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1 Overview of Dynamical Entropy Theory
Entropy has long been used in dynamics as a tool to classify and probe dynamical systems. In the begin-
ning, its use was restricted to single automorphisms of a measure space. To be precise, if (X,µ) denotes a
probability space, T : X → X an automorphism and P a partition of X , then we define

Hµ(P) := −
∑
P∈P

µ(P ) log(µ(P )),

hµ(T,P) = lim
n→∞

1

n
Hµ

(
n∨
i=0

T−iP

)
,

hµ(T ) := sup
P
hµ(T,P).

The first quantity above is the Shannon entropy of P; it represents the amount of information gained by
learning which part of P contains a random element x ∈ X . For example, suppose that while studying a
system a measurement is made every minute. In this case, the state of the system is represented by x ∈ X .
The time evolution is represented by T and the measurement is represented by the partition P: so knowing
the which part of P contains x is the same as making a measurement. The Shannon entropyHµ(P) quantifies
the amount of information gained on average from making a single measurement. The entropy rate hµ(T,P)
quantifies the average amount of information gained per unit time and hµ(T ) represented the total amount of
information per unit time in the system.

Kolmogov’s deep insight of 1958 [8] was that the entropy hµ(T ) is an isomorphism invariant. He used it
to classify Bernoulli shifts which are an especially simple type of system in which, at each moment of time,
the experiment consists of rolling a “die” and recording the value. The die used here could have many sides
and it is not necessary that all sides have equal weight. Formally, this means that X = KZ for some Borel
space K, µ = κZ for some Borel measure κ on K and the time evolution T is defined by T (x)n = xn−1.
The entropy of this system equals the Shannon entropy of the base.

In 1970, Ornstein proved the converse: if two Bernoulli shifts have the same entropy then they are iso-
morphic, completing the classification of Bernoulli shifts [9]. At the same time, he introduced a variety
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of powerful tools for determining whether a given automorphism is isomorphic to a Bernoulli shift and for
streamlining previous important results such as Sinai’s Factor Theorem and Krieger’s Generator Theorem.

All of the above results were extended to the class of amenable groups in the 1970’s and 1980’s. However,
they could not be extended to non-amenable groups. In fact, it is an immediate consequence of the definitions
that entropy cannot increase under a factor map and that the entropy of a Bernoulli is the Shannon entropy of
the base space. These statements were directly contradicted in the case of free groups by an explicit example
due to Ornstein-Weiss [10]. This convinced many researchers that entropy theory could not be extended to
non-amenable group actions.

In 2010, Bowen introduced sofic entropy theory [1] which applies to the large class of sofic groups that
includes many non-amenable groups. In fact, it is unknown whether or not all groups are sofic however, all
amenable groups and linear groups are sofic. Sofic entropy is not monotone under factors in general, but
it does classify Bernoulli shifts. Since this intial discovery there have been many developments including
the introduction of a topological counterpart by Kerr-Li [7], sofic pressure by Chung [5] and computations of
sofic entropy for algebraic actions by many authors [2, 7, 4] including a complete result for principal algebraic
actions by Hayes [6].

A group Γ is sofic if it admits a sequence σn : Γ → Sym(Vn) of maps that asymptotically behave
like homomorphisms giving free actions on the finite sets Vn. In the simplest case in which the action can
be described by: K is a finite set, Γ acts on KΓ by shifts: (gx)(f) = x(g−1f) and µ is a shift-invariant
probability measure on KΓ, the sofic entropy is the exponential rate of growth of the number of microstates
for the action. To be precise, a microstate is an element of KVn which exhibits the same local statistics up
to a small error as the measure µ. Apriori, the sofic entropy can depend on the choice of sequence (which is
called a sofic approximation). Moreover, it can even be −∞ if there are no microstates. There are explicit
examples of this phenomenon.

In a series of papers, B. Seward has been developing Rokhlin entropy theory [15, 12, 13, 14]. This entropy
admits a deceptively simple definition in the case of essentially free ergodic actions: it is the infimum of the
Shannon entropies Hµ(P) over all generating partitions P; where partition is generating if the smallest Γ-
invariant sigma-algebra containing it is the entire Borel sigma-algebra (up to measure zero). This means that
the measuring device, represented by P , is complete in the sense that if we observe the system through P for
all “time” then we will learn everything there is to know about the state of the system.

It is an easy consequence of the definitions that Rokhlin entropy is an upper bound for sofic entropy.
However, there are no other known lower bounds for Rokhlin entropy. This leads to the open question: if a
system has nonnegative sofic entropy, does its sofic entropy equal the Rokhlin entropy? If so, this would imply
that sofic entropy does not depend on the choice of sofic approximation (conditioned on being nonnegative).
This problem is open even for the much-studied case of Gibbs measures on regular trees.

2 Recent Developments and Open Problems
B. Seward finished the remaining case in extending Ornstein’s Isomorphism Theorem. So we now know that
every countably infinite group satisfies the following fundamental property: if two Bernoulli shifts over Γ
have the same base space entropy then they are isomorphic. Previously this was known in all cases except for
the case of 2-atom base spaces [3].

In work in progress, L. Bowen has proven that when Γ is non-amenable, then all Bernoulli shifts over
Γ factor onto each other. This is a corollary to the following extension of the Gaboriau-Lyons Theorem: all
Bernoulli shifts over Γ satisfy the conclusions of the measurable von Neumann-Day conjecture (that its orbits
can be measurably partitioned into non-amenable trees). The details were presented for the first time at the
workshop. These first two results solve long-standing fundamental problems. It now makes sense to pursue
a more detailed picture. For example, is it possible to classify factors of Bernoulli shifts up to measure-
conjugacy? This problem and its many sub-problems were discussed at the workshop. For example, partial
progress towards classifying Ornstein-Weiss factors was discussed.

In a series of works, B. Seward has been developing Rokhlin entropy theory [15, 12, 13, 14] with stunning
results such as: a generalization of Krieger’s generator theorem to arbitrary countable groups and a general-
ization of Sinai’s Factor Theorem to arbitrary groups. The latter is so new it is still not publicly available. B.
Seward talked about this result at the workshop and its many implications.
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Russ Lyons talked on factors of Bernoulli shifts. The main problem seems to be to develop tools for
determining which seems systems are factors of Bernoulli shifts. Partial progress and many open problems
were discussed. Lyons’ second talk was on determinantal measures and their ergodic theory on sofic groups.

Ben Hayes spoke about a new version of relative entropy in which one considers the entropy of the target
relative to the source (instead of the other way around which is classical). This plays a central role in a new
result: that Pinsker factors of algebraic actions are algebraic and therefore many algebraic actions, such as
principal algebraic actions satisfying some mild conditions, have completely positive entropy. This is a great
achievement; only a year ago such a result seemed completely out of reach. Algebraic actions form a large
and diverse class of actions that are easily defined for any countable group. They have been the subject of
intense research for decades. However, it is only with the advent of the new entropy theory that researchers
have been able to explore these actions in the case that the acting group is non-amenable.

Peter Burton talked about a new result connecting uniform mixing and completely positive entropy (CPE).
The context is this: in [11] Rudolph and Weiss proved that CPE and uniform mixing are equivalent for actions
of amenable groups. The proof introduced orbit-equivalence techiniques into entropy theory. The obvious
extension of this result to non-amenable group fails already for Markov chains over the free group. Peter
and Tim Austin developed a new notion of uniform mixing adapted to the sofic set-up called uniform model
mixing and proven that this implies CPE. The converse remains an open problem.

Another new development is the study of the geometry of the space of microstates. Tim Austin used
geometric ideas to introduce a variation on sofic entropy which is additive under direct products unlike sofic
entropy. The reason this is an important result is that (a) additivity under direct products is fundamental,
especially to the study of algebraic actions and (b) the proof pinpoints the mechanism underlying how addi-
tivity can fail. Indeed, failure of additivity is marked by a quasi-factor arising from the sofic approximation.
This quasi-factor might be the key to understanding how sofic entropy can depend on the choice of sofic
approximation even assuming non-negativity.

The geometry of the space of microstates also plays a central role in a new example presented by Lewis
Bowen. The example is about the Weak Pinsker conjecture. In the early days of entropy theory, Pinsker con-
jectured that every ergodic automorphism could be decomposed as a product of a zero entropy system with
a Bernoulli shift. This would be the simplest explanation for the phenomena of positive entropy. However,
Ornstein proved by explicit counterexample that this false (thereby constructing the first CPE non-Bernoulli
transformation). Pinsker’s conjecture was subsequently weakened to: for every ε > 0 every ergodic trans-
formation can be written as a direct product of a Bernoulli shift with an transformation of entropy < ε. This
conjecture is still open. However, Bowen showed by explicit counterexample that its generalization to free
group is false. This is because there are action of the free group with the property that the microstate space
splits into exponentially many clusters, each of exponentially small size relative to the total. This is an appli-
cation of more general work on Gibbs measures on trees; a field of study that actively studied by probabilists
but has not been approached from an ergodic theory point of view in much detail.

Many of the open problems discussed in the workshop were of the form “prove that this action is or is
not a factor of a Bernoulli shift”. These kinds of problems are difficult precisely because of the lack of a
well-developed counterpart to Ornstein Theory in the non-amenable setting. We discussed partial progress
towards developing such a theory and answering some of the specific questions through ad hoc methods.

3 Conclusions
The meetings were overall very productive. On most days we had two 3-hour long talks. This meant that
participants had the time to ask detailed questions and have frequent discussions. It was helpful that the
participants have varied backgrounds so that problems were attacked from multiple viewpoints. In the end, I
think we all learned a great deal from each other and deepened our awareness of the main challenges lying
ahead.

References
[1] L. Bowen, Measure conjugacy invariants for actions of countable sofic groups. J. Amer. Math. Soc. 23

(2010), 217–245.



4

[2] L. Bowen, Entropy for expansive algebraic actions of residually finite groups. Ergodic Theory Dynam.
Systems, 31(3):703–718, 2011.

[3] L. Bowen, Every countably infinite group is almost Ornstein. Contemp. Mathematics, 567, (2012),
67–78.

[4] L. Bowen and H. Li, Harmonic models and spanning forests of residually finite groups. J. Funct. Anal.,
263(7):1769–1808, 2012.

[5] N.P. Chung, Topological pressure and the variational principle for actions of sofic groups. Ergodic
Theory Dynam. Systems, 33(5):1363–1390, 2013.

[6] B. Hayes, Fuglede-Kadison Determinants and Sofic Entropy. Geometric and Functional Analysis,
26(2), 520–606, 2016.

[7] D. Kerr and H. Li, Entropy and the variational principle for actions of sofic groups. Invent. Math. 186
(2011), 501–558.

[8] A. N. Kolmogorov, A new metric invariant of transient dynamical systems and automorphisms in
Lebesgue spaces. Dokl. Akad. Nauk SSSR (N.S.) 119 (1958) 861–864.

[9] D. Ornstein, Bernoulli shifts with the same entropy are isomorphic. Adv. in Math. 4 (1970), 337–352.

[10] D. Ornstein and B. Weiss, Entropy and isomorphism theorems for actions of amenable groups. J.
Analyse Math. 48 (1987), 1–141.

[11] D. J. Rudolph and B. Weiss, Entropy and mixing for amenable group actions. Ann. of Math. (2) 151
(2000), no. 3, 1119–1150.

[12] B. Seward, Kriegers finite generator theorem for ergodic actions of countable groups I.
arXiv:1405.3604, 2014.

[13] B. Seward, Kriegers finite generator theorem for ergodic actions of countable groups II.
arXiv:1501.03367v2, 2015.

[14] B. Seward, Positive entropy actions of countable groups factor onto Bernoulli shifts. preprint, version
30, 2015.

[15] B. Seward and R. D. Tucker-Drob, Borel structurability on the 2-shift of a countable group. Ann. Pure
Appl. Logic, 167(1):1–21, 2016.


