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1 Overview
The goal of researchers in automated deduction is to develop methods and tools to assist mathematicians,
scientists, and engineers with some of the deductive aspects of their work. In contrast to other symbolic
computation systems, the core methods in automated deduction focus on searching for proofs and coun-
terexamples. Automated deduction can be applied to wide-ranging problems in nearly any formal language.
However, for problems in abstract mathematics and logic, it has been most successful to date when applied
to problems stated in first-order and equational logic.

This workshop was the continuation of a series of yearly workshops that began in the summer of 2001
(http://www.cs.unm.edu/˜veroff/ADAM/). The workshops have provided an opportunity to bring
together researchers and students from both the mathematics and automated deduction communities to con-
sider the application of automated deduction to problems in mathematics and logic. The objectives of the
workshops include: collaborations on specific math and logic problems; expanding the community of math-
ematicians interested in applying automated deduction methods to their own research problems; and the
continued development of automated deduction tools and strategies.

This year’s workshop was dedicated to the memory of Bill McCune, whose untimely passing in May
2011 shocked and saddened his many friends and colleagues. Bill is perhaps best known for his expertise in
the design and implementation of automated reasoning programs. His programs, including Otter [8], Prover9
and Mace4 [9], have been used to solve numerous open questions in mathematics and logic and continue to
be used by researchers from various disciplines. Indeed, many of the presentations and discussions in this
workshop were directly or indirectly influenced by Bill’s work.

2 Presentation Highlights
The unifying theme of the workshop was the application of automated deduction methods to research prob-
lems in mathematics. One consequence is that the presentations—especially those that focused on the math
applications—were disparate in nature. The presentations can roughly be put into two categories, those fo-
cusing on automated deduction methods and tools and those focusing on the math applications themselves.

2.1 Automated Deduction Methods and Tools
The TPTP Typed First-order Form with Arithmetic (Sutcliffe). The TPTP World [15] is a well established
infrastructure that supports research, development, and deployment of Automated Theorem Proving (ATP)
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systems. The TPTP World is based on the Thousands of Problems for Theorem Provers (TPTP) problem
library [14], and includes the TPTP language, the SZS ontologies, the Thousands of Solutions from Theorem
Provers (TSTP) solution library, various tools associated with the libraries, and the CADE ATP System Com-
petition (CASC). This infrastructure has been central to the progress that has been made in the development
of high performance first-order ATP systems—most state of the art systems natively read the TPTP language,
many produce proofs or models in the TSTP format, much testing and development is done using the TPTP
problem library, and CASC is an annual focal point where developers meet to discuss new ideas and advances
in ATP techniques.

Originally the TPTP supported only first-order problems in clause normal form (CNF) [13]. Over the
years support for full first-order formulae (FOF) [14] and typed higher-order formulae (THF) [16] has been
added. In this talk, we introduce simply typed first-order formulae (TFF) into the TPTP World. TFF in turn
is used as the basis for supporting arithmetic. Problems that use these new features have been added to the
TPTP problem library. This will provide the impetus for the corresponding development of ATP systems.
In particular, the integration of arithmetic capabilities into ATP systems will answer a long-standing demand
from ATP users.

The key steps of these developments have been:

• The design of the TPTP TFF language.
• The choice and design of arithmetic features to be written in TFF.
• Collection of problems in TFF, especially problems with arithmetic.
• Building and adapting ATP systems to solve TFF problems.
• Extending the TPTP software infrastructure.

Our presentation described these developments, with the aim of publicizing the developments to working
mathematicians, who might then be able to use these new capabilities in their mathematical endeavours.

A Syntactic Approach to Automated Deduction (Ernst). The best strategies for solving open problems in
mathematics using first-order theorem-provers rely upon the practitioner having domain specific knowledge
of the problem. For example, if it is possible to identify lemmas that are likely to appear in a proof, or
if the theory is part of a well-understood hierarchy of related theories, then those facts can be leveraged
to guide the proof search. However, it is often the case—especially for difficult open problems—that such
information is unknown or unavailable. For this reason, it is necessary to consider search strategies that rely
only upon the syntax of the problem representation, because that is the only information that practitioners are
guaranteed to have. This talk outlined one approach for using the syntax of the problem to guide the proof
search and presented two cases in which significant increases in efficiency were obtained without deploying
any domain-specific knowledge of the problem.

Working Our Way Up a Theory Hierarchy (Veroff). We discussed two automated deduction methods for using
theory hierarchies to help search for proofs of a theorem t in a target theory T . Using semantic guidance,
we consider models that falsify t in a simplified theory—that is, with one or more axioms deleted from T .
Using the method of proof sketches [17], we consider proofs of t in an extended theory—that is, with extra
assumptions added to T . In both cases, we use the additional information—models and proofs—to guide the
search for a proof of t in the original target theory T .

We also summarized results for a successful application of these methods to a set of problems in loop
theory, including the solution to some open questions. Some of the found proofs are several thousand steps
long. See [5] for general background on the problem.

2.2 Math Applications
Normal Forms in Graded Lie Algebras (Churchill). The success of Prover9 in establishing particular cases of
Jacobson’s xn = x ⇒ commutativity theorem in ring theory led us to suspect that such techniques could be
applied to normal form problems which can be formulated in a graded Lie algebra context. To communicate
these ideas to the other participants we delivered a general background lecture in that area, focusing for
simplicity on the case of upper triangular matrices. Following that talk, we had one-on-one discussions with
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several participants on more complicated problems which also fit that perspective. See [1, 2, 4] for general
background on the problem.

Group Embeddings of Configurations with Prover9 (Ens and Padmanabhan). A configuration is a finite set of
elements (called “points” just to have a guiding analogy with the plane geometry) and a finite set of blocks
(again, we call them “lines”) such that each point is incident with the same number of lines and each line is
incident with same number of points. Motivated by the geometric definition of a group law on non-singular
cubic curves, we define the concept of group embeddability of (n, k) configurations and classify the set of
all (11, 3) configurations that can be embedded into abelian groups in such a way that whenever {P,Q,R} is
a line in the configuration then P+Q+R = 0 in the corresponding abelian group. It is precisely in this sense
that the set of all inflexion points of a complex cubic turns out to be isomorphic to the abelian group Z[3]
× Z[3]. In this paper we employ Prover9—a first-order theorem prover developed by William McCune—to
determine the embeddability of (11,3) configurations. Naturally, there are two kinds of theorems we need to
prove: for a given configuration, we have either a concrete group representation or else a proof that no such
representation exists. Prover9 is successfully employed to get the proofs of both kinds. Finally, we apply the
positive results to obtain a concrete geometric realizability (over a projective plane) of these configurations.

Commutativity Theorems in CL-Semirings (Padmanabhan and Zhang). There are many conditions known
which force a ring to be commutative. Such theorems are known as “commutativity theorems”. Here we
generalize some of the commutativity theorems to cancellative semirings, i.e., semirings in which the addi-
tion is cancellative. We use Prover9 to give first-order proofs without actually going through the quotient
construction.

Bol-Moufang Groupoids of “Group-like” Type (Phillips). An identity involving one binary operation is of
Bol-Moufang type if it contains three variables, two which of which occur once, one of which occurs twice,
on both sides of the equal sign, and in the same order. These include the well-known Moufang and Bol
laws, whence the name. They have been widely investigated. In this talk, we investigate conditions under
which Bol-Moufang groupoids axiomatized as algebras of type < 2, 1, 0 > (i.e., with two-sided identity and
inverses, in the manner of groups), are, in fact, loops. We also look at “localized” versions of the Moufang
laws in groupoids of this type. See [5, 10, 12].

Model Builders, Automated Deduction and Automorphic Loops (Vojtěchovský). A set Q with a binary op-
eration · and an element 1 ∈ Q is a loop if 1 · x = x · 1 = x for every x ∈ Q, and if for every x, y ∈ Q
there are unique u, v ∈ Q such that x · u = y, v · x = y. A loop is automorphic if all its inner mappings are
automorphisms.

The structural theory of automorphic loops emerged in the last three years, in large part thanks to auto-
mated provers and model builders. It presents a sweeping generalization of some classical results of group
theory. In this talk we (i) prove the Odd Order Theorem and Lagrange Theorem for commutative automorphic
loops, pointing to a crucial lemma obtained with Prover9, and (ii) construct a class of automorphic loops of
order p3 with trivial center, all originating from a single example of order 27 obtained with Mace4.

See [3, 6, 7] for basic information on loops and automorphic loops.

3 Outcome of the Workshop
Our yearly workshops are workshops in the truest sense. Although presentations help establish some con-
text, the most significant value is in the many group and one-on-one discussions that are motivated by the
presentations. In this regard, the workshop was very successful. The mathematicians collaborated on their
specific research problems; the computer scientists worked with the mathematicians on specific applications;
and there was substantial discussion defining and designing new features for automated deduction tools. For
one example, there was some discussion about adding support for the inference rule gL for cubic curves [11]
to Prover9. There was a working prototype for the added functionality shortly after the end of the workshop.
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