
The Banff International Research Station’s
Workshop on Amenable Systems

The subject matter of the recent BIRS workshop on amenable sys-
tems could be roughly divided into four broad categories: classification
of amenable C∗-algebras and related topics, C∗-algebras associated to
directed graphs and related objects, commutative dynamical systems
and C∗-algebras, and non-commutative dynamical systems. The state
of research in amenable systems and the results presented at the work-
shop are discussed below under these headings.

§1. Classification of Amenable C*-algebras
and Related Topics

Classification of amenable C∗-algebras was only a dream some 16
years ago, a dream that started with Elliott’s classification of AF-
algebras. The Elliott program could be simply described as classifica-
tion of amenable C∗-algebras by a K-theoretical invariant (the Elliott
invariant). Today, the Elliott program of classification of amenable C∗-
algebras has become a very successful and continuing story. To name
a few break-through results in the program we mention: the Elliott-
Gong theorem, which classified simple AH-algebra of real rank zero
with local spectra of dimension at most three; the Kirchberg-Phillips
theorem on classification of separable, amenable, purely infinite, sim-
ple, C∗-algebras which satisfy the Universal Coefficient Theorem; and
the Elliott-Gong-Li classification theorem for simple AH-algebras with
no dimension growth.

On the other hand, Villadesen’s amazing construction of simple AH-
algebras with higher stable rank opened a whole new horizon, as well
as indicated new difficulties in the Elliott program. During the work-
shop, A. Toms exploited Villadesen’s construction further. He reported
that one can construct a class of simple AH-algebras whose isomorphic
invariant set must include something other than the conventional El-
liott invariant. This mystery injects new excitement into the Elliott
program.

Z. Niu demonstrated possibilities of attacking general simple ASH-
algebras which are not simple AH-algebras.

Interesting results on classification of non-simple C∗-algebras were
also given in the work shop, for example, by Dadalart and Pasnicu.

Closely related to dynamical systems, H. Lin and N. C. Phillips re-
ported that simple crossed products arising from minimal dynamical
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systems on finite dimensional compact metric spaces have zero tra-
cial rank and therefore are classifiable if the ranges of their K0-groups
are dense in the affine functions on their tracial spaces. This result,
together with Lin’s work on amenable simple C∗-algebras with lower
tracial rank, demonstrated that the above mentioned classification the-
orem of Elliott-Gong (as well as the result of Elliott-Gong-Li) can be
applied to many naturally arising C∗-algebras, in particular, as the ti-
tle of this work shop suggests, those C∗-algebras arising from amenable
dynamical systems.

Other related topics were discussed during the work shop.
A C∗-algebra is said to be self-absorbing if A ⊗ A is isomorphic to

itself. W. Winter reported that there are only a few such amenable
simple C∗-algebras.

D. Kucerovski and P-W. Ng reported a number of absorbing the-
orems which are closely related to the classification of amenable C∗-
algebras.

M. Dadarlat reported a new development regarding the Universal
Coefficient Theorem. He revisited the topology on the Kasparov groups
and showed that for two separable amenable C∗-algebras, KL-equivalence
is the same as KK-equivalence. One may hope that all separable
amenable C∗-algebras satisfy the UCT.

§2. C*-algebras Associated to Directed
Graphs and Related Objects

A directed graph is a combinatorial object consisting of vertices and
oriented edges joining pairs of vertices. We can represent such a graph
by operators on a Hilbert space H: the vertices are represented by mu-
tually orthogonal closed subspaces, or more precisely the projections
onto these subspaces, and the edges by operators between the appropri-
ate subspaces. The graph algebra is, loosely speaking, the C∗-algebra
generated by these operators.

When the graph is finite and highly connected, the graph algebras
coincide with a family of C∗-algebras first studied by Cuntz and Krieger
in 1980 [3]. The Cuntz-Krieger algebras were quickly recognised to be
a rich supply of examples for operator algebraists, and also cropped up
in unexpected places [13], [16]. In the past 10 years there has been a
great deal of interest in graph C∗-algebras associated to infinite graphs,
and these have arisen in new contexts: in non-abelian duality [12], [5],
as deformations of commutative algebras [17],[7], in non-commutative
geometry [4], [15], and as models for the clasification of simple C∗-
algebras [8].
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Graph algebras have an attractive structure theory, in which alge-
braic properties of the algebra are related to combinatorial properties
of paths in the directed graph. The fundamental theorems of the sub-
ject are analogues of those proved by Cuntz and Krieger, and include
uniqueness theorems and a description of the ideals in graph algebras.
But we know so much more: just about any C∗-algebraic property a
graph algebra might have can be determined by looking at the under-
lying graph.

Higher-rank graphs are, as the name suggests, higher dimensional
analogues of directed graphs. They were introduced by Kumjian and
Pask [11], and have recently been attracting a good deal of attention.
Uniqueness theorems have been proved, and though they are signifi-
cantly more complicated than graph algebras, we are finding out more
about them every day. Recently there have been some partial results
on their K-theory [1], [6] and there are some recent results by Raeburn,
Sims, and Pask which show that a large class of simple AT algebras can
be realised as two dimensional graph algebras. The future may hold
many more intriguing results.

Other generalisations of graph algebras that have been studied in-
clude the ultragraph C∗-algebras introduced by Tomforde [18] and the
labelled graph C∗-algebras introduced by Bates and Pask [2]. An ul-
tragraph is a generalisation of a directed graph in which the edges have
a set-valued range. To form labelled graphs, the edges of a directed
graph are given labels coming from some alphabet. At this time the
basic uniqueness and simplicity results have been proved for these al-
gebras, and theorems have been proved which show that some of their
structural properties can be determined by looking at the underlying
graph and its labelling. Katsura [9] has done a vast amount of work
in describing C∗-algebras associated to topological graphs. There is
also a substantial group of mathematicians working on non self-adjoint
operator algebras associated to directed graphs (see for example, [10].
Other practitioners include Muhly, Solel and Hopenwasser). The re-
sults here are remarkable: the directed graph itself is the invariant for
classification of these operator algebras.

At the workshop, Teresa Bates presented some preliminary results on
labelled graph C∗-algebras, Toke Carlsen and Alex Kumjian discussed
higher rank graph C∗-algebras, and Takeshi Katsura presented some
results related to topological graph C∗-algebras. David Kribs presented
some new results on weighted graph C∗-algebras.
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§3. Commutative Dynamical Systems and
C*-algebras.

Already in Murray and von Neumann’s first papers, the links be-
tween the theories of dynamical systems and operator algebras have
been very important. Thanks to Connes’ classification of injective von
Neumann factors (the type III1 case having been settled by Haagerup),
Krieger’s theorem, and the Connes-Feldman-Weiss characterization of
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amenable measurable actions; there is a bijective correspondence be-
tween amenable, ergodic, non-singular actions up to orbit equivalence,
and injective von Neumann factors up to isomorphism.

In this report, we will present some of the known results in the inter-
play between topological dynamics and C*-algebras. Many of the new
results were presented at this BIRS workshop. We begin by reviewing
the transformation group C*-algebras of minimal homeomorphisms of
compact metric spaces. For example, both the C*-crossed products
associated to Cantor minimal systems and the irrational rotation al-
gebras are AT-algebras (direct limits of circle algebras) with real rank
zero and therefore belong to the class of algebras classifiable by K-
theoretical invariants. The first result was proved by Putnam and the
second one by Elliott and Evans. In a very recent preprint, H. Lin and
N.C. Phillips proved the following remarkable result:

Let (X, φ) be a minimal dynamical system where X is

an infinite compact metric space with finite covering di-

mension. Let A = C∗(X, φ) be the associated crossed

product, and Aff (T (A)) be the space of real valued affine

continuous functions on T (A), the compact convex set

of tracial states of A. If the natural map from K0(A)
to Aff (T (A)) has dense range, then A is a simple unital

AH algebra with rank zero and therefore is classifiable.

In the smooth case, let us recall that Q. Lin and N.C. Phillips showed
that the C*-crossed product associated to a minimal diffeomorphism
of a compact smooth manifold is also classifiable, being a direct limit,
with no dimension growth, of recursive subhomogeneous C*-algebras.

For a general minimal dynamical system (X, φ), no Krieger type
theorem has yet been proved. Only for two classes of dynamical system
have dynamical characterizations of isomorphism of the associated C*-
crossed products been given. Before describing them, let us notice first
of all that, due to an old result of Sierpinski, two (topologically) orbit
equivalent minimal homeomorphisms on a connected compact metric
space are flip conjugate.

For minimal homeomorphisms of the circle, the isomorphism of the
C*-crossed product implies flip conjugacy (this follows from the follow-
ing two facts: every minimal homeomorphism of S1 is conjugate to an
irrational rotation, and C∗(S1, Rα) ∼= C∗(S1, Rβ) iff α has the same
image as ±β in R/Z).

For Cantor minimal systems, Giordano, Putnam, and Skau intro-
duced the slightly technical notion of strong orbit equivalence (SOE)
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and proved that two Cantor minimal systems are SOE iff the associated
C*-crossed products are isomorphic.

Using the Bratteli-Vershik model of Cantor minimal systems created
by Herman, Putnam and Skau, H. Dahl has characterized the (finite
dimensional) Choquet simplices of probability measures on the Cantor
set which are the set of invariant measures of a Cantor minimal system.
This generalizes a result of E. Akin.

Recently H. Lin has proposed the study of different versions of ap-
proximate conjugacy for minimal dynamical systems. The first results
appear in three preprints by Lin, Lin and Matui, and Matui. For
Cantor minimal systems, the approximate conjugate relation is closely
related to orbit equivalence and strong orbit equivalence.

For minimal actions of groups other than Z, the situation is more
complicated. Itzá-Ortiz has recently established a correspondence be-
tween the group of the eigenvalues of a minimal suspension dynamical
flow (whose ceiling function is not necessarily constant) and a multi-
plicative subgroup of the K0-group associated to the base transforma-
tion of this flow. For minimal actions of Z

n, it is not yet known if the
corresponding C*-crossed-product is classifiable in the Elliott sense.
The best result up to now has been that obtained by N.C. Phillips,
who showed that the C*-crossed-product associated to a minimal, free
Z

n-action on the Cantor set has stable rank one, real rank zero, and
cancellation of projections, and that the order on its K0-group is de-
termined by traces.

On the dynamical side, Giordano, Putnam, and Skau studied the
so-called affable equivalence relations and proved that a “small exten-
sion” of an AF-equivalence relation is still (orbit equivalent to) an AF-
equivalence relation. This gives a new topological dynamic proof that
any Cantor minimal system is orbit equivalent to an AF-equivalence
relation. In a recent preprint, they introduce a cohomological condi-
tion on minimal Z2-actions on the Cantor set, give two large classes
of actions satisfying it and show that such minimal Z2-actions are or-
bit equivalent to AF-equivalence relations, using the extension result
mentioned above.

§4. Noncommutative Dynamical Systems

The classification program for C*-algebras has had the most success
with purely infinite, simple C*-algebras (see, for example, [5] and [8]),
with simple C*-algebras with tracial rank zero as introduced in [6] (see,
for example, [7]), and especially with various classes of C*-algebras ob-
tained as direct limits of special kinds of type I C*-algebras (see the
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discussion in Section 1. of this report). The classification program
is currently interacting with noncommutative dynamics in two impor-
tant ways. First, C*-algebraists tend to be more interested in crossed
product C*-algebras than in most of the classes just mentioned. Work
on the classification of crossed products has generally taken the form
of proving that certain crossed products belong to one of the classes
already covered by other classification theorems, or, less satisfactorily,
at least proving structural properties of crossed products which sug-
gest that they should belong to one of these classes. Work on crossed
products by groups acting on compact spaces is discussed in Section
3. of this report, but some results for actions on noncommutative C*-
algebras were presented at the workshop. Secondly, having classified
algebras, it is natural to try to classify group actions on algebras.

Recent work on classifiability of crossed products of noncommutative
C*-algebras has relied on the tracial Rokhlin property. This property
is a weakening of the Rokhlin property [3] that Izumi uses in his clas-
sification work for automorphisms. The Rokhlin property is a rather
rigid condition: K-theoretic obstructions (some obvious, some less so;
see [4]) show that many purely infinite simple C*-algebras admit no
actions of finite groups with the Rokhlin property. The tracial Rokhlin
property for actions of finite cyclic groups first appeared in [9], where
it was proved that if A is a simple separable unital C*-algebra with
tracial rank zero, and if α : G → Aut(A) is an action of a finite cyclic
group with the tracial Rokhlin property, then C∗(G, A, α) again has
tracial rank zero. The applications there were to C*-algebras on which
no nontrivial action of a finite group can have the full Rokhlin property.

Hiroyuki Osaka talked about actions of Z with the tracial Rokhlin
property. For Z, there are no known K-theoretic obstructions which
prevent an action from having the Rokhlin property while allowing it
to have the tracial Rokhlin property. However, there are a number of
interesting actions of Z which are known to have the tracial Rokhlin
property but not known to have the Rokhlin property. Osaka described
two results, strongly suggestive but still incomplete. Let A be a simple
separable stably finite unital C*-algebra, and let α : Z → Aut(A) be an
action with the tracial Rokhlin property. If A has real rank zero and
stable rank one, and if the order on projections over A is determined
by traces, then C∗(G, Z, α) again has these properties. If A has tracial
rank zero, and if αn is approximately inner for some nonzero n, then
C∗(Z, A, α) again has tracial rank zero.

As seen above, in some ways crossed products by finite groups are
more accessible than crossed products by Z. Their K-theory, however,
is much harder to compute. For example, there is an action of Z/2Z on
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a contractible C*-algebra such that the K-theory of the crossed product
is nonzero, which rules out anything resembling the Pimsner-Voiculescu
exact sequences for crossed products by Z and by free groups. There
are standard actions of Z/nZ on the irrational rotation algebras Aθ, for
n = 2, 3, 4, 6, which are among the actions of finite groups which have
attracted the most attention. Computations of K-theory in the ratio-
nal case (when the crossed products are type I and can be described
explicitly) have led to the conjecture that, in the irrational case, all
the crossed products are AF algebras. This has been known for some
time for Z/2Z (the proof relies on a fortuitous coincidence), and has
been proved by Walters for Z/4Z and “most” θ. It is shown in [9] that,
for θ irrational, all the crossed products are AH algebras with slow
dimension growth and real rank zero. Thus, the remaining step is to
compute the K-theory. Julian Buck talked about work in this direc-
tion with Walters for Z/3Z and Z/6Z (where the least is known). It
depends on cyclic cohomology in an essential way.

In the second direction, Masaki Izumi has previously proved some
classification results for actions of finite groups with the Rokhlin prop-
erty on Kirchberg algebras [3], [4]. In his talk at the conference, he
described results for quasifree actions of finite groups on O∞. These
actions do not have the Rokhlin property; in fact, as follows from
Izumi’s earlier work, there are no nontrivial actions of finite groups
on O∞ which have the Rokhlin property. However, Izumi proved that
quasifree actions are locally representable, which in a certain sense is
dual to the Rokhlin property. (For an action α of a finite abelian group,
α is locally representable if and only if α̂ has the Rokhlin property.)
One should note that this theory is really only just beginning; as with
the classification of C*-algebras, the purely infinite simple case is the
place to start.

Andrew Dean talked about classification for actions on AF algebras
which are explicitly given as direct limit actions, but where the group is
not compact. Such actions (“locally representable” in a sense stronger
than that used by Izumi) for compact groups were considered long ago
by Handelman and Rossmann [1], [2], as well as others. While keeping
the direct limit structure (in contrast to Izumi), Dean has obtained
results for certain specific kinds of actions of noncompact groups. In
previous work, he has considered actions of R, and in his talk at this
conference he examined actions of two relatively elementary groups
which have infinite dimensional irreducible representations, and in par-
ticular are neither compact nor abelian, namely SL2(R) and the group
of Euclidean motions of the plane. The direct limits are set up so as to
allow these representations to appear in at least a limited way, and thus
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allow infinite dimensional algebras (copies of the compact operators) in
the system. They can only appear in a limited way because the partial
maps must have finite multiplicity; otherwise, the direct limit will not
be AF.

Two talks at the conference described work on noncommutative dy-
namics farther afield from the classification program. Rui Okayasu
presented work relating the entropy of certain subshifts to the values
of a a numerical invariant introduced some time ago by Voiculescu for
the purpose of measuring the obstruction to the existence of a quasi-
central approximate identity relative to the Macaev ideal for a finite set
of operators. Specifically, the set of operators should be the creation
operators which appear in Matsumoto’s construction of the C*-algebra
of the shift. Okayasu has also computed this invariant for the images
of generating sets of certain groups under the regular representation.

Ilan Hirshberg talked about finding certain kinds of representations
of C*-correspondences (bimodules which are Hilbert modules on one
side). A C*-correspondence can be thought of as a generalization of
an automorphism of the algebra (also, simultaneously, as a general-
ization of some other things), and some of the associated C*-algebras
(Cuntz-Pimsner algebras [10]) have attracted considerable interest re-
cently. These algebras generalize not only crossed products but also
Cuntz-Krieger algebras and graph algebras. From the point of view
of dynamics, a representations of a C*-correspondence is a generaliza-
tion of a covariant representation of (Z, A). Hirshberg’s situation was
of course much more complicated than just finding covariant represen-
tations.
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