreducible as a GL2(Zp)-representation (even though it is infinite-dimensional!). Thus we cannot expect to
define a notion of minimal type in the context of the p-adic local Langlands correspondence.

However, this non-semisimplicity suggests the following alternative approach to phrasing the inertial local
Langlands correspondence in the p-adic context. Namely, during the workshop we formulated the following
conjecture.
Conjecture 1 If ρ and ρ′ are two continuous representations of GQp over E, then there is a natural

isomorphismHomIp(ρ, ρ
′) ∼= HomGL2(Zp)(Π(ρ),Π(ρ

′)).

Note that this would simply be false in the context of the classical local Langlands correspondence,
already in the case when ρ = ρ′, since an infinite-dimensional smooth representation of GL2(Qp) is a direct
sum of an infinite number of irreducibleGL2(Zp)-representations. The reason that it has a chance to be true
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in the p-adic case is the non-semisimple nature of the GL2(Zp)-action on Π(ρ) and Π(ρ′) that was noted
above.

We expect to prove this conjecture by using the description of the p-adic local Langlands correspondence
in terms of (ϕ,Γ)-modules [1].

Establishing a p-adic local Jacquet–Langlands correspondence will be much more difficult then estab-
lishing the inertial correspondence, since currently very little is known about the p-adic representation theory
of the group D×

p . Furthermore, the classical local Jacquet–Langlands correspondence is characterized by
character identities, and we don’t have character theory available in the p-adic context.

Nevertheless, we are hopeful that we can obtain a correspondence. Since so little is known about the
p-adic representation theory of D×

p , it seems safest to use the relationship with Galois representations as an
anchor, and so during the workshop we formulated the following conjecture.
Conjecture 2 There is an injection ρ ↪→ ΠJL(ρ) from the isomorphism classes of continuous represen-

tations ρ : GQp → GL2(E) to the isomorphism classes of admissible unitary continuous E-Banach space
representationsΠJL(ρ) ofD×

p .
Recalling that Π(ρ) denotes the E-Banach space representation of GL2(Qp) attached to ρ as in the pre-

ceding definition via the p-adic local Langlands correspondence, we would then declare Π(ρ) and ΠJL(ρ) to
be related by the p-adic Jacquet–Langlands correspondence.

Just an in the classical case, it seems strange at first that one might hope to match representations of the
essentially compact groupD×

p with representations of the non-compact groupGL2(Qp), and one of the points
of establishing Conjecture 1 is to allay this concern: this conjecture shows that little information about Π(ρ)
is lost by restricting to the compact group GL2(Zp). Just as we explained above that in the classical local
Jacquet–Langlands correspondence one is more-or-less matching representations of the essentially compact
groupD×

p with representations of the compact groupGL2(Zp), the same will be true in the p-adic setting —
except that now the representations will be infinite-dimensional!

A second point to note is that, unlike in the classical local Jacquet–Langlands correspondence, we do
not restrict the ρ that we consider. (In the classical Jacquet–Langlands correspondence, omitting principal
series representations from the correspondence corresponds to omitting reducible Weil group representations
on the other side of the local Langlands correspondence.) Our reason for believing that no such restriction is
necessary is as follows: the p-adic local Langlands correspondence is compatible with p-adic interpolation,
and we expect that the p-adic Jacquet–Langlands correspondence should be similarly compatible. But on
the Galois side, those ρ which are de Rham with distinct Hodge–Tate weights, and whose associated Weil–
Deligne representations are irreducible, are Zariski dense in the space of all two-dimensional ρ. Thus if we
imagine that there is some way to interpolate the classical Jacquet–Langlands correspondence into a p-adic
correspondence, there should be no restriction on the ρ that we consider.

We expect the p-adic Jacquet–Langlands correspondence to be compatible with the classical Jacquet–
Langlands correspondence in the following manner, namely that ΠJL(ρ) will contain a finite-dimensional
subrepresentation of D×

p if and only if ρ is de Rham with distinct Hodge–Tate weights (up to a twist), and
this finite-dimensional subrepresentation will match with theWeil–Deligne representation associated to ρ (up
to a twist by an algebraic representation depending on the Hodge–Tate weights of ρ) via the composition of
local Langlands and classical Jacquet–Langlands.

One approach to constructing the p-adic Jacquet–Langlands correspondence that we intend to pursue in
future work is global, making use of techniques related to Taylor–Wiles–Kisin patching; note that Taylor–
Wiles–Kisin patching is applicable in this context because the groupD×

p is compact modulo its centre — so
this brings out the importance for our strategy of working with (essentially) compact groups, and lends addi-
tional importance to proving Conjecture 1. With this in mind, we spent some of the workshop investigating
Taylor–Wiles–Kisin patching in relation to the p-adic Langlands correspondence. We now explain what we
discovered.

We assume that p is an odd prime, and that k is a finite field of characteristic p. Let F be a totally real
field, and ρ : GF → GL2(k) a continuous representation which is irreducible and modular, and satisfies the
additional assumptions necessary to apply the Taylor–Wiles–Kisin method, namely that ρ|GF (ζp)

is absolutely
irreducible, with a further technical assumption if p = 5.

We fix a quaternion algebraD overF , split at exactly one archimedean prime and unramified at the primes
above p, so that D determines a family of Shimura curves over F . For an ideal n in the ring of integers OF ,
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prime to p and to the discriminant ofD, we letX1(n) denote the corresponding Shimura curve of level n. We
assume that n is chosen so that X1(n) has no elliptic points (i.e. the congruence subgroup that determines it
is torsion free). We fix a prime v of F above p, and let OFv denote the completion of OF at v.

We fix a finite extension E of Qp (which will serve as our coefficient field), with ring of integers OE ,
uniformizer%E , and residue field kE , which we assume contains k (so that we may regard ρ as being defined
over kE). If L is any finitely generated OE-module equipped with a smooth representation of GL2(OFv ),
then L determines a local system L̃ onX1(n) (actually, one has to take a little care with central characters in
order for this to be true, but we suppress that detail in this discussion), and we may consider the cohomology
group H1(X1(n), L̃)ρ, where the subscript ρ indicates that we complete at the ideal corresponding to ρ in
the Hecke algebra generated by Hecke operators at primes away from n, p, and the discriminant of D. (This
ideal is either maximal, or else the unit ideal.)

The Taylor–Wiles–Kisin method allows us, by adding carefully chosen auxiliary primes to the level n, to
pass to a limit and “patch” these cohomology groups into a coherent sheafM∞(L) over the local deformation
ring Rv(ρ) which parameterizes framed deformations of ρ|GFv

over complete local OE-algebras, with some
auxiliary formal variables adjoined (the patching variables). In fact a careful application of the method shows
that we may perform this patching compatibly for all choices of L, and so regardM∞(L) as a functor from
the category of GL2(OFv )-modules to the category of coherent sheaves on SpecRv(ρ)[[x1, . . . , xn]] (where
x1, . . . , xn are the patching variables).

Suppose for a moment that F = Q, so that p-adic local Langlands and local-global compatibility are
available. One can then give a different construction of the patched modules M∞(L) which shows that,
despite the global nature of their construction, they are in fact of purely local nature. Indeed, one of us [5]
has constructed a universal representation of GL2(Qp) over SpecRp(ρ), which we denote by P , and which
realizes p-adic local Langlands, in the sense that the fibre of P over a point corresponding to a continuous
lifting ρ : GQp → GL2(E) of ρ|GQp

is the dual to the Banach space representation Π(ρ) attached to ρ via
p-adic local Langlands. (The appearance of a dual here is a purely technical point.) During the workshop
we showed, using the local-global compatibility result of [2], together with the compatibility of classical
and p-adic local Langlands, that the patched module M∞(L) is equal to the basechange from Rp(ρ) to
Rp(ρ)[[x1, . . . , xn]] of the Rp(ρ)-moduleHomGL2(Zp)(P , L∨)∨ (where again, the appearance of the various
duals is purely technical). Heuristically, this expresses the fact that M∞(L) is supported at exactly those
Galois representations ρ whose associated GL2(Qp)-representation Π(ρ) contains a non-zero quotient of L
as a GL2(Zp)-subrepresentation.

4 Outcome of the Meeting
We are now writing a joint paper that will prove Conjecture 1 and explain the connections between the
Taylor–Wiles–Kisin method and the p-adic local Langlands correspondence forGL2(Qp).
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