
BIRS Workshop-Report: Shape Analysis, Stochastic
Mechanics and Optimal Transport

Martin Bauer, Tanya Schmah, Stefan Sommer and Francois-Xavier Vialard

December 9 – 14, 2018

1 Organizing Committee
Martin Bauer (Florida State University)
Martins Bruveris (Onfido)
Sarang Joshi (University of Utah)
Darryl Holm (Imperial College London)
Tanya Schmah (University of Ottawa)
Stefan Sommer (University of Copenhagen)
Franois-Xavier Vialard (University Paris-Est Marne la Vallée)

2 Overview of the Field
The mathematical and computational analysis of shape and shape changes has, over the last few years, been
at the center of focused research efforts, driven by a wide range of applications, from biological imaging to
fluid dynamics. Problems in areas as diverse as shape optimisation, functional data analysis and computer
graphics can all be formulated in terms of shape analysis.

Mathematically, shape analysis combines ideas from infinite-dimensional Riemannian geometry, geo-
metric mechanics, fluid dynamics and, recently, also sub-Riemannian geometry and stochastic analysis. This
interplay of different areas continues the historically very fruitful exchange of ideas between geometry, me-
chanics and applications.

In many instances, shape spaces can be endowed with the structure of an infinite-dimensional Riemannian
manifold. Examples include the shape space of curves or surfaces in Euclidean space, the space of densities
as well as more general spaces of mappings. The diffeomorphism group in particular plays a central role in
the field of shape analysis and medical imaging.

The main objective of the workshop was to bridge the gap between shape analysis, stochastic geometric
mechanics and applied optimal transport communities and to advance research that crosses the boundaries
of the three fields in addition to communicating important challenges in shape analysis to researchers in
stochastic geometric mechanics and optimal transport.

2.1 Shape analysis and medical imaging
The space of images is acted upon by the diffeomorphism group and, in the spirit of Grenander’s pattern
theory [1], differences between images can be encoded by diffeomorphisms. In this way medical images
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can be investigated with the help of Riemannian metrics on the diffeomorphism group. One of the major
applications of Grenander’s pattern theory is in computational anatomy [2], a field that uses modern imaging
techniques, such as magnetic resonance, computed tomography and positron emission tomography, to per-
form a precise computational study of functional and anatomical morphology. Currently, the extension of
statistical tools such as kernel PCA and regression, that are well understood in the linear setting, to finite and
infinite-dimensional Riemannian shape manifolds is of great interest to the medical imaging and computer
vision communities. This in addition provide links with geometric statistics [3], statistical analysis of data
taking values in geometric spaces.

2.2 Stochastic geometric mechanics
Shapes observed in nature exhibit variations that are often best described stochastically. Thus there is a need,
arising from applications, for stochastic shape models, that would enable statistical analysis of shape popula-
tions and describe stochastic nonlinear shape variations in a geometrically intrinsic way. The diffeomorphism
group, which describes shape variations through its action on shape space [4], allows us to transfer develop-
ments happening in the new and growing field of stochastic geometric mechanics to problems in stochastic
shape analysis.

Recent work has shown that the Euler-Poincaré equation on the diffeomorphism group has a stochas-
tic analog [5], derived from a stochastic variational principle, that yields natural stochastic models of shape
evolution. The diffeomorphism group can be equipped with a Lie group structure giving rise to Brownian
type flows that are mapped from the Lie algebra to the group. Lagrangian Navier-Stokes flows [6] also con-
stitute an alternative approach to stochastic flows. In very recent work, it has been shown how such flows
can induce stochastic shape evolutions [7] but very little is known about their properties, such as existence,
invariant distributions or ergodicity. Stochastic geometric mechanics is still a new field, and the similarity
between stochastic flows on finite-dimensional Lie groups and stochastic flows on shape spaces induced by
the diffeomorphism group enables developments in both fields to be transferred between them. For exam-
ple, Riemannian stochastic models in shape analysis are used to construct stochastic models in geometric
mechanics, whose definition relies on the affine connection. The workshop had as an objective to introduce
in the shape community models from stochastic geometric mechanics, and to link ideas from shape analysis
back to geometric mechanics.

2.3 Optimal transport
Independently, optimal transport has seen significant development as an area of pure mathematics. One can
consider optimal transport as a special case of Riemannian shape analysis, with shapes being probability
densities. Improved numerical methods, such as Monge-Ampère type solvers and entropic regularization
schemes, have recently expanded the applications of optimal transport to include computer vision, biomedical
imaging, machine learning and statistics. Compared to optimisation problems encountered in shape analysis,
those in optimal transport often stand out by being convex, thus simplifying and speeding up computations.
Nevertheless, embedding optimal transport into the more general framework of shape analysis allows one to
consider possible extensions of optimal transport; for example the recently developed unbalanced optimal
transport was partly inspired by ideas in shape analysis.

In turn, stochastic variants of optimal transport such as the Schrödinger problem of minimizing the rel-
ative entropy with respect to a Wiener process does not, at the moment, have a counterpart in stochastic
shape analysis or stochastic geometric mechanics. An important outcome of entropic regularization of op-
timal transport is the development of algorithms that allow for fast computations of entropically regularized
transport maps. For many problems in shape analysis, for example the computation of geodesics on the dif-
feomorphism group, computational time is still prohibitive for large scale applications. Ideas from optimal
transport could prove useful in developing new numerical methods for these problems.

3 Presentation Highlights
We here discuss the topics presented in the range of excellent talks at the workshop. These highlights start
with optimal transport and related topics followed by geometry of diffeomorphisms and hydrodynamics,
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stochastic geometric mechanics and stochastic shape analysis, and finally mathematical foundations of shape
and image analysis.

3.1 Applied optimal transport and related topics
Talks concerned with optimal transport started with Ana-Bela Cruzeiro who presented an extension of the
Schrödinger problem to Lie group valued processes. The infinite dimensional case and its connection with
fluid dynamics ([8]), currently an open research area, was also touched upon. In particular it is not known how
to obtain more regularity for the weak generalized flows associated to the Navier-Stokes equations through
optimal transport methods and how to approach compressible Navier-Stokes equations.

On the space of probability densities, Christian Léonard presented a reformulation and a generalization
of the so-called entropic interpolation of Wasserstein geodesics in terms of Newton equations on the space
of densities ([9]). He was able to present a general contraction inequality for the Schrödinger problem on a
Riemannian manifold with Ricci lower bound.

Other talks in optimal transport were centered on extensions of optimal transport and applications. Based
on [10], semi-discrete numerical solutions of unbalanced optimal transport were presented by Bernhard
Schmitzer and interesting connections and applications in fluid dynamic for the generalized Camassa-Holm
equations were presented by Andrea Natale as in [11]. Unbalanced optimal transport appears to have appli-
cations not only in quantization but more surprisingly in crystallization.

Tryphon Georgiou presented a numerical approximation to optimal transport using Gaussian approxi-
mations, and also presented extensions of optimal transport to vector valued and matrix valued optimal mass
transport. Based on a matrix continuity equation, the Linblad equation known in quantum theory was obtained
as a gradient flow of the Von Neuman entropy which is a non-commutative counterpart of the pioneering re-
sult of Jordan-Kinderlehrer-Otto. An open question of interest in this field consists in providing a unified
framework to all these generalizations of optimal transport to cone valued measures.

Tom Needham introduced the Gromov-Monge quasimetric, which is a notion of distance between ar-
bitrary compact metric measure spaces that blends the Monge formulation of optimal transport with the
Gromov-Hausdorff construction. He discussed applications to metric trees, which appear in shape analysis
and data visualization. Alice Le Brigant spoke on optimal quantization on Riemannian manifolds, which is
the problem of finding the best (with respect to Wasserstein distance) finite discrete approximation to a given
probability distribution. She presented a new online algorithm as well as an application to summarizing air
traffic complexity in which she compared summaries using discrete optimal transport.

Carola Schönlieb has shown the use of the Wasserstein distance in unsupervised learning of regularizers
in inverse imaging problems such as tomography, the Wasserstein distance being here approximated via the
dual formulation on the space of 1-Lipschitz functions. Another use of optimal transport was proposed by
Jean Feydy in shape matching where a similarity divergence [12] was built upon entropic regularization.
Importantly, numerical advances on the computation of these metrics for a large number of data were shown.

On the numerical side of optimal transport, Jean-David Benamou presented the extension of the Sinkhorn
algorithm to a multi-marginal setting as in [13] for the simulation of the generalized incompressible Euler
equation which was introduced by Brenier in the 90s. The Sinkhorn algorithm is known to converge linearly
with respect to a Hilbert norm in the case of standard optimal transport with two marginals. Although the
multimarginal scheme proposed by Jean-David Benamou is variational and provably convergent, it is an open
question to prove the linear convergence with respect to a modified Hilbert norm.

Related to these generalized incompressible Euler equations, Andrea Natale presented, as in [11], a gen-
eralized Camassa-Holm equation based on the unbalanced optimal transport problem, which is related to
Bernhard Schmitzer’s talk. He has introduced a convex relaxation of the Camassa-Holm equation à la Bre-
nier. The main open question is the tightness of this relaxation in dimension greater or equal to 2. Andrea
Natale showed that in a particular case this relaxation was tight and his construction was similar to the one
proposed by Cy Maor in his vanishing distance result on the diffeomorphism group.

These optimal transport talks have shown that generalizations of optimal transport are a very active topic
of research in connections with fluid dynamic, quantum theory and practical applications. In all these talks,
the entropic interpolation stands out and was a central tool for practical use and extensions, and also motivated
theoretical developments.
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3.2 Geometry of the diffeomorphism group and mathematical hydrodynamics
The first series of talks on infinite dimensional Riemannian geometry concerned the geometry of the diffeo-
morphism group in the particular context of mathematical hydrodynamics. Boris Khesin focused in his talk
on the geometry of the Madelung transform, which is known to relate Schrödinger-type equations in quan-
tum mechanics and the Euler equations for barotropic-type fluids. He presented a recent result by himself,
K. Modin and G. Misiolek [14] in which they showed that the Madelung transform is a Kähler map (i.e. a
symplectomorphism and an isometry) between the space of wave functions and the cotangent bundle to the
density space equipped with the Fubini-Study metric and the Fisher-Rao information metric, respectively.

Gerard Misiolek’s lecture centered around Arnold’s geometric picture [15] for the incompressible Euler
equations as geodesic equation on the group of diffeomorphisms of the fluid domain equipped with a L2-
metric given by fluid’s kinetic energy. Misiolek gave a detailed overview of the study of the exponential
map of this metric and described several recent results concerning its properties. These investigations of the
geometric properties of the L2-metric on the group of volume preserving diffeomorphisms date back to the
seminal paper by Ebin and Marsden [16], in which they proved local well-posedness and uniqueness of the
solutions to the corresponding geodesic initial value problem. These techniques have been later extended
to the class of right invariant Sobolev metrics on the full diffeomorphism group. This observation lead
to geometric interpretations of many prominent equations of mathematical hydrodynamics, including for
example the Camassa-Holm [17, 18] or KdV-equation [19]. In his talk Stephen Preston discussed how many
of these one-dimensional Euler-Arnold equations can be recast in the form of a central-force problem

Γtt(t, x) = −F (t, x)Γ(t, x),

where Γ is a vector in R2 and F is a nonlocal function possibly depending on Γ and Γt. Angular momentum
of this system is precisely the conserved momentum for the Euler-Arnold equation. In the solar model,
breakdown comes from a particle hitting the origin in finite time, which is only possible with zero angular
momentum. In his talk Preston discussed some conjectures and numerical evidence for the generalization of
this picture to other equations such as the µ-Camassa-Holm equation or the DeGregorio equation. Klas Modin
presented a recent result with Martin Bauer [20] in which they prove extensions of the Ebin and Marsden
result to higher order Sobolev metrics on diffeomorphism groups that are only invariant with respect to
volumorphisms. This study reveals many pitfalls in going from fully right invariant to semi-invariant Sobolev
metrics; the regularity requirements, for example, are higher. Nevertheless the key results, such as no loss or
gain in regularity along geodesics, can be adopted.

While these previous talks focused mainly on properties of the geodesic spray (geodesic initial value
problem resp.), the lecture of Cy Maor studied a different geometric question that arises in this context: prop-
erties of the geodesic distance induced by right invariant metrics on diffeomorphism groups and in particular
the question whether it is positive between distinct diffeomorphisms or not. In this talk he presented a recent
preprint by him with Robert Jerrard [21] which shows that the geodesic distance on the diffeomorphism group
of an n-dimensional manifold, induced by the W s,p norm, does not vanish if and only if s ≥ 1 or sp > n.
The first condition detects changes of volume, while the second one detects transport of arbitrary small sets.
In particular he discussed how the failure of these two conditions enables the construction of arbitrarily short
paths between distinct diffeomorphisms. This work extends previous results on vanishing geodesic distance
by Michor, Mumford and others [22, 23, 24, 25].

3.3 Stochastics in geometric mechanics and shape analysis
The talks on stochastics in geometric mechanics and shape analysis concerned symmetry reduction for
two different stochastic models, the stochastic variational principle in Lie groups by Arnaudon, Chen, and
Cruzeiro [6] and the variational model by Holm [5], together with particle samplers for Feynman-Kac mea-
sures on path spaces.

Ana-Bela Cruzeiro’s presented the variational principle and Euler-Poincaré reduction of [6]. The setting
is a left- or right-invariant metric on a general Lie group. Noise is introduced in Stratonovich form through
a set of vector fields on the Lie algebra, and the resulting stochastic perturbations are transported by the
push-forward of left-translation to the group. From this, a stochastic action functional is derived. Critical
points of this functional are then shown to be amenable to Euler-Poincaré reduction in a setting resembling



5

the deterministic case (see e.g. [26]). In particular, the motion can be described by

d

dt
u(t) = ad∗

ũ(t)u(t) +K(u(t))

with
ũ(t) = u(t)− 1

2

∑
i

∆Hi
Hi

and subsequently reconstructed to the group. In the reconstruction equation, a coupling term appears that
comes from the Itô to Stratonovich conversion terms.

Alexis Arnaudon discussed the stochastic model of [5] in the context of shape analysis. Stochastic per-
turbations are here introduced by perturbing the Hamiltonian that before perturbation comes from a right-
invariant metric on e.g. the diffeomorphism group. This leads to a different variational principle, again with
Euler-Poincaré reduction for critical paths, however in a different form than considered by Cruzeiro et al.. In
coadjoint form, the reduced dynamics are governed by

dµ(t) + ad∗
dXµ(t) = 0

with

dX = udt−
∑
i

∂µΦi(µ) ◦ dW i
t µ =

∂l(u)

u

where Φi constitute a basis for the noise and l is a reduced lagrangian. Arnaudon showed how the stochastic
dynamics through the action of the diffeomorphism group descend to shape spaces, e.g. the landmark shape
space. Here, Arnaudon related the model to Langevin dynamics in different forms, particularly the stochastic
model of [27], and he introduced a dissipation term on the Hamilton equations as a general link between the
two stochastic landmark equations.

Marc Arnaudon discussed continuous time Feynman-Kac measures on path spaces. There equations are
central in applied probability, PDE theory, and quantum physics. Arnaudon presented a new duality for-
mula between normalized Feynman-Kac distributions and their mean field particle interactions. This allows
rerversible particle Gibbs-Glauber samplers for continuous time Feynman-Kac integration on path spaces.
Arnaudon in addition discussed new estimates for propagation of chaos for continuous time genealogical tree
based particle models, allowing sharp quantitative estimates of the convergence rate of particle Gibbs-Glauber
samples.

3.4 Mathematical Foundations of Shape and Image Analysis
Several of the talks on Shape and Image analysis concerned new developments for the LDDMM-framework
[28]. The first in this direction was by L. Younes, who presented recent work on equivolumic layers esti-
mation in the cortex. B. Gris described a constrained version of LDDMM and showed how this approach
can help to understand the variability within a population of shapes. A crucial ingredient for deformation
based approaches such as LDDMM is the construction of efficient data attachment terms. Towards this aim,
N. Charon presented several deformation models on spaces of oriented varifolds, which embeds many previ-
ously considered geometric structures like curves, surfaces but also orientation distribution fields. In particu-
lar he discussed compressing/quantizing oriented varifold representations in order to numerically accelerate
diffeomorphic registration procedures. D. Kuang presented a completely different method for nonlinear im-
age registration using unsupervised neural networks. This led to some discussion about the relative merits of,
on one hand, data driven methods such as Kuang’s, and on the other hand, variational and geometric methods
such as LDDMM.

A central concept in LDDMM is the momentum vector field; in a related theoretical talk, T. Ratiu intro-
duced a new generalization of the momentum map concept: a group-valued momentum map, inspired by the
Poisson Lie setting.

A second theme in this part of the workshop consisted in the study of intrinsically defined metrics on
spaces of geometric objects, such as curves or surfaces. E. Klassen presented a new Riemannian metric
on the space of vector valued one-forms, that has potential applications for the shape analysis of surfaces.
The proposed metric is a direct generalization of the elastic metric associated to the SRV framework [29],
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that has been proven successful for the analysis of unparametrized curves. Related to this talk was the
presentation of P. Harms, who showed that (fractional) Laplacians depend real analytically on the underlying
Riemannian metric in suitable Sobolev topologies. As an application he presented local well-posedness of
geodesic equations for (fractional) Sobolev metrics on the space of mappings. While these two talks focused
mainly on the existence and form of geodesic curves, M. Rumpf studied the existence and construction
of spline curves in the context of Riemannian shape spaces. In his talk he introduced a variational time
discretization for the spline energy, that leads to a constrained optimization problem over discrete paths on
the manifold. Existence of continuous and discrete spline curves is established using the direct method in the
calculus of variations and the convergence of discrete spline paths to a continuous spline curve follows from
the Γ-convergence of the discrete to the continuous spline energy.

4 Outcomes of the Meeting
This meeting provided an excellent occasion to open discussions and develop connections between several
related fields: Applied optimal transport, methods involving diffeomorphic matching, the so-called large
deformation by diffeomorphisms, and stochastic geometric mechanics. Different applications context have
shown fundamental differences as well as similarities. In addition, the link between these fields and fluid
flows was discussed several times in the talks.

A central discussion topic at conference was the question of finite explosion time of Brownian motion
on landmark spaces. We consider the LDDMM landmark manifold [30] with metric inherited from a right-
invariant metric on the diffeomorphism group. This Riemannian manifold has a global representation as an
open subset of Euclidean space. It is thus not compact, which raises the question of finite time blowup of
Riemannian Brownian motion. Several recent works use the landmark Brownian motion in applied settings
[31, 32] which underlines the interest in the existence question. Furthermore, understanding the structure in
the Brownian case may shed light on similar questions for stochastic shape models such as discussed in the
talks in this workshop. We made significant progress on this question by finding sharper conditions for finite
time collision of the landmarks. Current ongoing work evolves around evaluating these conditions to either
prove or disprove finite time explosion.

In informal discussion about applications to medical image registration, tips and tricks were shared, and
a divergence of opinion appeared about the likelihood of large practical improvements over the current state
of the art, given that the practical registration problem isn’t entirely well-posed.

In addition several new projects and discussions have been initiated during the workshop, including: Cy
Maor and Philipp Harms on the physics of stress and strain in shape analysis; Martin Bauer, Nicolas Charon,
Philipp Harms and Martin Rumpf discussed a new collaboration to obtain a numerical framework for shape
analysis of surfaces with respect to higher order Sobolev metrics; Tryphon Georgiou and Tanya Schmah
discussed the restriction of the Wasserstein metric to the space of Gaussian mixtures. Martin Bauer, Klas
Modin and Cristina Stoica discussed and started a new project related to the existence of ‘peakon’ singular-
suported solutions for non-Newtonian fluids.
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