

Banff International Research Station

for Mathematical Innovation and Discovery

Group Embeddings: Geometry and Representations 16-21 September 2007

MEALS

*Breakfast (Buffet): 7:00–9:00 am, Sally Borden Building, Monday–Friday *Lunch (Buffet): 11:30 am–1:30 pm, Sally Borden Building, Monday–Friday

*Dinner (Buffet): 5:30–7:30 pm, Sally Borden Building, Sunday–Thursday

Coffee Breaks: As per daily schedule, 2nd floor lounge, Corbett Hall

*Please remember to scan your meal card at the host/hostess station in the dining room for each meal.

MEETING ROOMS

All lectures will be held in Max Bell 159 (Max Bell Building accessible by bridge on 2nd floor of Corbett Hall). Hours: 6 am-12 midnight. LCD projector, overhead projectors and blackboards are available for presentations. Please note that the meeting space designated for BIRS is the lower level of Max Bell, Rooms 155-159. Please respect that all other space has been contracted to other Banff Centre quests, including any Food and Beverage in those areas.

SCHEDULE

Sunday	
16:00	Check-in begins (Front Desk - Professional Development Centre - open 24 hours)
17:30-19:30	Buffet Dinner, Sally Borden Building
20:00	Informal gathering in 2nd floor lounge, Corbett Hall
	Beverages and small assortment of snacks available on a cash honour-system.
Monday	
7:00-8:45	Breakfast
8:45-9:00	Introduction and Welcome to BIRS by BIRS Station Manager, Max Bell 159
9:00-10:00	Mohan Putcha, Decompositions of reductive monoids
10:00-10:30	Coffee Break, 2nd floor lounge, Corbett Hall
10:30-11:30	Valentina Kiritchenko, Euler characteristic of complete intersections in reductive groups
11:30-13:00	Lunch
13:00-14:00	Guided Tour of The Banff Centre; meet in the 2nd floor lounge, Corbett Hall
14:00-15:00	Xuhua He, G-stable-piece decomposition of a wonderful compactification
15:00-15:30	Coffee Break, 2nd floor lounge, Corbett Hall
15:30-16:20	Brian Parshall, Some new highest weight categories with applications to filtrations
16:30-17:30	Dan Nakano, Cohomology for algebraic groups and Frobenius kernels
17:30-19:30	Dinner

Tuesday 7:00-9:00 9:00-10:00 10:00-10:30 10:30-11:30 11:30-13:30 13:30-14:20 14:30-15:30 15:30-16:00 16:00-16:40 16:50-17:30 17:30-19:30	Breakfast Claus Mokler, The face monoid associated to a Kac-Moody group Coffee Break, 2nd floor lounge, Corbett Hall Alvaro Rittatore, The structure of algebraic monoids: the affine case Lunch Jürgen Hausen, Cox rings and combinatorics Ivan Arzhantsev, Geometric invariant theory via Cox rings Coffee Break, 2nd floor lounge, Corbett Hall Benjamin Steinberg, Möbius functions and semigroup representation theory Volodmyr Mazorchuk, Schur-Weyl dualities for symmetric inverse semigroups Dinner	
Wednesday	Dimici	
7:00-9:00	Breakfast	
9:00-10:00	D. Luna, Examples of wonderful varieties	
10:00-10:30	Coffee Break, 2nd floor lounge, Corbett Hall	
10:30-11:30	Zinovy Reichstein, Essential dimension and group compactifications	
11:30	Group Photo; meet on the front steps of Corbett Hall	
11:30-13:30	Lunch	
4 - 00 40 00	Free Afternoon	
17:30-19:30	Dinner	
Thursday		
7:00-9:00	Breakfast	
9:00-10:00 $10:00-10:30$	Lizhen Ji, Borel-Serre compactification of locally symmetric spaces and applications Coffee Break, 2nd floor lounge, Corbett Hall	
10:30-10:30	Kiumers Kaveh, Newton polytopes for flag and spherical varieties	
11:30-13:30	Lunch	
13:30-14:20	Leonard L. Scott, Semistandard filtrations in highest weight categories	
14:30-15:30	Nicolas Ressayre, Geometric invariant theory and eigenvalue problem	
15:30-16:00	Coffee Break, 2nd floor lounge, Corbett Hall	
16:00-16:40	V. Uma, Equivariant K-theory of compactifications of algebraic groups	
16:50-17:30	Jon Kujawa, Cohomology and support varieties for Lie superalgebras	
17:30-19:30	Dinner	
Friday		
7:00-9:00	Breakfast	
9:00-10:00	Henning Haahr Andersen, Combinatorial categories and Kazhdan-Lusztig theories	
10:00-10:30	Coffee Break, 2nd floor lounge, Corbett Hall	
10:30-11:30	Stephen Donkin, Calculating the cohomology of line bundles on flag varieties in	
11.90 19.90	characteristic p	
11:30–13:30	Lunch	
Checkout by 12 noon.		

^{** 5-}day workshops are welcome to use the BIRS facilities (2nd Floor Lounge, Max Bell Meeting Rooms, Reading Room) until 3 pm on Friday, although participants are still required to checkout of the guest rooms by 12 noon. **

Banff International Research Station

for Mathematical Innovation and Discovery

Group Embeddings: Geometry and Representations 16–21 September 2007

ABSTRACTS

(in alphabetic order by speaker surname)

Speaker: **Henning Haahr Andersen** (Aarhus)

Title: Combinatorial categories and Kazhdan-Lusztig theory

Abstract: In joint work with Jantzen and Soergel [1] in the early 1990's we constructed a combinatorial category \mathcal{K} . We used it to compare representations of (small) quantum groups to modular representations of the corresponding (infinitesimal) semisimple algebraic group. In recent work Peter Fiebig [2] considers another combinatorial category \mathcal{B} and he gives a functor $\mathcal{B} \to \mathcal{K}$. This he then applies to the related Kazhdan-Lusztig theories.

We shall discuss the constructions of the two categories, the functor between them, and the consequences in representation theory.

References

[1] H. H. Andersen, J. C. Jantzen and W. Soergel, Representations of quantum groups at a p-th root of unity and of semisimple groups in characteristic p: Independence of p, Asterisque 220 (1994), pp. 1–321.

[2] P. Fiebig, Sheaves on affine Grassmannians, Projective Representations and Lusztig's Conjectures, Preprint (Universität Freiburg 2007).

Speaker: Ivan V. Arzhantsev (Moscow State University)

Title: Geometric invariant theory via Cox rings

Abstract: (Joint work with Jürgen Hausen.) The passage to a quotient by an algebraic group action is often an essential step in classical moduli space constructions of Algebraic Geometry, and it is the task of Geometric Invariant Theory (GIT) to provide such quotients. Starting with Mumford's approach of constructing quotients for actions of reductive groups on projective varieties via linearized line bundles and their sets of semistable points [7], the notion of a "good quotient" became a central concept in GIT, compare [10] and [3].

A good quotient for an action of a reductive group G on a variety X is an affine morphism $\pi: X \to Y$ of varieties such that Y carries the sheaf of invariants $\pi_*(\mathcal{O}_X)^G$ as its structure sheaf. In general, a G-variety X need not admit a good quotient, but there may be many (different) invariant open $U \subseteq X$ with a good quotient; we will call them the good G-sets. In this talk, we present a combinatorial construction of good G-sets $U \subseteq X$, which are maximal with respect to the properties either that the quotient space U//G is quasiprojective or, more generally, that it comes with the A2-property, i.e., any two of its points admit a common affine neighbourhood.

Our first step is to consider actions of G on factorial affine varieties X. The basic data for the construction of good G-sets of X are *orbit cones*. They live in the rational character space $\mathbb{X}_{\mathbb{Q}}(G)$, and for any $x \in X$ its orbit cone $\omega(x)$ is the convex cone generated by all $\chi \in \mathbb{X}(G)$ admitting a semiinvariant f with weight χ such that $f(x) \neq 0$ holds. It turns out that there are only finitely many orbit cones and all of them are polyhedral.

To any character $\chi \in \mathbb{X}(G)$ we associate its GIT-cone, namely

$$\lambda(\chi) := \bigcap_{\chi \in \omega(x)} \omega(x) \subseteq \mathbb{X}_{\mathbb{Q}}(G).$$

We say that a collection Φ of orbit cones is 2-maximal, if for any two members their relative interiors overlap and Φ is maximal with respect to this property.

Theorem. Let a connected reductive group G act on a factorial affine variety X.

- (i) The GIT-cones form a fan in $\mathbb{X}_{\mathbb{Q}}(G)$, and this fan is in a canonical order reversing bijection with the collection of sets of semistable points of X.
- (ii) There is a canonical bijection from the set of 2-maximal collections of orbit cones onto the collection of A2-maximal good G-sets of X.

For the case of a torus G this result was known before. The first statement is given in [2]. Moreover, a result similar to the second statement was obtained in [4] for linear torus actions on vector spaces, and for torus actions on any affine factorial X, statement (ii) is given in [1].

To obtain the general statement, we reduce to the case of a torus action as follows. Consider the quotient $Y := X//G^s$ by the semisimple part $G^s \subseteq G$. It comes with an induced action of the torus $T := G/G^s$, and the key observation is that the good T-sets in Y are in a canonical bijection with the good G-sets in X. This approach turns out to be as well helpful for computing GIT-fans, because Classical Invariant Theory in many cases provides enough information on the algebra $\mathbb{K}[X]^{G^s}$ of invariants.

Our next aim is to study quotients of certain non-affine G-varieties X, e.g., the classical case of X being a product of projective spaces. More precisely, we consider normal varieties X with a finitely generated Cox ring

$$\mathcal{R}(X) = \bigoplus_{D \in \mathrm{Cl}(X)} \Gamma(X, \mathcal{O}(D)),$$

where the divisor class group $\mathrm{Cl}(X)$ is assumed to be free and finitely generated. The "total coordinate space" \overline{X} of X is the spectrum of the Cox ring $\mathcal{R}(X)$. This \overline{X} is a factorial affine variety [2] acted on by the Neron-Severi torus H having the divisor class group $\mathrm{Cl}(X)$ as its character lattice. Moreover, X can be reconstructed from \overline{X} as a good quotient $q:\widehat{X}\to X$ by H for an open subset $\widehat{X}\subseteq \overline{X}$.

After replacing G with a simply connected convering group, its action on X can be lifted to the total coordinate space \overline{X} . The actions of H and G on \overline{X} commute, and thus define an action of the direct product $\overline{G} := H \times G$. Given a good \overline{G} -set $W \subseteq \overline{X}$, we introduce a "saturated intersection" $W \sqcap_G \widehat{X}$. The main feature of this construction is the following.

Theorem. The canonical assignment $W \mapsto q(W \sqcap_G \widehat{X})$ defines a surjection from the collection of good \overline{G} -sets in \overline{X} to the collection of good G-sets in X.

So this result reduces the construction of good G-sets on X to the construction of good \overline{G} -sets in \overline{X} , and the latter problem, as noted before, is reduced to the case of a torus action. Again, this allows explicit computations. Note that our way to reduce the construction of quotients to the case of a torus action has nothing in common with the various approaches based on the Hilbert-Mumford Criterion, see [3], [5], [7], [9] and [11].

As a first application of this result, we give an explicit description of the ample GIT-fan, i.e., the chamber structure of the linearized ample cone, for a given normal projective G-variety X with finitely generated Cox ring. Recall that existence of the ample GIT-fan for any normal projective G-variety was proven in [5] and [11]. As an example, we compute the ample GIT-fan for the diagonal action of $\operatorname{Sp}(2n)$ on a product of projective spaces \mathbb{P}^{2n-1} .

A second application of the above result are Gelfand-MacPherson type correspondences. Classically [6], this correspondence relates orbits of the diagonal action of the special linear group G on a product of projective spaces to the orbits of an action of a torus T on a Grassmannian. Kapranov [8] extended this correspondence to isomorphisms of certain GIT-quotients and used it in his study of the moduli space of point configurations on the projective line. Similarly, Thaddeus [12] proceded with complete collineations. We put these correspondences into a general framework, relating GIT-quotients and also their inverse limits. As examples, we retrieve a result of [12] and also an isomorphism of GIT-limits in the setting of [8].

Finally, we use our approach to study the geometry of quotient spaces of a connected reductive group G on a normal variety X with finitely generated Cox ring. The basic observation is that in many cases

our quotient construction provides the Cox ring of the quotient spaces. This allows to apply the language of bunched rings developed in [2], which encodes information on the geometry of a variety in terms of combinatorial data living in the divisor class group.

References

- [1] I.V. Arzhantsev, J. Hausen: On embeddings of homogeneous spaces with small boundary. J. Algebra 304, No. 2, 950–988 (2006), math.AG/0507557
- [2] F. Berchtold, J. Hausen: GIT-equivalence beyond the ample cone, Michigan Math. J. 54, No. 3, 483–516 (2006), math.AG/0503107
- [3] A. Bialynicki-Birula: Algebraic Quotients. In: R.V. Gamkrelidze, V.L. Popov (Eds.), Encyclopedia of Mathematical Sciences, Vol. 131., 1–82 (2002)
- [4] A. Bialynicki-Birula, J. Świci ecka: A recipe for finding open subsets of vector spaces with a good quotient. Colloq. Math. 77, 97–114 (1998)
- [5] I.V. Dolgachev, Y. Hu: Variation of geometric invariant theory quotients. (With an appendix: "An example of a thick wall" by N. Ressayre). Publ. Math., Inst. Hautes Etud. Sci. 87 (1998), 5–56.
- [6] I.M. Gelfand, R.W. MacPherson: Geometry in Grassmanians and a generalization of the dilogarithm. Adv. in Math. 44, 279–312 (1982)
- [7] D. Mumford, J. Fogarty, F. Kirwan: Geometric Invariant Theory. 3rd enl. ed.. Ergebnisse der Mathematik und ihrer Grenzgebiete. Berlin: Springer-Verlag. (1993)
- [8] M.M. Kapranov: Chow quotients of Grassmannians. I. Advances in Soviet Math. 16, Part 2, 29–110 (1993)
 - [9] N. Ressayre: The GIT-equivalence for G-line bundles. Geom. Dedicata 81, No. 1–3, 295–324 (2000)
- [10] C.S. Seshadri: Quotient spaces modulo reductive algebraic groups. Ann. of Math. (2) 95, 511–556 (1972)
 - [11] M. Thaddeus: Geometric invariant theory and flips. J. Amer. Math. Soc. 9, 691–723 (1996)
 - [12] M. Thaddeus: Complete collineations revisited. Math. Ann. 315, 469–495 (1996)

Speaker: **Stephen Donkin** (York)

Title: Calculating the cohomology of line bundles on flag varieties in characteristic p

Abstract: Let G be a connected reductive group over an algebraically closed field of characteristic p and let B be a Borel subgroup. The character of the cohomology of a the line bundle on the flag variety G/B is not well understood (by contrast with the situation in characteristic zero where this is given by Weyl's character formula, via the Borel-Weil-Bott Theorem). We describe some general methods of calculation and a complete solution for the case $G = SL_3(k)$.

Speaker: Jürgen Hausen (Tübingen)

Title: Cox rings and combinatorics

Abstract: (Joint work with I.V. Arzhantsev and F. Berchtold.) Suppose that X is normal variety with $\Gamma(X, \mathcal{O}^*) = \mathbb{K}^*$ and free, finitely generated divisor class group $\mathrm{Cl}(X)$. Fix a subgroup $K \subset \mathrm{WDiv}(X)$ of the group of Weil divisors mapping isomorphically onto $\mathrm{Cl}(X)$. The $Cox\ ring\ \mathcal{R}(X)$ is the algebra of global sections of a sheaf of K-graded algebras:

$$\mathcal{R}(X) := \Gamma(X, \mathcal{R}), \quad \text{where} \quad \mathcal{R} := \bigoplus_{D \in K} \mathcal{O}(D).$$

Note that multiplication in the Cox ring is just multiplication of rational functions on X. Up to isomorphy, the Cox ring does not depend on the choice of K. A basic observation is that Cox rings are unique factorization domains.

The sheaf \mathcal{R} defines moreover a generalized universal torsor $X \to X$. Suppose that \mathcal{R} is locally of finite type; this holds for example, if X is locally factorial or if $\mathcal{R}(X)$ is finitely generated. Then we may consider the relative spectrum $X := \operatorname{Spec}_X \mathcal{R}$, which turns out to be a quasiaffine variety. The K-grading of K defines an action of the torus $K := \operatorname{Spec}_X \mathcal{R}$, and the canonical morphism $K := \operatorname{Spec}_X \mathcal{R}$ is a good quotient, i.e., it is an K-invariant affine morphism satisfying $\mathcal{O}_X = (p_*\mathcal{O}_{X})^H$.

If X has a finitely generated Cox ring $\mathcal{R}(X)$, then 'X is an invariant open subvariety of the total coordinate space $\overline{X} := \operatorname{Spec} \mathcal{R}(X)$. Thus, varieties with finitely generated Cox ring are obtained as good quotient spaces of certain affine torus actions on factorial affine varieties. Such quotients in turn admit a description by combinatorial data, which we call "bunches of cones". We describe basic geometric properties of X in terms of its defining bunch of cones, for example, we discuss singularities, the ample cone, Fano criteria, and modifications. Moreover, we give some applications to almost homogeneous spaces.

References

- [1] I.V. Arzhantsev, J. Hausen: On embeddings of homogeneous spaces with small boundary. J. Algebra 304, No. 2, 950–988 (2006), math.AG/0507557
- [2] F. Berchtold, J. Hausen: Cox rings and combinatorics. Transactions of the AMS 359, No. 3, 1205–1252 (2007), math.AG/0311105

Speaker: **Xuhua He** (SUNY - Stony Brook)

 ${\bf Title:} \ {\it G-stable-piece \ decomposition \ of \ a \ wonderful \ compactification}$

Abstract: Let G be a connected semisimple algebraic group of adjoint type over an algebraically closed field. Let us consider the diagonal G-action on the wonderful compactification X of G. The classification of the G-orbits were obtained by Lusztig in terms of G-stable pieces. He also used the G-stable-piece decomposition to construct certain simple perverse sheaves on X (which are called character sheaves on X). In this talk, I will discuss some geometric properties of the G-stable pieces. First, we will talk about some relation between the G-stable pieces and the $B \times B$ -orbits in X, where B is a Borel subgroup of G. We will then use this relation to study the closure relation of the G-stable pieces and some algebrogeometric properties of the closures of G-stable pieces. Although the closures are not normal in general, they do have "nice" singularities (for example, they admit a Frobenius splitting and as a consequence, they are all weakly normal). If time allows, we will also discuss some generalization to complete symmetric varieties.

Speaker: Lizhen Ji (Michigan)

Title: Borel-Serre compactification of locally symmetric spaces and applications

Abstract: Let \mathbf{G} be a semisimple linear algebraic group defined over \mathbb{Q} , and $\Gamma \subset \mathbf{G}(\mathbb{Q})$ an arithmetic subgroup. Let X = G/K be the symmetric space of noncompact type associated with the real locus $G = \mathbf{G}(\mathbb{R})$. Assume that the \mathbb{Q} -rank of \mathbf{G} is positive, or equivalently, the locally symmetric space $\Gamma \setminus X$ is non-compact. In studying both Γ and $\Gamma \setminus X$, an important role is played by the Borel-Serre compactification $\overline{\Gamma} \setminus X^{BS}$, which is the quotient by Γ of a partial compactification \overline{X}^{BS} of X. For example, together with the Solomon-Tits Theorem for Tits building of \mathbf{G} , \overline{X}^{BS} can be shown that Γ is a virtual duality group, but not a virtual Poincare duality group.

In this lecture, I will explain this and other applications, together with the following topics:

- 1. \overline{X}^{BS} is a Γ -cofinite universal space for proper actions of Γ .
- 2. A uniform Borel-Serre method to construct compactifications of both symmetric and locally symmetric spaces, in particular, the reductive Borel-Serre compactification.
- 3. Analogues for Teichmuller spaces and mapping class groups and applications.

Speaker: **Kiumars Kaveh** (Toronto)

Title: Newton polytopes for flag and spherical varieties

Abstract: The goal of the talk is to give a natural geometric description of the string polytopes for flag varieties and spherical varieties analogous to the definition of the Newton polytopes for toric varieties. This will be a generalization of a result of Okounkov for Gelfand-Cetlin polytopes of $SP(2n, \mathbb{C})$.

The classical construction of Gelfand and Cetlin associates a convex polytope to each irreducible representation of $GL(n, \mathbb{C})$ in such a way that the integral points in the polytope parameterize the elements of

a natural basis for the representation. Equivalently one can think of them as polytopes associated to the ample line bundles on the flag variety. A main feature of the G-C polytopes is that the self-intersection number of a generic section of the line bundle is given by the volume of the corresponding polytope. This can be viewed as the flag variety analogue of the well-known Kushnirenko theorem in toric geometry. Since then G-C polytopes have been generalized to all reductive groups, called "string polytopes", by the works of Littelmann, Bernstein, Zelevinsky and others. Even further, it has been generalized to spherical varieties by Okounkov (for classical groups) and by Alexeev-Brion for all reductive groups.

After an introduction to G-C and string polytopes, I will discuss the main result of the talk. Namely, we see that the integral points in the string polytope of a dominant weight λ can be interpreted as the highest terms of the elements of the corresponding irreducible representation V_{λ} (regarded as polynomials on the big cell) with respect to a natural valuation or term order.

In the second part of the talk, I generalize this construction to any algebraic variety equipped with an ample line bundle (even without a group action!). That is, we associate a convex set (which in most cases turns out to be a polytope) to an ample line bundle, hence arriving at a far reaching generalization of Kushnirenko theorem in toric geometry. In particular the Okounkov-Brion-Alexeev polytope of a spherical variety can be obtained in this way. Part of this work is joint with A. G. Khovanskii.

Speaker: Valentina Kiritchenko (Jacobs University Breman)

Title: The Euler characteristic of complete intersections in reductive groups

Abstract: Consider the following class of hypersurfaces in a complex reductive group: for each representation of the group take all generic hyperplane sections corresponding to this representation. I will present an explicit combinatorial formula for the Euler characteristic of complete intersections of such hypersurfaces. The Euler characteristic is expressed in terms of the weight polytopes of the corresponding representations. In particular, this formula extends the formulas of Bernstein and Khovanskii (all complete intersections in a complex torus) and of Brion and Kazarnovskii (zero-dimensional complete intersections in an arbitrary reductive group).

The main ingredients of my formula are Chern classes of a reductive group. These classes are related to the usual Chern classes of regular compactifications of the group. An adjunction formula involving these Chern classes allows to express the Euler characteristic via the intersection indices of the Chern classes with hyperplane sections. The latter are then computed using the De Concini-Procesi algorithm, which was originally devised for the intersection indices of divisors in wonderful compactifications of symmetric spaces. I will show how to refine this algorithm so that it produces explicit formulas for the intersection indices.

Speaker: **Jon Kujawa** (University of Georgia)

Title: Cohomology and Support Varieties for Lie Superalgebras

Abstract: (Joint work with Brian D. Boe and Daniel K. Nakano.) Let $\mathfrak{g} = \mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}$ be a simple classical Lie superalgebra over the complex numbers as classified by Kac [3]. The classical Lie superalgebras are the simple Lie superalgebras whose $\mathfrak{g}_{\overline{0}}$ -component is a reductive Lie algebra. Let $G_{\overline{0}}$ be the reductive algebraic group such that Lie $G_{\overline{0}} = \mathfrak{g}_{\overline{0}}$.

This project entails developing a support variety theory for Lie superalgebras much like the theory for representations in prime characteristic. We first construct detecting subalgebras of \mathfrak{g} and show that these subalgebras arise naturally by using results from invariant theory of reductive groups by Luna and Richardson [5]. In particular, if $R = H^{\bullet}(\mathfrak{g}, \mathfrak{g}_{\overline{0}}; \mathbb{C})$ is the relative cohomology for the Lie superalgebra \mathfrak{g} relative to $\mathfrak{g}_{\overline{0}}$ then there exists a Lie subsuperalgebra $\mathfrak{e} = \mathfrak{e}_{\overline{0}} \oplus \mathfrak{e}_{\overline{1}}$ such that

$$R \cong S^{\bullet}(\mathfrak{g}_{\overline{1}}^{*})^{G_{\overline{0}}} \cong S^{\bullet}(\mathfrak{e}_{\overline{1}}^{*})^{W} \cong \mathrm{H}^{\bullet}(\mathfrak{e},\mathfrak{e}_{\overline{0}};\mathbb{C})^{W},$$

where W is a finite pseudoreflection group. By using the finite generation of R we develop a theory of support varieties for modules over the Lie superalgebra (cf. [2]). This description allows us to conclude that the representation theory for the superalgebra over \mathbb{C} has similar features to looking at modular representations of finite groups over fields of characteristic two.

One of our main objectives was to uncover deeper results about combinatorics of the blocks for finite dimensional representations of the Lie superalgebra \mathfrak{g} . The "defect" of a Lie superalgebra and the "atypicality" of a simple module (due to Kac-Wakimoto and Serganova) are combinatorial invariants used to give a rough measure of the complications involved in the block structure. We can now provide cohomological and geometric interpretations of the defect of a Lie superalgebra. In particular, this suggests that one could give a more general and functorial definition of defect.

A focus of recent work is the calculation of support varieties in specific cases. We calculate the support varieties for the finite dimensional universal highest weight supermodules (ie. Kac supermodules) for several infinite families of classical Lie superalgebras. When $\mathfrak{g} = \mathfrak{gl}(m|n)$ we are able to use powerful results of Serganova [7] to calculate the support varieties of the simple supermodules. In particular, this allows us to confirm our "atypicality conjecture" discussed in the previous paragraph in the case of $\mathfrak{gl}(m|n)$. These calculations also show that there are striking differences between this theory and the classical theory of support varieties for finite groups.

Let us also mention recent joint work of Irfan Bagci, Jonathan Kujawa, and Daniel K. Nakano on the type W simple Lie superalgebra which suggests that the theory extends to the Lie superalgebras of Cartan type.

References

- [1] J. Dadok, V. Kac, Polar representations, J. Algebra 92 (1985), 504–524.
- [2] E.M. Friedlander, B.J. Parshall, Geometry of p-unipotent Lie algebras, J. Algebra 109 (1987), 25–45.
- [3] V. Kac, Lie superalgebras, Advances in Math. 26 (1977), 8–96.
- [4] V. Kac, M. Wakimoto, Integrable highest weight modules over affine superalgebras and number theory, Progr. Math. 123 (1994), 415–456.
- [5] D. Luna, R.W. Richardson, A generalization of the Chevalley restriction theorem, Duke J. Math. 46 (1979), 487–496.
 - [6] D.I. Panyushev, On covariants of reductive algebraic groups, Indag. Math. 13 (2002), 125–129.
- [7] V. Serganova, Characters of irreducible representations of simple Lie superalgebras, Proceedings of the International Congress of Mathematicians, Vol. II Berlin, (1998), 583–593.

Speaker: **D. Luna** (Fourier Institute - Grenoble)

Title: Examples of wonderful varieties

Abstract: Wonderful varieties of rank bigger than 2, under a semi-simple group G, are difficult to describe explicitely. So by "examples" I mean couples (H, S), where H is a subgroup of G such that G/H has a wonderful completion, and where S is the "spherical system" of this completion (i.e. its main combinatorial invariant). I will concentrate on examples for groups of type D_4 and F_4 .

Speaker: Volodymyr Mazorchuk (Uppsala)

Title: Schur-Weyl dualities for symmetric inverse semigroups

Abstract: In this talk I would like to present new Schur-Weyl type dualities which connects the classical symmetric inverse semigroup on $\{1, 2, ..., n\}$ (the rook monoid) and the relatively young dual symmetric inverse semigroup on $\{1, 2, ..., n\}$. This generalizes both the classical Schur-Weyl duality, the Schur-Weyl type duality between the symmetric group and the partition algebra, and the Schur-Weyl type dualities for the rook monoid discovered by Solomon. An interesting point here is the fact that the dual symmetric inverse semigroup, which was originally defined via a dual categorical construction, now appears as the dual object for the symmetric inverse semigroup from the representation theoretical point of view.

Speaker: Claus Mokler (Wuppertal)

Title: The face monoid associated to a Kac-Moody group

Abstract: The face monoid and its coordinate ring are obtained from the category of integrable modules of the category O of a symmetrizable Kac-Moody algebra by a Tannaka reconstruction. The face monoid contains the Kac-Moody group as open dense unit group. Its idempotents are related to the faces of the Tits cone. It has similar structural properties as a reductive algebraic monoid. In my talk I will give an

overview (on slides) of the algebraic and algebraic geometric results obtained for this monoid as well as for the complex-valued points of its coordinate ring.

Speaker: Brian Parshall (University of Virginia)

Title: Some new highest weight categories with applications to filtrations

Abstract: Let G be a semisimple, simply connected algebraic group defined over an algebraically closed field k of positive characteristic p > h (the Coxeter number of G). Let C be the category of rational G-modules. Assume that for each restricted, dominant weight, the Lusztig character formula holds for the character of the irreducible G-module $L(\lambda)$. In this talk, we present two new highest weight categories $C_{\text{even}}^{\text{reg}}$ and $C_{\text{odd}}^{\text{reg}}$, which might be called the "even" and the "odd" categories of rational G-modules. These categories are (perhaps remarkably) full subcategories of C. This fact depends on the use of the realization of the standard modules $\Delta^{\text{red}}(\lambda)$ and costandard modules $\nabla^{\text{red}}(\lambda)$ using quantum groups. We indicate some applications of the result; for example, we mention how it is related to a filtration conjecture.

This talk is based on:

- [1] E. Cline, B. Parshall, and L. Scott, "Reduced standard modules and cohomology," Trans. Amer. Math. Soc., in press (2007).
- [2] B. Parshall and L. Scott, "Some new highest weight categories," to appear in conference proceedings for ICRT-IV Tibet (2007).

Paper [1] initiates a cohomological study of the modules $\Delta^{\text{red}}(\lambda)$, $\nabla^{\text{red}}(\lambda)$ and applies this to the conjecture of Gurnalnick on 1-cohomology of finite groups. Paper [2] proves the main result mentioned above.

Speaker: Mohan Putcha (North Carolina State University)

Title: Decompositions of reductive monoids

Abstract: A reductive monoid M is the Zariski closure of a reductive group G. We will discuss three basic decompositions of M, each leading to a finite poset via Zariski closure inclusion:

- 1. The decomposition of M into $G \times G$ -orbits. The associated poset is the cross-section lattice Λ . This is a generalization of the face lattice of a polytope. While in general the structure of Λ is quite complicated, it is possible to compute the Möbius function on it.
- 2. The decomposition of M into $B \times B$ -orbits, where B is the Borel subgroup of G. The associated poset R is the Renner monoid of M whose unit group W is the Weyl group of G. For $M_n(k)$, combinatorists know R as the rook monoid and semigroup theorists know R as the symmetric inverse semigroup. We will discuss the rich algebraic and combinatorial structure of R.
- 3. There is a decomposition of M related to conjugacy classes that is in between the above two decompositions. The underlying finite conjugacy poset C is yet to be fully understood, but promises to have a very rich combinatorial structure. For the matrix monoid $M_n(k)$, C consists of partitions of m, $m \leq n$, ordered by a generalization of the dominance order on partitions of n. As an application of this decomposition we derive a description of the irreducible components of the nilpotent variety M_{nil} of M.

Speaker: Daniel K. Nakano (University of Georgia)

Title: Cohomology for algebraic groups and Frobenius kernels

Abstract: (joint work with Christopher P. Bendel, Cornelius Pillen.) Let G be a connected reductive algebraic group scheme, B be a Borel sub- group of G, and U be the unipotent radical of B. One of the outstanding open problems is to generalize the Bott-Borel-Weil theorem to understand the structure of the line bundle cohomology groups $H^{\bullet}(\lambda) := \mathcal{H}^{\bullet}(G/B, \mathcal{L}(\lambda))$ over fields of positive characteristic. A related question and significant part of this problem involves computing the rational B-cohomology groups $H^{\bullet}(B, \lambda)$ where λ is a one-dimensional character.

Let $F: G \to G$ be the Frobenius map and G_r (resp. B_r , U_r) be the r-th Frobenius kernels of G (resp. B, U). In this talk I will discuss recent progress in computing cohomology groups for algebraic groups and Frobenius kernels. My objectives for the talk are as follows:

- 1) Outline how the cohomology calculations for $H^{\bullet}(B,\lambda)$, $H^{\bullet}(G_r,H^0(\lambda))$, $H^{\bullet}(B_r,\lambda)$, $H^{\bullet}(U_r,k)$, and $H^{\bullet}(u,k)$ (ordinary Lie algebra cohomology for u = Lie U) are interrelated.
- 2) Briefly discuss connections with B-cohomology and computing cohomology for Specht modules for symmetric groups due to Hemmer-Nakano [HN]. This topic falls under Section 3 of the Conference Objectives.
 - 3) Discuss two conjectures related to these cohomological calculations:
- a) Donkin's Conjecture [D]: This conjecture has a counterexample which was discovered by van der Kallen [vdK]. However, a modified version will be explained and formulated.
 - b) Induction Conjecture: This conjecture connects the B_r -cohomology with G_r -cohomology.
- 4) Exhibit explicit cohomological calculations (via slides) for H^1 and H^2 even for small primes [BNP1, BNP2, W]. Generic behavior will be discussed.

References

- [AJ] H. H. Andersen and J. C. Jantzen, Cohomology of induced representations for algebraic groups, *Math. Ann.* 269, (1984), 487-525.
 - [AR] H.H. Andersen, T. Rian, B-cohomology, J. Pure and Applied Algebra, 209, (2007), 537–549.
- [BNP1] C. P. Bendel, D. K. Nakano, and C. Pillen, Extensions for Frobenius kernels, *J. Algebra* 272, (2004), 476-511.
- [BNP2] C.P. Bendel, D.K. Nakano, C. Pillen, Second cohomology for Frobenius kernels and related structures, *Advances in Math.*, 209, (2007), 162–197.
- [D] S. Donkin, Good filtrations of rational modules for reductive groups, *Proc. Symp. Pure Math.*, 47, (1987), 69–80.
- [FP] E. M. Friedlander and B. J. Parshall, Cohomology of Lie algebras and algebraic groups, *American J. Math.* 108, (1986), 235–253.
- [HN] D.J. Hemmer, D.K. Nakano, On the cohomology of Specht modules, J. Algebra, 306, (2006), 191–200.
- [Jan1] J. C. Jantzen, *Representations of Algebraic Groups*, Second Edition, Mathematical Surveys and Monographs, 107, AMS, Providence, RI, 2003.
- [Jan2] J. C. Jantzen, First cohomology groups for classical Lie algebras, *Progress in Mathematics*, 95, Birkhäuser, 1991, 289–315.
- [Kos] B. Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. Math. 74, (1961), 329–387.
- [KLT] S. Kumar, N. Lauritzen, J. Thomsen, Frobenius splitting of cotangent bundles of flag varieties, *Invent. Math.* 136, (1999), 603–621.
- [OHal1] J. O'Halloran, A vanishing theorem for the cohomology of Borel subgroups, *Comm. Algebra* 11, (1983), 1603–1606.
- [PT] P. Polo and J. Tilouine, Berstein-Gelfand-Gelfand complexes and cohomology of nilpotent groups over $\mathbb{Z}_{(p)}$ for representations with p-small weights, Astérisque 280, (2002), 97–135.
- [vdK] W. van der Kallen, Infinitesimal fixed points in modules with good filtration, *Math. Zeit.*, 212, (1993), 157–159.
 - [W] C. B. Wright, Second cohomology groups for Frobenius kernels, preprint (2007).

Speaker: **Zinovy Reichstein** (Univ. of British Columbia)

Title: Essential dimension and group compactifications

Abstract: The essential dimension of an algebraic object (e.g., of a finite-dimensional algebra, a polynomial, an algebraic variety or a group action) is the minimal possible number of independent parameters required to define the underlying structure. In recent years this notion has been studied by a number of algebraic, geometric and cohomological techniques. In the first part of this talk I will give an overview of this topic. In the second part, based on recent joint work with Ph. Gille, I will discuss a particular lower bound on the essential dimension, conjectured by J.-P. Serre. Our proof of this bound relies on the existence and properties of regular group compactifications.

Speaker: Nicolas Ressayre (Monpellier)

Title: Geometric invariant theory and eigenvalue problem

Abstract: Let A be an Hermitian matrix: it is diagonalizable with real eigenvalues. Let $\lambda(A)$ denote its increasing spectrum. Set

$$\Delta(l) = \{(\lambda(A_1), \dots, \lambda(A_l)) \mid A_i \text{ Hermitian with } A_1 + \dots + A_l = 0\}.$$

The set $\Delta(l)$ is actually a convex polyedral cone. The cone $\Delta(l)$ may also be described in terms of the tensor products of representations of SL(n) and there are has generalizations for all simple groups.

The question to determine explicitly the inequalities fullfilled by the points of $\Delta(l)$ began with H. Weyl in 1912. Recently, Belkale and Kummar have proposed a list of inequalities which characterize the cone $\Delta(l)$ (and its genralisations for the others simple groups) paramitrized by a condition expressed in terms of a new product on the cohomology group of the flag varieties. Here, we assert that the list of Belkale and Kummar is minimal. The proof is made by using GIT.

Speaker: **Nicolas Ressayre** (Monpellier)

Title: Spherical homogeneous spaces of minimal rank

Abstract: Let G be a complex reductive group and H be a spherical subgroup of G. The ranks of the homogeneous space G/H and of the groups G and H satisfy: $\operatorname{rk}(G/H) \geq \operatorname{rk}(G) - \operatorname{rk}(H)$. In case of equality, we say that G/H is of *minimal rank*. Tori, reductive groups G (as $G \times G$ -homogeneous spaces) and complete homogeneous spaces are of minimal rank.

In this talk, we will explain some properties satisfied by homogeneous spaces of minimal rank among spherical homogeneous spaces. We also give a classification of the pairs (G, H) such that G/H is a spherical homogeneous space of minimal rank.

Speaker: Nicolas Ressayre (Monpellier)

Title: Invariant deformations of orbit closures in $\mathfrak{sl}(n)$

Abstract: Let G be a complex reductive group, and V be a finite dimensional G-module. Recently, Alexeev and Brion defined a structure of quasiprojective scheme on some sets of G-stable closed affine subscheme of V, by defining the invariant Hilbert schemes. One motivation in their work is the classification of spherical varieties.

It is natural to make use of this construction to construct orbit spaces by assigning to any orbit G.v the point of the invariant Hilbert scheme corresponding to the closure of G.v. We will present the behavior of this construction in the case of the adjoint representation and especially for $G = SL_n$.

Speaker: Alvaro Rittatore (Universidad de la Republica)

Title: The structure of algebriac monoids: the affine case

Abstract: In the 80's, L. Renner asked the following questions: "Is it true that if an algebraic monoid M is such that its unit group is affine, then M is affine?"; "is it possible to extend Chevalley's Theorem on the structure of algebraic groups to the case of algebraic monoids?". Recently (M. Brion '07), such a structure theorem has been proved. In this talk we concentrate on the first step of this study, namely we show that the first question has a positive answer.

Speaker: Leonard L. Scott (University of Virgina)

Title: Semistandard filtrations in highest weight categories

Abstract: A definition of semistandard filtration of an object in a highest weight category is given, assuming finiteness of the indexing weight set and of all composition series in the latter category. These filtrations are studied especially in maximal submodules of standard modules, and their behavior under exact functors, such as translation to a wall in an algebraic groups setting, is examined. Some applications are given to extension groups for irreducible modules.

Speaker: Benjamin Steinberg (Carleton University)

Title: Möbius functions and semigroup representation theory

Abstract: Using Rota's theory of Möbius inversion, we are able to make very explicit the work of Munn and Ponizovskii on representations of inverse semigroups. In particular, one can obtain a formula for multiplicities of representations using only knowledge of the characters of maximal subgroups and the Mobius function of the idempotent semilattice. Since most important inverse monoids, such as Renner monoids of algebraic monoids, have Eulerian semilattices, this leads to relatively simple formulas.

The results for inverse semigroups can be made to work for other classes of semigroups including semigroups of upper triangular matrices over a field. This leads to applications in computing spectra of random walks on such semigroups.

Speaker: V. Uma (Madras)

Title: Equivariant K-theory of compactifications of algebraic groups

Abstract: In this talk we shall describe the $G \times G$ -equivariant K-ring of X, where X is a regular compactification of a connected complex reductive algebraic group G. Furthermore, in the case when G is a semisimple group of adjoint type, and X its wonderful compactification, we shall describe its ordinary K-ring K(X). More precisely, we prove that K(X) is a free module over K(G/B) of rank the cardinality of the Weyl group. We further give an explicit basis of K(X) over K(G/B), and also determine the structure constants with respect to this basis.

The above results have recently appeared in my paper titled "Equivariant K-theory of compactifications of algebraic groups" in Transformation Groups, Vol. 12, No.2, 2007, pp. 371–406.