COUNTING AUTOMORPHIC FORMS

FRANK CALEGARI

1. Classical modular forms

Let $\Gamma = \operatorname{SL}_2(\mathbb{Z})$. Let $\Gamma(q)$ be the congruence subgroup. Let $S_2(\Gamma(q))$ be the space of cuspidal modular forms of weight 2 and level $\Gamma(q)$. Let $Y(q) = \Gamma(q) \backslash \mathcal{H}$. Let X(q) be the usual compactification of Y(q). Then

dim
$$S_2(\Gamma(q))$$
 = genus of $X(q) \approx \frac{1}{12} [\Gamma : \Gamma(q)] \approx cv(q)$

where v(q) is the area of X(q) and c > 0 is some constant. Similarly, if $k \geq 2$, then $\dim S_k(\Gamma(q)) \approx c_k v(q)$. What if k = 1? The Selberg trace formula implies that

$$\dim S_1(\Gamma(q)) \ll \frac{v(q)}{\log v(q)}.$$

where $A_q \ll B_q$ means $A_q < cB_q$ for some constant c.

Theorem 1.1 (Duke 1995). dim $S_1(\Gamma(q)) \ll v(q)^{1-\mu}$ for some explicit μ (e.g., $\mu = 1/36$ is OK).

What is the difference between k=1 and $k\geq 2$? If f is a cuspidal Hecke eigenform, then one can assign to f an automorphic representation π of $\mathrm{GL}_2(\mathbf{A}_{\mathbb{Q}})$, and in particular a representation π_{∞} of $\mathrm{GL}_2(\mathbb{R})$. If $k\geq 2$, then π_{∞} is discrete series. But if k=1, it is a limit of discrete series.

2. Semisimple group

Replace $GL_2(\mathbb{Q})$ by \mathbb{G} over F, where \mathbb{G} is semisimple. We have $\rho \colon \mathbb{G}(F) \hookrightarrow GL_n(\mathbb{Q})$ (by restriction of scalars). Let $\mathbb{G}(\mathcal{O}_F) = \rho^{-1}(G(\mathbb{R}) \cap GL_n(\mathbb{Z}))$. Let Γ be commensurable with $G(\mathcal{O}_F)$. For example, $\Gamma(q) := \rho^{-1}(\rho(\Gamma) \cap q$ -congruence of $GL_n(\mathbb{Z})$).

Example 2.1. Let K be an imaginary quadratic field. Let $\mathbb{G} = \operatorname{GL}_2$ over k. Let $\Gamma = \operatorname{GL}_2 \mathcal{O}_K$.

3. Flavors of automorphic forms

- cohomological type, or not
- π_{∞} discrete series (or more generally tempered), or non-tempered

Date: June 4, 2007.

	G	π_{∞}	coh type	$\mathbb{G}(\mathbb{R})/K(\mathbb{R})$
classical MF	$\operatorname{GL}_2/\mathbb{Q}$	disc	yes	\mathcal{H}_2
weight $k=1$	$\operatorname{GL}_2/\mathbb{Q}$	temp	no	\mathcal{H}_2
Hilbert MF regular wt	GL_2/K , K tot real	disc	yes	$(\mathcal{H}_2)^{r_2}$
Siegel MF $g = 2, (k_1, k_2)$ with $k_1 > k_2 \ge 3$	$\operatorname{GSp}_4/\mathbb{Q}$	disc	Sieg	
MF assoc to Shimura var, reg wt	various	disc	yes	
MF GL_2/K , K not tot real	temp, not discrete	yes	$(\mathcal{H}_3)^{r_1}\times(\mathcal{H}_2)^{r_2}$	
$MF GL_n / \mathbb{Q}, n \geq 3$	$\operatorname{GL}_n/\mathbb{Q}$	temp?, not discrete	yes	
$\mathcal{O}(n,1)$, for $n \geq 4$	$\mathcal{O}(n,1)$	non-temp	yes	\mathcal{H}^n

4. Counting

Theorem 4.1 (DeGeorge-Wallach). One gets the "greatest possible" number of automorphic forms if and only if one is in the discrete series case. Define the manifold $Y(q) := \Gamma(q)\backslash G(\mathbb{R})\backslash K(\mathbb{R})$. Then dim $H^*(Y(q), \nu)$ is

$$\begin{cases} \approx cv(q) & (discrete \ series) \\ \ll \frac{v(q)}{\log v(q)} & (other). \end{cases}$$

Theorem 4.2 (Sarnak-Xu). In the non-tempered case, dim $H^*(Y(q), \nu) \ll v(q)^{1-\mu}$ for some $\mu > 0$.

Conjecture 4.3 (Sarnak-Xu). One can take $1 - \mu = \frac{2}{p+\epsilon}$, where

 $p := \inf\{s : \text{matrix coefficients of } \pi_{\infty} \text{ are in } L^{s}(G)\}.$

Theorem 4.4 (Calegari-Emerton). Suppose \mathbb{G} does not admit discrete series. Fix prime \mathfrak{p} of \mathcal{O}_F . Then

$$\dim H^*(Y(N\mathfrak{p}^k),\nu) \ll_{N,\mathfrak{p}} v(N\mathfrak{p}^k)^{1-\frac{1}{\dim G(\mathbb{R})}}$$

as $k \to \infty$.

Example 4.5. Let K be an imaginary quadratic field. Let $F = GL_2(\mathcal{O}_K)$. Let $p = \pi \bar{\pi}$. Then $\dim H^1(\Gamma(N\bar{\pi}^n)\backslash \mathcal{H}^3, \mathbb{C}) \ll p^{2n}$. (The trivial bound is p^{3n} .) If $\dim > 0$, then $\gg p^n$. Also, $\dim H^1(\Gamma_1(N\pi^n)\backslash \mathcal{H}^3, \mathbb{C}) \ll p^n$.

Theorem 4.6 (Calegari-Dunfield). Let $K = \mathbb{Q}(\sqrt{-2})$ and let $p = 3 = \pi\bar{\pi}$. Then

$$\dim H^1_{cusp}\left(\Gamma(\pi^n)\backslash \mathcal{H}^3,\mathbb{C}\right) = 0$$

for all n.

Look up the $\Gamma(\pi^n)$ -tower of $Y_n := Y(N\pi^n)$. The *p*-adic analytic group $G = \varprojlim \Gamma/\Gamma(\pi^n)$ acts on the tower. View the inverse limit of cohomology as a module for $\mathbb{Z}_p[[G]] =: \Lambda$.

Theorem 4.7 (Lazard). Λ is noetherian.

Define

$$\tilde{H}^*(Y,\nu) := \varprojlim_m \varinjlim_k H^*(Y_k,\nu/p^m).$$

Theorem 4.8. Suppose that G does not admit discrete series. Then

- \tilde{H}^* are co-torsion Λ -modules
- Compare $\mathbb{Q}_p \otimes \tilde{H}^{*G_K}$ to $H^*(Y_K, \nu) \otimes \mathbb{Q}_p$.