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During our stay at BIRS, Dr. McGowan and I were able to modify our original project of classifying
cohomogeneity 3 actions on spheres to the following problem: calculate the diameters andq-extents of
spherical quotients of irreducible polar actions of cohomgeneities 3 and higher. First let us make the following
definition: we call a cohomogeneityk actionclassical polar, when it is a polar action of cohomogeneityk
corresponding to a symmetric spaceG/H where eitherG or H is a product of classical groups only. Those
actions which admit products with classical groups and exceptional groups will be calledexceptional polar.
Note that there is a 1-1 correspondance between polar actions and symmetric spaces [D]. We are interested
in this problem given that we have found in joint work with W. Dunbar and S. Greenwald [DGMS], and our
own, [MS], when we allow for disconnected groupsG to act isometrically on spheres by cohomogeneity 1, 2
or 3 (in the case where the action is classical polar) we obtain the following lower bounds for the diameter:
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We note that for these three cohomogeneities the diameter isstrictly increasing as the cohomogeneity

increases. The conjecture we are then currently trying to verify is: let G be an irreducible polar action of
cohomogeneityk onSn, then the diameter ofSn/G increases toπ2 ask → ∞. That is, as the cohomogeneity
of an irreducible action becomes large, the action “becomes” reducible. We would also like to understand
what is going on in terms of theq-extents for these spaces.

We have been able to confirm this conjecture for the classicalpolar actions of cohomogeneities 3 and
higher. The list includes the following groups:

Table 1: Classical Polar Actions of Cohomogeneity k − 1

Nr. G dim(Sm) Corresponding Symmetric Space

1 SO(k) × SO(n) kn − 1 SO(k + n)/(SO(k) × SO(n)), k ≥ n
2 S(U(k) × U(n)) 2kn − 1 SU(k + n)/S(U(k) × U(n)), k ≥ n
3 Sp(k) × Sp(n) 4kn − 1 Sp(k + n)/(Sp(k) × Sp(n)), k ≥ n
4 U(2(k)) k(k − 1) − 1 SO(4(k))/U(2(k))
5 U(2(k) + 1) k(k − 1) − 1 SO(4(k) + 2)/U(2(k) + 1)
6 SO(k) 1

2
(k − 1)(k + 2) − 1 SU(k)/SO(k)

7 Sp(k) (k − 1)(2k + 1) − 1 SU(2(k)/Sp(k)
8 SO(2(k)) 1

2
2(k)(2k − 1) (SO(2k) × SO(2k))/SO(2k)

9 SO(2k + 1) k(2k + 1) (SO(2k + 1) × SO(2k + 1))/SO(2k + 1)
10 U(k) k2 − 1 (U(k) × U(k))/U(k)
11 Sp(k) 2k2 − k − 1 (Sp(k) × Sp(k))/Sp(k)
12 SU(k) k2 − 2 (SU(k) × SU(k))/SU(k)
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Of the remaining groups, for those whose corresponding symmetric space is of the type(G × G)/G,
namely numbers 1, 6, 8 and 10 of Table 2, the result also holds true. During our stay at BIRS we were also
working on the remaining groups listed in the following table.

Table 2: Exceptional Polar Actions of Cohomogeneities Greater than ‘2

Nr. G dim(Sm) Corresponding Symmetric Space Cohomogeneity
1 F4 51 (F4 × F4)/F4 3
2 SU(6) × SU(2) 39 E6/(SU(6) × SU(2)) 3
3 SO(12) × SU(2) 63 E7/(SO(12) × SU(2) 3
4 E7 × SU(2) 111 E8/(E7 × SU(2)) 3
5 Sp(3)× SU(2) 27 F4/(Sp(3) × SU(2)) 3
6 E6 77 (E6 × E6)/E6 5
7 Sp(4) 41 E6/Sp(4) 5
8 E7 132 (E7 × E7)/E7 6
9 SU(8) 69 E7/SU(8) 6
10 E8 247 (E8 × E8)/E8 7
11 SO(16) 127 E8/SO(16) 7

Since these groups do not admit “easy” matrix expressions, we are using a technique of Hsiang outlined in
his book “Cohomology Theory of Topological TransformationGroups” [H] in order to calculate the principal
isotropy subgroups of these actions. Once we have computed these subgroups, we then need to find their
normalizers so that we may use the technique ofG-manifold reductions (cf. [GS]) to compute the quotient
space. That is, we must calculate thecore group cG = N(H)/H , whereH is the principal isotropy subgroup,
and also find thecore of the corresponding sphere,cS

n. SincecM/cG ' M/G, we may then compute the
quotient space.

During our stay, we were able to calculate the connected component of the principal isotropy subgroup for
number 2 and we made a fair amount of progress for numbers 3 and4 (we are completing these calculations
now). The only other action with non-trivial principal isotropy is number 9. For the rest of the groups in
Table 2, we must use a different technique altogether, whichcan be found in Straume [S], namely extend the
action to a larger dimensional group which will have non-trivial principal isotropy.

We also plan to see how much of Straume’s paper can be extendedfor polar actions of cohomogeneity 3
and higher.

We would also like to add that while we modified our original proposal for our stay at BIRS, we have
by no means abandoned the idea of classifying spherical actions of cohomogeneity 3 and higher. Upon
conclusion of this current project, we hope to be able to tackle not only the classification problem, but also to
understand how the diameters of spherical quotients of non-polar actions behave in terms of our conjecture.

In conclusion, we would like to add that we feel that our stay at BIRS was incredibly productive for us.
This is the first time we have had an entire 2 weeks in which to just concentrate on our research. We are both
very happy to have been provided with this opportunity.
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