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known results
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Hamilton - Jacobi - Bellman equation

» Let ¢ be the unique bounded Isc (or continuous) viscosity
solution of the HIJB equation:

Ord(x, t) + sup(—Dy9(x, t) - f(x,a)) =0
acA

9(x,0) = &(x).

Case @ continuous: Crandall, P.L Lions, Cappuzo-Dolcetta/Bardi, Barles,...

Case @ discontinuous: Frankowska, Barron-Jensen, ...

Hasnaa Zidani BIRS, February 14-18, 2011



HJB equation with discontinuous data
known results

Some remarks on the monotonicity

» The Isc solution ¥ is the value function corresponding to the
control problem:

Minimise  ®(yx(t))

¥x(s) = f(yx(s), a(s)),
y(0) = x,
a(s) e Aae.

» Barles-Souganidis'91: general convergene framework for
[monotone+regular+consistante] schemes (only when ¢ is
continuous).
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HJB equation with discontinuous data

known results
Some remarks on the monotonicity

When & is continuous, it is proven in (Crandall&Lions'84) that
monotone schemes have the following favorable properties:

= Monotone schemes are stable in the L®° norm;
= under the monotonicity assumption, the scheme satisfies a

discrete comparison principle: If u” and v" are, respectively,
discrete sub- and super-solutions, then ul < vh,

1= The error between the numerical solution of a monotone
scheme and the exact viscosity solution of the HJ equation,
measured in the L> norm, is in general of order O(h'/?).
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ontinuous data
known results

Some remarks on the monotonicity

@& However, it is an unfortunate fact that linear monotone
schemes cannot be higher than first order accurate for
smooth solutions.

@ Monotone schemes based on “interpolation” technics are
not suitable for the approximation of discontinuous
solutions.
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Linear advection in 1d

An anti-diffusive scheme: Ultra bee HJB-UB scheme

Convergence result. LY-Error estimate

Consider the "linear” case,

{ ve +f(x) v =0,
v(0, x) = vo(x)

Idea: Approximate the exact average value on each mech interval

~n 1 "Xjt1/2
Vi = Ax/ v(tn, x)dx,

Xj—1/2

and not the point value v(t,, X;).
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Linear advection in 1d
HJB-UB scheme

Convergence result. L!-Error estimate

An anti-diffusive scheme: Ultra bee

Discretization: Uniform mesh x;, t,

n n
At Ax
VO 1 /Xj+1/z ( )d
P= — vo(Xx)ax
J Ax Xi_1/2
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Linear advection in 1d
HJB-UB scheme

Convergence result. LY-Error estimate

An anti-diffusive scheme: Ultra bee

Discretization: Uniform mesh x;, t,

n+l vn vh_yn

J J F(x:) =1 _
ar ) T 0

1 Xj+1/2

\/J-0 = Ax/ vo(x)dx

V—1/2

@ Assume f > 0. The upwind scheme is stable but it is diffusive,

o We denote v; := f(x;) 2L and assume the CFL condition

|Vj| <1,
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Linear advection in 1d
HJB-UB scheme

Convergence result. LY-Error estimate

An anti-diffusive scheme: Ultra bee

Discretization: Uniform mesh x;, t,

n+1
A/ AT S
At / Ax
0 1 Xj+1/2
Vi = Ax/ vo(x)dx
Xj—1/2

@ Assume f > 0. The upwind scheme is stable but it is diffusive,

while the downwind scheme is anti-diffusive but it is unstable
o We denote v; := f(x;) 2L and assume the CFL condition

|Vj| <1,
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Linear advection in 1d
HJB-UB scheme

Convergence result. LY-Error estimate

An anti-diffusive scheme: Ultra bee

Discretization: Uniform mesh x;, t,

n n
At Ax
VO 1 /Xj+1/z ( )d
P= — vo(Xx)ax
J Ax Xi_1/2

@ Assume f > 0. The upwind scheme is stable but it is diffusive,
while the downwind scheme is anti-diffusive but it is unstable

o We denote v := f(x;) &L and assume the CFL condition

|Vj| <1,
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Linear advection in 1d
HJB-UB scheme

Convergence result. LY-Error estimate

An anti-diffusive scheme: Ultra bee

Flux definitions for UB-G scheme

If v; > 0, then Vjii/f: min(max(V/\;, b;), B;) (Dépres-Lagoutiére)

bj = Max(V', Vi) + (V) — Max(V7, V7)),
where . n \/n . " oun j:f(xj)Ax_
Bj :=Min(V", V) + 7,-(‘/1' — Min(V}, V/1.,)),
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Linear advection in 1d

An anti-diffusive scheme: Ultra bee HJB-UB scheme

Convergence result. L!-Error estimate

Xj-2 Xj-1 Xj Xj+1

. L nR
Case v; > 0, for all j: V™5 = v™
! P T i
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s e . Linear advection in 1d
An anti-diffusive scheme: Ultra bee HJB-UB scheme

Convergence result. LY-Error estimate

Flux definitions for UB-G scheme

o If v; > 0, then Vjii/f: min(max(V/\;, b;), B;) (Dépres-Lagoutiére)

o If 1 < 0 then VT, := min(max(V/",, b;), B;"),

bj 1= Max(V}', VL) + (V) — Max(V7, V),
where . n \/n . nosn vj = f(Xi)ﬁi-
Bj :=Min(V/, V" 1) + - (V; — Min(V{, V[ ,)),

Vi
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Linear advection in 1d

An anti-diffusive scheme: Ultra bee HJB-UB scheme

Convergence result. L!-Error estimate

Xj-2 Xj-1 Xj Xj+1

Case v; < 0, for all j: vy = ymt
i S Vi1 +1
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Linear advection in 1d
HJB-UB scheme

Convergence result. LY-Error estimate

An anti-diffusive scheme: Ultra bee

Flux definitions for UB-G scheme

o If y; > 0, then V! _:= min(max( Vi1, bj), B;) (Déprés-Lagoutiére)

j+1/2

o If ; < 0 then V” = min(max(V/ ;,b;), B;),

~1/2 - J

o If ; <0 and vj;; > 0, then define

nR .\, N Y n : SN
Vj+% = Vj41 and Vj+% =V ("Downwind choice")

where b= MaX(V'n’\/i’,*l)—i—%(vj_MaX(\/jn’\/iil))’ -
BJ = Mln(\/jn7\/jn_1)+Z(%_Min(‘/jnv‘/j"_l))v J
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Linear advection in 1d
HJB-UB scheme

Convergence result. LY-Error estimate

An anti-diffusive scheme: Ultra bee

Flux definitions for UB-G scheme

o If ; >0, then V1 .= min(max(V/,, b;), B;) (Dépres-Lagoutiére)

Jj+1/2 J

o If ; < 0 then V” = min(max(V/ ;,b;), B;),

—1/2 - yRAR
o If ; <0 and vj;; > 0, then define
Vﬂé = Vj41  and \/J';L% = V. ("Downwind choice")

o If ;41 > 0, then define

R nlL - n,L nR -
vhi= VP (ify; >0) or VM = VT (if viyq <0).
J+% J+% ( J ) j+% j+% ( j+1 )
bj == Max(VP, V1 )+ L (V; — Max(V", VI ))),
where{ Bj_ — Min(y an Ty \/j " Vf' Vi' 1 v; = f(x;) &L
j = Min(V{, ViL,) + oo (Vi — Min(VF, ViZ,)),
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Linear advection in 1d
HJB-UB scheme

An anti-diffusive scheme: Ultra bee

Convergence result. L*-Error estimate

(H): There is a finite number of points x* s.t. f(x*) =0

Theorem (Bokanowski-Z, JSC 2007:)

Under (H) and the CFL condition |vj| < 1, the scheme is:

() consistent,

(i) L>°-stable,

(iii) TVB, ie., 3C >0 s.t. YV° , ¥n >0,
TV(V") < TV(VO) (1 + CAt)

(iv) Moreover, the scheme is convergent

Rem: The difficulty comes from the points x; s.t. f(x;) <0 and
f(xj41) >0
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s e . Linear advection in 1d
An anti-diffusive scheme: Ultra bee HJB-UB scheme

Convergence result. L*-Error estimate

Interesting features of the UB scheme:

» For a constant velocity f, UB advects "exactly" a step
function space (Deprés-Lagoutiére 2000)

» UB rapidly projects other functions on this space. This is
a conjecture, yet numerically checked on many examples
(for v # %) (Deprés-Lagoutiére 2000)

» These properties extend to multi-dimensions ! (with
Trotter splitting)

» Simple to implement !

Drawbacks
> |t is not monotone
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Linear advection in 1d
HJB-UB scheme
Convergence result. LY-Error estimate

An anti-diffusive scheme: Ultra bee

The HJB equation

Ue + maz‘((f(x, a)dy) =0,
ae
¥(x,0) = d(x),

where A is a compact set.
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An anti-diffusive scheme: Ultra bee

The HJB equation

Ue + maz‘((f(x, a)dy) =0,
ae
¥(x,0) = d(x),

where A is a compact set.

Set: f(x) = min f(x, ), fulx) = max f(x, ).
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Linear advection in 1d
HJB-UB scheme
Convergence result. LY-Error estimate

An anti-diffusive scheme: Ultra bee

The HJB equation

Pt + max(fm(x)Vx, i(x)9%) =0,
9(x,0) = d(x),

where A is a compact set.

Set: fm(x) = min f(x, ), fm(x) = max f(x, a).
acA a€cA
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Linear advection in 1d

An anti-diffusive scheme: Ultra bee HJB-UB scheme

Convergence result. LY-Error estimate

1 ["s6-34

e Step 2: For n > 0, knowing V"

- For f € f,(x;), fu (X))

n,L R
Ujf’“(f) i ijJr%(f) Uj_%(f) .
At Ax ’
- Take V"t :=  min  U"(f), V).

f=fm (), ()

- Truncation step
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Linear advection in 1d

An anti-diffusive scheme: Ultra bee HJB-UB scheme

Convergence result. L!-Error estimate

Initial data

Exact evolution at time t;:

Vl
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PP Linear advection in 1d
An anti-diffusive scheme: Ultra bee HJB-UB scheme
Convergence result. L!-Error estimate

Theorem (Numerische Math'10, Math Comp'10)

Assume: - f is L-lipschitz continuous,
- & js piecewise C' regular with compact support,

- CFL condition: maxy . |f(x, uk)|% <1

For T >0, 3C(L, T,®) >0 s.t.
e":= ||V -V |um) < CAx  Vt,=nAt<T,

where for x € (xj_%,XH%)

VX(X) - an’
and V(0= [ ) de

-1
Hasnaa Zidani BIRS, February 14-18, 2011



s e . Linear a
An anti-diffusive scheme: Ultra bee HJB-UB scheme

Convergence result. L!-Error estimate

Some notations

e For a € R, define:

{ X7(t) = fu(X(1) { XJ(t) = fu(X'(t))
X"(0)=a =

o For x € [x;_1,Xj,1], set:

fa(x) = falx),  fa(x) = fulx),

and define X/™> and XM> by:

{ X3 (t) = £ (X2 (1)) { X315 (t) = fig(XM5(t))
Xm3(0) = a XM35(0) = a
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Linear advection in 1d
HJB-UB scheme
Convergence result. L!-Error estimate

An anti-diffusive scheme: Ultra bee

Idea of the proof: The simple case when ®(x) = 1j, 4

» The viscosity solution is given by
I(x,t) = Lpxm(e), 4oof(X)

» The numerical solution satisfies:

> [[05(¢,.) = 9(t, Ml = 1XM(E) = X" ().
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Linear advection in 1d
HJB-UB scheme
Convergence result. L!-Error estimate

An anti-diffusive scheme: Ultra bee

Idea of the proof: The simple case when ®(x) = 1j, 4

» The viscosity solution is given by
I(x, t) = Lixm(p) 4oof(X)
» The numerical solution satisfies:
1 X1l s
vy = AX/X. 95 (x, £7) dx,

S P
where  97(x, t) := 1[xa’w’5(t),+00[(x)'

1
> [[9°(t,.) = O(t, ) < 5 Lt elt Ax.
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Linear advection in 1d
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Convergence result. L!-Error estimate

An anti-diffusive scheme: Ultra bee

Idea of the proof: The simple case when ®(x) = 1j, 4

» The viscosity solution is given by
I(x,t) = Lpxm(e), 4oof(X)

» The numerical solution satisfies:

1 [N+

Vi = / 295 (x, t") dx

J M )
Ax %

S N
where 97 (x,t) = 1[X;v1,5(t)7+00[(x)-

> [[95(t,.) — (¢, rw) = 0 (Eikonale eq. constant velocity).
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Linear advection in 1d
HJB-UB scheme
Convergence result. L!-Error estimate

An anti-diffusive scheme: Ultra bee

ldea of the proof: ¥y has one maximum

We considere here that:
(i) Yo(x) is an l.s.c. step function;

(i) 3 By € R, s.t. ¥g(x) " for x < By and ¥y \ for x > B;.

(it) f,, and fy are increasing functions

Decomposition Lemma
+ ’1901,7902 s.t. 190 = min(1901,1902) with 1901 /, 1902 \

4+ Then 9(t,x) = min(¥4(t, x), V2(t, x)) where

’191(t,X) = 1901()()!\/’(—1')) and ﬂg(t,X) = 1902(X;n(—t))
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Linear advection in 1d

An anti-diffusive scheme: Ultra bee HJB-UB scheme

Convergence result. L!-Error estimate

By

Yo and its decomposition into Y91 and Ygo.
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Linear a on in 1d
HJB-UB scheme
Convergence result. L!-Error estimate

An anti-diffusive scheme: Ultra bee

ldea of the proof: ¥y has one maximum

19(X, t):min (1901(XXM(—t)),ﬁoz(X;"(—t))):min (191(X, t),ﬁz(x, t))

195(X, t):min (1901(X)ZVI’S(—t)),ﬁoz(X):n’s(—t))):min (lgf(X, t),ﬁg(x, t))
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Linear advection in 1d
HJB-UB scheme
Convergence result. L!-Error estimate

An anti-diffusive scheme: Ultra bee

ldea of the proof: ¥y has one maximum

. —=S 1 Nl
Define 97 (t,,x) = E/ * 9%ty y)dy, for x E]xj_%,ﬁ% [.

i3

o |V —F°(, ta)]| < CAx.

o [[0(., ta) = 9°(., ta)llLr(w)
1 1
< Z Lt ettt TV(¥01)Ax + 5 Lt elt TV (902)Ax

< Sl elt TV(9y)Ax
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Linear advection in 1d
HJB-UB scheme
Convergence result. L!-Error estimate

An anti-diffusive scheme: Ultra bee

|dea of the proof: A general case

Yo(x) is a step function;
Yo has g local maxima (denoted By, ..., By).

Suppose {

Let 95 (x) == minyepesy Yoly), i=1,...,q.
By the first decomposition Lemma,
0§ = min(95), 953),  with 9 7, 963\
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Linear advection in 1d
HJB-UB scheme
Convergence result. L!-Error estimate

An anti-diffusive scheme: Ultra bee

|dea of the proof: A general case

Yo(x) is a step function;

Suppose { Yo has g local maxima (denoted By, ..., By).

General Decomposition Lemma

(i) Vo = max min (957, 0), with o§) 7, 92\

(if) 9(t. %) = max_min (V)(X7(~2)), 9R(XM(~1)))

i=1,....q
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Linear advection in 1d
HJB-UB scheme
Convergence result. L!-Error estimate

An anti-diffusive scheme: Ultra bee

|dea of the proof: A general case

Yo(x) is a step function;

Suppose { Yo has g local maxima (denoted By, ..., By).

General Decomposition Lemma

(i) 9o = max min (ﬂg‘g, 193"2)), with 98 7 98 N

i=1,...q

(if) 9(t. %) = max_min (V)(X7(~2)), 9R(XM(~1)))

i=1,....q

(i) 9%(t, %) := _max_min (950X (=2)), IS (1))

i=1,....q

(iv) |[V" = T°(-, t,)| < CAx.

Hasnaa Zidani BIRS, February 14-18, 2011



Numerical Solutions

Van der Pol Problem :
n(t) =y
72(t) = —y1 + y2(1 — y7) + a(t)
a(t) € [-1,1]

15

d)(y) =1- 1|)/\§f0

@ The value function needs to be computed only in a
neighborhood of the front: Narrow band implementation for
front propagation problems (with ®(x) € {0,1}).
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Numerical Solutions

Small target problem

e Consider

{ De(t, x) + Oy, (£, x) + [V, (£,x)] =0, t€][0,T], x = (x1,x) € R2.
19(0,X) = QOr(X)a

where the initial data is given by

(x) = -1 if||x]|e < r,
Prix) - 1 otherwise

e Two types of target:
o r =0.1: large target case.

e r = Ax: thin target case.
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Numerical Solutions

|
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Numerical Solutions

Large target (r = 0.1)

UB-HJB Level set
N2 | [T error Haus. | LT error Haus.
512 | 0.178 0.052 - -
1012 [ 0.105 0.022 | 0.101 0.094
2012 | 0.044 0.011 | 0.008 0.047
401° | 0.022 0.006 | 0.006 0.027

Thin target (r = Ax)

UB-HJB Level set
N2 | [T error Haus. | LT error Haus.
512 | 0.166  0.043 - -
1012 | 0.080 0.031 - -
2012 | 0.040 0.016 - -
401° | 0.020 0.008 - -
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Numerical Solutions

2-dimensional deformation of a half plane

e Consider a front propagation problem, where the initial front I is
given by: g == {x = (x1,x2) € R? | xo = 0}.
The velocity of the front evolution is given by

T _
1

e Hence the evolution is driven by

{ 9e(t,x) + f(t,x) - VI(t,x) =0 x€R2 tc[0,T], 1)
9(0,x) = (x)
and with (for the UltraBee scheme):
-1 x <0
yX2) 1= N 2
Pla.x2) {1 otherwise )
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Numerical Solutions




Numerical Solutions

T =
UB-HJB Level set
N2 | [Terror Haus. | LT error Haus.
502 0.170 0.035 0.584 0.086
1002 0.092 0.019 0.136 0.028
2002 0.057 0.013 0.047 0.008

T=6
UB-HJB Level set
N2 | LT error Haus. | LT error Haus.
502 | 0.193 0.308 | 0.995 0.639
100° | 0.073 0.107 | 0.282 0.195
2002 | 0.041 0.064 | 0.079 0.053
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Numerical Solutions

3-dimensional rotation problem

e 3d advection:

{ 9e(t,x) + f(x) - VI(t,x) =0, tec[0,T], x<c[-22,
(0, x) = ¢(x)

e Corresponding target problem:

(0, x) = ¢(x)

with

{ e (t, x) + max(0, f(x)-VI(t,x)) =0, te[0,T], xe[-2,23

7((X1,X27 X3) = (—27TX2, 27‘1'X17 —1)T

e The initial data corresponds to a sphere centered at (—1,0,1)
and with radius r = 0.1.
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Numerical Solutions

2 2
1 ® . 1
< 0 . . o0
1 Q . 1
2.k ; 2
2 s 2 =3
~ s ~ "
S /'// ™~ ///
O~ o O~ o
X, 2 2 X X, 2 2 X

Advection Target problem

50 mesh points
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Numerical Solutions

Advection
’ N3 ‘ CPU ‘ LT error ‘ Hausdorff ‘
503 | 0.22 4.1e-3 2.6e-1

1003 | 1.00 4.6 | 2.2¢-3 8.0e-2
2003 | 7.19 7.2 | 6.2¢-4 4.4e-2

Target problem

’ N3 ‘ CPU ‘ LT error ‘ HausdorfF‘
50 | 3.61 1.3e-1 1.9e-1
1003 | 17.9 5.2 | 6.4e-2 8.0e-2
2003 [ 128.8 7.2 | 5.6e-2 4.9e-2
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Numerical Solutions

Controllable case (8 directions)
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Numerical Solutions

Non-controllable case (4 directions: /, |, \,, —)

%3
3

Reachable set
*  Target
-1 -0.5 o 05 1

+
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The physical model

The simplified problem

Optimal control problem
Application: space launcher GTO target, Pressure constraint

Ariane V

For a given payload M¢cy, minimize
the consumption needed to steer the
launcher to the GTO.
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The physical model
The simplified problem

Optimal control problem

Application: space launcher GTO target, Pressure constraint

—
» The physical model involves 7 state variables, the position OG
of the rocket in the 3D space, its velocity V' and its mass m.

» The forces acting on the rocket are: Gravity _P) Drag %,
— —
Thrust F+, and Coriolis 2.

» Newton Law:

d7 — — — N — - =
mW:P+FD—|—FT—2mQ/\v—mQ/\(Q/\ G),
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The physical model

The simplified problem

Optimal control problem
Application: space launcher GTO target, Pressure constraint

The related equation

State variables:

r=altitude

v=modulus of the velocity

~v=angle between the direction earth-rocket and the direction of the
rocket’s velocity.

L= latitude
(= longitude
Y= azimuth

m= masse of the engine
Control:

a=angle between the thrust direction and the direction of the
rocket’s velocity.
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The physical model
The simplified problem

Optimal control problem
Application: space launcher GTO target, Pressure constraint

r=vcosy

F F
v=—g(r)cosy — b(r,v) + r(r,v.3) cos

m - -m -
Q?r cos £(cos~y cos £ — sinysin £sin )

i (0¥ el

g = g0 1) LY g
v r vm
—2Qcosflcosy — Qzécosf(sinvcosf—cosvsin Zsin )
. vsinycosy
L=—7"——2=
r cos/

SV :
£ = —sinysiny
r

X = —Ysin ~tan £ cos x — 28(sin £ — cotany cos £sin x)+
r
02 r sinfcosfcosx

v siny
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The physical model
The simplified problem

Optimal control problem
Application: space launcher GTO target, Pressure constraint

> The plane of motion is the equatorial plane £ =0, and x = 0.

r=vcos~y
F F
v=—g(r)cosy — b(r,v) + r(r. v ) cos o 4+ Q?r cosy
m m
F
A =sin~y <g(r) — V) —Msina—QQ—insinv
v r vm v
L= Ksinfy
r
m = —b(m(t))

Hasnaa Zidani BIRS, February 14-18, 2011



The physical model
The simplified problem

Optimal control problem
GTO target, Pressure constraint

Application: space launcher

> The plane of motion is the equatorial plane £ =0, and x = 0.

r=vcos~y
F F
v=—g(r)cosy — b(r,v) + r(r. v ) cos o 4+ Q?r cosy
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F
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The physical model
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Optimal control problem
Application: space launcher GTO target, Pressure constraint

The rocket's mass

» The evolution of the mass can be summarized as follows

Phase 0 & 1 ‘ Phase 2 ‘ Phase 3

r'nl(t) = —ﬁEAp Ii’ll(t) =0 ml(t) =0
my(t) = —Be1 | ma(t) = —PBe1 | ma(t) =0
ﬁ’73(t) =0 ﬁ’l3(t) =0 ﬁ’73(t) = —,352

where Beap, Be1 and Bea are the mass flow rates for the
boosters, the first and the second stage.

» At the changes of phases, we have a (not negligible)
discontinuity in the rocket's mass.
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The control problem can be formulated as (for a fixed payload)
Minimize tf
(r,v,v, m, ) satisfy the state equation
a(t) €[0,7/2] ae. te(0,tr),

(r(te), v(tr),7(tr)) €C,
)

Q(r(t),v(t))a(t)) < Cs fort € (0, tf),
m(tf) = Mp.

where the target C corresponds to the GTO orbit, and the function
@ is the dynamic pressure.
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> The Capture Basin is wide

1= We introduce "physical" state constraints to define
the computational domain
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> The Capture Basin is wide

1= We introduce "physical" state constraints to define
the computational domain

> Due to the CFL condition, the time step is very small
15 Adaptative time discretization
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Application: space launcher GTO target, Pressure constraint

> The Capture Basin is wide

1= We introduce "physical" state constraints to define
the computational domain

> Due to the CFL condition, the time step is very small
15 Adaptative time discretization

> "Different scales" for the state variables:

[ r=r(eX=1)+rr
1= Change of variable: { v=vo(er — 1)+ vr
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GTO target (comparison with the reference trajectory of CNES)
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Figure: Full trajectory using the HJB minimal time value function

Reference trajectory, final mass: mr = 21.57 (t)
HJB trajectory, final mass (after reconstruction): my = 22.50 (t)
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... Thank you for your attention.
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