
COUNTING AUTOMORPHIC FORMS

FRANK CALEGARI

1. Classical modular forms

Let Γ = SL2(Z). Let Γ(q) be the congruence subgroup. Let S2(Γ(q)) be the space of
cuspidal modular forms of weight 2 and level Γ(q). Let Y (q) = Γ(q)\H. Let X(q) be the
usual compactification of Y (q). Then

dim S2(Γ(q)) = genus of X(q) ≈ 1

12
[Γ : Γ(q)] ≈ cv(q)

where v(q) is the area of X(q) and c > 0 is some constant. Similarly, if k ≥ 2, then
dim Sk(Γ(q)) ≈ ckv(q). What if k = 1? The Selberg trace formula implies that

dim S1(Γ(q))� v(q)

log v(q)
.

where Aq � Bq means Aq < cBq for some constant c.

Theorem 1.1 (Duke 1995). dim S1(Γ(q)) � v(q)1−µ for some explicit µ (e.g., µ = 1/36 is
OK).

What is the difference between k = 1 and k ≥ 2? If f is a cuspidal Hecke eigenform,
then one can assign to f an automorphic representation π of GL2(AQ), and in particular a
representation π∞ of GL2(R). If k ≥ 2, then π∞ is discrete series. But if k = 1, it is a limit
of discrete series.

2. Semisimple group

Replace GL2(Q) by G over F , where G is semisimple. We have ρ : G(F ) ↪→ GLn(Q) (by
restriction of scalars). Let G(OF ) = ρ−1(G(R) ∩ GLn(Z)). Let Γ be commensurable with
G(OF ). For example, Γ(q) := ρ−1(ρ(Γ) ∩ q-congruence of GLn(Z)).

Example 2.1. Let K be an imaginary quadratic field. Let G = GL2 over k. Let Γ =
GL2OK .

3. Flavors of automorphic forms

• cohomological type, or not
• π∞ discrete series (or more generally tempered), or non-tempered
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G π∞ coh type G(R)/K(R)
classical MF GL2 /Q disc yes H2

weight k = 1 GL2 /Q temp no H2

Hilbert MF regular wt GL2 /K, K tot real disc yes (H2)r2

Siegel MF g = 2, (k1, k2) with k1 > k2 ≥ 3 GSp4 /Q disc Sieg

MF assoc to Shimura var, reg wt various disc yes

MF GL2 /K, K not tot real temp, not discrete yes (H3)r1 × (H2)r2

MF GLn /Q, n ≥ 3 GLn /Q temp?, not discrete yes

O(n, 1), for n ≥ 4 O(n, 1) non-temp yes Hn

4. Counting

Theorem 4.1 (DeGeorge-Wallach). One gets the “greatest possible” number of automor-
phic forms if and only if one is in the discrete series case. Define the manifold Y (q) :=
Γ(q)\G(R)〉K(R). Then dim H∗(Y (q), ν) is{

≈ cv(q) (discrete series)

� v(q)
log v(q)

(other).

Theorem 4.2 (Sarnak-Xu). In the non-tempered case, dim H∗(Y (q), ν)� v(q)1−µ for some
µ > 0.

Conjecture 4.3 (Sarnak-Xu). One can take 1− µ = 2
p+ε

, where

p := inf{s : matrix coefficients of π∞ are in Ls(G)}.

Theorem 4.4 (Calegari-Emerton). Suppose G does not admit discrete series. Fix prime p
of OF . Then

dim H∗(Y (Npk), ν)�N,p v(Npk)1− 1
dim G(R)

as k →∞.

Example 4.5. Let K be an imaginary quadratic field. Let F = GL2(OK). Let p = ππ̄.
Then dim H1 (Γ(Nπ̄n)\H3, C) � p2n. (The trivial bound is p3n.) If dim > 0, then � pn.
Also, dim H1 (Γ1(Nπn)\H3, C)� pn.

Theorem 4.6 (Calegari-Dunfield). Let K = Q(
√
−2) and let p = 3 = ππ̄. Then

dim H1
cusp

(
Γ(πn)\H3, C

)
= 0

for all n.

Look up the Γ(πn)-tower of Yn := Y (Nπn). The p-adic analytic group G = lim←−Γ/Γ(πn)
acts on the tower. View the inverse limit of cohomology as a module for Zp[[G]] =: Λ.

Theorem 4.7 (Lazard). Λ is noetherian.

Define
H̃∗(Y, ν) := lim←−

m

lim−→
k

H∗(Yk, ν/pm).

Theorem 4.8. Suppose that G does not admit discrete series. Then

• H̃∗ are co-torsion Λ-modules
• Compare Qp ⊗ H̃∗GK to H∗(YK , ν)⊗Qp.
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