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The aim of this workshop was to bring together experts and students from pure and applied mathematics,
computer science, and engineering, who are working on related problems in the areas of matroid theory,
combinatorial optimization, coding theory, secret sharing, network coding, and information inequalities. The
goal was to foster exchange of mathematical ideas and tools that can help tackle some of the open problems
of central importance in coding theory, secret sharing, andnetwork coding, and at the same time, to get pure
mathematicians and computer scientists to be interested inthe kind of problems that arise in these applied
fields.

1 Introduction

Matroids are structures that abstract certain fundamentalproperties of dependence common to graphs and
vector spaces. The theory of matroids has its origins in graph theory and linear algebra, and its most successful
applications in the past have been in the areas of combinatorial optimization and network theory. Recently,
however, there has been a flurry of new applications of this theory in the fields of information and coding
theory.

It is only natural to expect matroid theory to have an influence on the theory of error-correcting codes, as
matrices over finite fields are objects of fundamental importance in both these areas of mathematics. Indeed,
as far back as 1976, Greene [7] (re-)derived the MacWilliamsidentities — which relate the Hamming weight
enumerators of a linear code and its dual — as special cases ofan identity for the Tutte polynomial of a
matroid. However, aside from such use of tools from matroid theory to re-derive results in coding theory that
had already been proved by other means, each field has had surprisingly little impact on the other, until very
recently.

Matroid-theoretic methods are now starting to play an important role in the understanding of decoding
algorithms for error-correcting codes. In a parallel and largely unrelated development, ideas from matroid
theory are also finding other novel applications within the broader realm of information theory. Specifically,
they are being applied to explore the fundamental limits of secret sharing schemes and network coding, and
also to gain an understanding of information inequalities.We outline some of these recent developments next.

2 Background and Recent Developments

Our workshop covered four major areas within the realm of information theory — coding theory, secret
sharing, network coding, and information inequalities — which have seen a recent influx of ideas from
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matroid theory and combinatorial optimization. We briefly discuss the applications of such ideas in each of
these areas in turn.

2.1 Coding Theory

The serious study of (channel) coding theory started with Shannon’s monumental 1948 paper [9]. Shannon
stated the result that reliable communication is possible at rates up to channel capacity, meaning that for
any desired symbol or block error probability there exists achannel code and a decoding algorithm that can
achieve this symbol or block error probability as long as therate of the channel code is smaller than the
channel capacity. On the other hand, Shannon showed that if the rate is larger than capacity, the symbol and
the block error probability must be bounded away from zero.

Unfortunately, the proof of the above achievability resultis nonconstructive, meaning that it showsonly
the existenceof such channel codes and decoding algorithms. Therefore, since the appearance of Shannon’s
theorem, the quest has been on to find codes with practical encoding and decoding algorithms that fulfill
Shannon’s promise.

The codes and decoding schemes that people have come up with can broadly be classified into two classes:
“traditional schemes” and “modern schemes.” In “traditional schemes,” codes were proposed that have some
desirable properties like large minimum Hamming distance (a typical example of such codes being the Reed-
Solomon codes). However, given a code, it was usually unclear how to decode it efficiently. Often it took
quite some time until such a decoding algorithm was found (e.g., the Berlekamp-Massey decoding algorithm
for Reed-Solomon codes), if at all. In “modern schemes,” thesituation is reversed: given an iterative decoding
algorithm like the sum-product algorithm, the question is what codes work well together with such an iterative
decoding algorithm.

“Modern schemes” took off with the seminal paper by Berrou, Glavieu, and Thitimajshima in 1993 on
turbo coding schemes [2]. Actually, codes and decoding algorithm in the spirit of “modern schemes” were
already described in the early 1960s by Gallager in his Ph.D.thesis [5]. However, these schemes were, besides
the work by Zyablov, Pinkser, and Tanner in the 1970s and 1980s, largely forgotten until the mid-1990s. Only
then people started to appreciate Gallager’s revolutionary approach to coding theory.

Gallager proposed to define codes in terms of graphs. Such graphs are now known as Tanner graphs: they
are bipartite graphs where one class of vertices corresponds to codeword symbols and where the other class
of vertices corresponds to parity-checks that are imposed on the adjacent codeword symbols. Decoding is
then based on repeatedly sending messages with estimates about the value of the codeword symbols along
edges, and to locally process these messages at vertices in order to produce new messages that are again
sent along the edges. Especially for sparse Tanner graphs the resulting decoding algorithms have very low
implementation complexity.

In the last fifteen years, Tanner graphs and iterative decoding algorithms have been generalized to fac-
tor graphs and algorithms operating on them, and many connections to techniques in statistical mechanics,
graphical models, artificial intelligence, and combinatorial optimization were uncovered. The workshop talk
by Kashyap (see Section 3.1) surveyed the connection between complexity measures for graphical models
for a code and the treewidth (and other width parameters) of the associated matroid. On the other hand, the
workshop talks by Wainwright and Vontobel (see Section 3.1)emphasized the connections between message-
passing iterative decoding of codes and certain techniquesfrom combinatorial optimization. In particular,
they discussed the linear programming decoder by Feldman, Wainwright, and Karger [4], which is a low-
complexity relaxation of an integer linear programming formulation of the maximum likelihood decoder.
This linear programming decoder (and its variations) has paved the way for the use of tools from combinato-
rial optimization and matroids in the design and analysis ofdecoding algorithms.

2.2 Secret Sharing

The second major application of matroid-theoretic ideas that we mention here is with respect to secret-sharing
schemes. A secret-sharing scheme is a method to distribute shares of a secret value among a certain number
of participants such thatqualifiedsubsets of participants (e.g., subsets of a certain size) can recover the secret
from their joint shares, butunqualifiedsubsets of participants can obtain no information whatsoever about
the secret by pooling together their shares. Secret-sharing schemes were originally motivated by the problem
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of secure storage of cryptographic keys, but have since found numerous other applications in cryptography
and distributed computing.

It is not difficult to show that in a secret-sharing scheme, the size of each of the shares cannot be smaller
than the size (information content) of the secret value. Anideal secret-sharing scheme is one in which all
shares have the same size as the secret value. More generally, theinformation rateof a secret-sharing scheme
is the ratio of the size of the secret to the maximum share size.

In a secret-sharing scheme, the collection of qualified subsets of participants is called theaccess structure
of the scheme. It is known that for any monotone increasing collection, Γ, of subsets of a finite set, one
can define a secret-sharing scheme with access structureΓ. The information rateρ(Γ) is defined to be the
supremum of information rates among all secret-sharing schemes having access structureΓ. Γ is said to be
an ideal access structureif it admits an ideal secret-sharing scheme.

Brickell and Davenport [3] began a line of work relating ideal secret-sharing schemes to matroids. They
showed that any ideal access structure is induced by a matroid in a very specific sense. However, it is also
known that not every matroid gives rise to an ideal access structure; for example, the access structures induced
by the V́amos matroid are not ideal. Characterizing the matroids that give rise to ideal access structures has
remained an open problem.

There has been some very recent work on computing the information rates of non-ideal access structures
using polymatroid techniques, linear programming, and non-Shannon information inequalities. For example,
it has been shown that for any access structureΓ induced by the V́amos matroid,ρ(Γ) ≤ 19/21, which
shows that such access structures are far from being ideal. This, and other related results, were surveyed in
the workshop talks by Padró and Beimel (see Section 3.3).

Secret-sharing schemes have also been received some recentattention in the quantum domain, a topic
covered in the workshop talk by Sarvepalli (see Section 3.3).

2.3 Network Coding

Another novel application of matroid theory and combinatorial optimization within the realm of information
theory is in the area of network coding [10]. Network coding is an elegant technique introduced at the turn
of the millennium to improve network throughput and performance. Since then, it has attracted significant
interest from diverse scientific communities of engineers,computer scientists, and mathematicians in both
academia and industry. This workshop explored connectionsbetween network coding and combinatorial
optimization, matroids, and non-Shannon inequalities.

The area started when the simple but far reaching observation was made that in communication networks,
(unlike in their transportation or fluid counterparts), data streams that are separately produced and consumed
do not necessarily need to be kept disjoint while they are transported throughout the network [1]. (At the
network layer, for example, nodes can perform binary addition of independent bit-streams.) Schemes that
employ processing at network nodes of incoming independentdata (as opposed to only forwarding) are re-
ferred to as network coding. Naturally, the throughput achievable by network coding is in general higher
than what can be achieved by schemes that allow only forwarding. Certain standard problems in combinato-
rial optimization have been crucial in understanding the potential benefits of network coding. Charikar and
Agraval as well as Chekuri, Fragouli, and Soljanin characterized the benefits for certain traffic scenarios and
throughput measures, as discussed by Chekuri in his workshop talk (see Section 3.4).

Mathematically, data streams carried by network edges are treated as sequences of symbols which are
elements over some finite field. Network nodes map the incoming multiple data streams into a single stream in
a possibly different way for each of its outgoing edges. The goal is to choose these maps in way that will allow
the intended receivers to recover the original information. In the simplest case of network multi-cast (one in
which the source aims at communicating the same informationto a set of receivers), it is sufficient that the
nodes forward linear combinations of the incoming symbols.The coefficients in these linear combinations can
even be chosen uniformly at random from a sufficiently large finite field. In more complex traffic scenarios,
such linear network coding is not sufficient, and matroids have been instrumental in demonstrating this fact. In
a series of recent papers, Dougherty, Freiling, and Zeger carried out an exploration of the fundamental limits
of network coding. They used matroids to systematically construct various networks that demonstrated, for
example, the insufficiency of linear network coding and the inachievability of network coding capacity. A
survey of these results was given by Sprintson in his workshop talk (see Section 3.4).
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Finally, network coding problems give certain operationalmeaning to non-Shannon information inequali-
ties. Raymond Yeung, one of the inventors/pioneers in both areas believes that implications of non-Shannon-
type inequalities in information theory will be finally understood in the context of network coding. He
declared in his talk that “Every constraint on the entropy function is useful in some multi-source network
coding problems!” These and other applications of non-Shannon information inequalities, as well as the
fundamentals, were addressed in a separate session of the workshop.

2.4 Information inequalities

As mentioned above, non-Shannon information inequalitiesplay a key role in computing the information rates
of non-ideal secret-sharing access structures. Furthermore, the results of Doughertyet al. in the context of
network coding also make heavy use of these inequalities. Webriefly give some background on information
inequalities here. The workshop talks of Yeung, Matúš, and Dougherty (see Section 3.5) contain a more
comprehensive survey of this topic.

Constraints on the entropy function are sometimes referredto as the laws of information theory. It has
been known for a long time that the entropy function must satisfy the polymatroid inequalities (non-negativity,
monotonicity, and submodularity), and indeed, that these are equivalent to the non-negativity of the Shan-
non information measures. Inequalities that are implied bythe polymatroid inequalities are referred to as
Shannon-type inequalities. Until recently, Shannon-type inequalities were the only known linear constraints
on the entropy function.

A non-Shannon-type inequalityis a constraint on the entropy function which is not implied by the poly-
matroid inequalities. In the late 1990s, the discovery of a few such inequalities, starting with the Zhang-Yeung
inequality [11], revealed that Shannon-type inequalitiesalone do not constitute a complete set of constraints
on the entropy function.

Linear information inequalities correspond to the supporting hyperplanes of the closed convex coneΓ
∗

N

obtained by taking the closure of the set of entropy vectors defined byN random variables. By virtue of the
fact that entropy vectors satisfy the polymatroid inequalities, the coneΓ

∗

N
is a subset of the closed convex

coneΓN defined by the polymatroid inequalities. It is a fact thatΓ
∗

N
= ΓN for N ≤ 3, but Γ

∗

N
( ΓN for

N ≥ 4. In fact, Mat́uš has shown that forN ≥ 4, Γ
∗

N
is not even polyhedral,i.e., it cannot be characterized by

finitely many linear inequalities. This means that there areinfinitely many distinct non-Shannon inequalities
satisfied by entropy vectors defined byN ≥ 4 random variables. Matúš’s study of the conesΓ

∗

N
also involves

the use of matroid methods in a non-trivial way.

3 Presentation Highlights

We provide here brief descriptions of the talks presented atthe workshop. Slides from most of the talks are
available online athttp://robson.birs.ca/∼09w5103/.

James Oxleykicked off the workshop with a tutorial on matroid theory. His talk introduced the most com-
mon ways to define matroids and then presented some fundamental examples, some basic constructions, and
some of the main theorems of the subject. A more thorough introduction to matroids is contained in the survey
paper “What is a matroid?” available athttp://www.math.lsu.edu/∼oxley/survey4.pdf.

3.1 Coding theory

Oxley’s tutorial was followed by a day-long session, consisting of four talks, focusing on the use of matroid
theory and combinatorial optimization in coding theory.

Navin Kashyap gave an overview of the applications of matroid methods to the study of graphical
models for codes, and to the analysis of decoding methods such as the sum-product algorithm and linear-
programming decoding. Among the topics covered were the useof code/matroid decomposition techniques,
and various “width” parameters (treewidth, branchwidth) associated with graphs and matroids, in the analysis
of graphical models and decoding algorithms for linear codes.

Martin Wainwright ’s talk began with an overview of the various hierarchies of linear programming (LP)
relaxations, as well as related conic programming relaxations (e.g., SOCP and SDP), that can be applied to
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a given integer program. It then went to cover their on-goingapplications in coding theory and other areas
of applied mathematics, and the connection between such hierarchies and the hypergraph defined by the
underlying integer program. He also described some links between these relaxations, and various types of
“message-passing” algorithms that are widely used in communication theory as well as many other domains
(e.g., statistical physics, computer vision, machine learning, computational biology).

Pascal Vontobelfocused on pseudo-codewords, i.e., certain non-zero fractional vectors that play an im-
portant role in the performance characterization of iterative message-passing decoders as well as linear pro-
gramming decoding. This is in contrast to classical coding theory where decoding algorithms are mostly
characterized by non-zero codewords. The talk gave an overview of results about pseudo-codewords and
their influence on message-passing iterative decoding and linear programming decoding. The topics that
were covered included: pseudo-codewords for cycle codes and their relationship to the graph zeta function;
pseudo-codewords for finite-geometry-based codes; pseudo-codewords obtained by canonical completion,
and how they upper bound the performance of linear programming decoding; the influence of redundant rows
in the parity-check matrix on the set of pseudo-codewords; the relationship of pseudo-codewords to other
concepts like stopping sets, near-codewords, trapping sets, and absorbing sets.

The final talk in the coding theory session was given byThomas Britz, who presented a brief overview on
what is presently known about the support and weight connections between coding and matroid theory, and
gave applications of these connections to coding and graph theory. The newest results included an interesting
variation of the Tutte polynomial as well as an interesting but ever-evolving dual identity.

3.2 The Matroid Minors Project

The morning of the second day of the workshop was devoted to the Matroid Minors Project of Jim Geelen,
Bert Gerards, and Geoff Whittle. This project aims to extend the results and techniques of the Graph Minors
Project of Robertson and Seymour (seee.g.[8]) to matrices and matroids. One of the main goals of this theory
is to describe precisely the structure of minor-closed classes of matroids representable over finite fields. This
requires a peculiar synthesis of graphs, topology, connectivity, and algebra. In addition to proving several
long-standing conjectures in the area, the structure theory is expected to help find efficient algorithms for a
general class of problems on matrices and graphs [6].

Bert Gerards presented an overview of the structure theorem (whose proofhas just recently been com-
pleted by Geelen, Gerards and Whittle) for minor-closed classes of binary matroids. This theorem is a major
milestone of the Matroid Minors Project. One important implication of this theorem is that every minor-
closed class of binary matroids is characterized by a finite set of excluded minors.

Jim Geelenfollowed Gerards’ talk by surveying some of the applications of the binary matroids structure
theorem. It follows from the theorem that there exists anO(n7) algorithm for testing ann-element binary
matroid for the presence of a fixed minor. An application pertinent to coding theory is the interesting result
that proper minor-closed families of binary linear codes cannot be asymptotically good. Geelen further
presented some open problems concerning minor-closed classes of binary matroids.

3.3 Secret sharing

The theme for the afternoon session on the second day was secret-sharing schemes. In a secret-sharing
scheme, a secret value is distributed into shares among a setof participants in such a way that the qualified
subsets of participants can recover the secret value, whilethe non-qualified ones do not obtain any information
about it. In this situation, the size of every share is at least the size of the secret. If all shares have the same
size as the secret, which is the best possible situation, thescheme is said to be ideal. Only a few access
structures admit an ideal secret sharing scheme. In general, one is interested in finding schemes with optimal
share length for every given access structure. This is a difficult problem that has attracted the attention of
many researchers.

Carles Padró discussed several methods to find upper and lower bounds on the share length. He pre-
sented the most important results and techniques that have been obtained about this open problem from
combinatorics, specially from the use of matroids and polymatroids. He also discussed some combinatorial
techniques to construct efficient linear secret sharing schemes.
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Amos Beimel, in a talk based on joint works with Noam Livne, Carles Padró, and Ilan Orlov, presented
the use of non-Shannon information inequalities for proving lower bounds on the size of shares in secret-
sharing schemes. He described two results:

1. A proof, using non-Shannon information inequalities, oflower bounds on the size of the
shares in every secret-sharing scheme realizing an access structure induced by the V́amos
matroid. This is the first result showing the existence of an access structure induced by a
matroid which is not nearly ideal.

2. A proof of the fact that all the information inequalities known to date cannot yield a lower
bound ofΩ(n) on the share size.

Pradeep Kiran Sarvepalli talked about the applications of matroids quantum secret sharing, which deals
with the problem of distribution of a quantum state amongn players so that only authorized players can
reconstruct the secret. He presented the first steps toward amatroidal characterization of quantum secret-
sharing schemes. This characterization allows one to construct efficient schemes from self-dual matroids
that are coordinatizable over a finite field. In the process, he also provided a connection between a class of
quantum stabilizer codes and secret-sharing schemes.

Sarvepalli also briefly surveyed the use of matroids in quantum computation and quantum cryptography.
He reviewed a recent work by Shepherd and Bremner which claims that even restricted models of quan-
tum computation, such as those consisting of abelian gates,give rise to probability distributions that cannot
be sampled efficiently by a classical computer. He sketched their arguments that use the theory of binary
matroids to substantiate their claim.

Sarvepalli also considered an open problem related to the classification of a class of quantum states called
the stabilizer states. A restricted version is to classify the equivalence classes of a subclass of stabilizer states
(namely, the CSS states) under the action of the local unitary group and a subgroup of the local unitary group,
called the local Clifford group. Specifically, the problem is to find necessary and sufficient conditions for
when a CSS stabilizer state has distinct equivalence classes. Sarvepalli showed that CSS stabilizer states
whose equivalence classes are distinct must arise from binary matroids which are neither graphic nor co-
graphic. In doing so, he arrived at a class of minor-closed matroids whose excluded minors have not yet been
characterized.

3.4 Network Coding

Network coding was the theme for the third day of the workshop, when a tutorial and two survey talks
were given, followed by a presentation of an open problem. Network coding was also discussed on the two
following days in connection with non-Shannon inequalities, some recent results in wireless networks, and
general hardness to find a network coding scheme that achieves, or approximately achieves, capacity.

Emina Soljanin gave a tutorial talk on coding for network multicast (simultaneously transmitting the
same information to multiple receivers in the network). Sheexplained sufficient and necessary conditions
that the network has to satisfy to be able to support the multicast at a certain rate. For the case of unicast
(when only one receiver at the time uses the network), such conditions have been known for the past fifty
years, and, clearly, we must require that they hold for each receiver participating in the multicast. The
fascinating fact that the main network coding theorem brings is that the conditions necessary and sufficient
for unicast at a certain rate to each receiver are also necessary and sufficient for multicast at the same rate,
provided the intermediate network nodes are allowed to combine and process different information streams.

Chandra Chekuri surveyed results that seek to understand the potential benefit that network coding
offers over more traditional and simpler transmission schemes such as store and forward routing. This was
examined by asking the following question: what is the maximum ratio (over all networks) between the
rate achievable via network coding and via routing? He restricted his attention to the wireline setting. This
question has been answered to a large extent in the multicastsetting in both undirected and directed graphs.
In the multiple unicast setting, the benefit is known to be very large in some directed graph instances while the
case of undirected graphs is wide open. Combinatorial optimization plays an important role in understanding
this question. Steiner-tree packings and integrality gapsof linear programming relaxations for Steiner trees
are the key tools in the multicast setting. Multicommodity flow-cut gaps play a role in the multiple unicast
setting.
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In his talk, Alex Sprintson gave an extensive survey of connections between matroid theory and net-
work coding. He presented two ways of constructing new classes of coding networks from matroids. These
constructions are instrumental for establishing several important properties of coding networks, such as in-
sufficiency of scalar and vector linear network coding and inachievability of network coding capacity. He
also explained the recently introduced problem of index coding, and pointed out its role as an intermediate
step from a given matroid to a network whose dependency relations satisfy the given matroidal constraints.
He presented recent results in this research area and outlined directions for future work.

The final talk of the session was given byRandall Dougherty, who outlined an approach that, if two
proof-holes in it can be filled or worked around, will yield a proof that the solvability problem for network
coding is undecidable. The idea was to try to represent groups satisfying or not satisfying identities as
networks, in order to reduce Rhodes’ problem on finite groupsto the network coding solvability problem.

3.5 Information inequalities

The penultimate day of the workshop was the last “themed” day, the theme this time being information
inequalities. Information inequalities are inequalitiesthat must be satisfied by entropies of random variables.

Raymond Yeung’s tutorial talk gave the necessary background on information inequalities. It is well-
known that the entropy function must satisfy the polymatroidal axioms. All information inequalities implied
by the polymatroidal axioms are called Shannon-type inequalities. In 1998, Zhang and Yeung discovered
a non-Shannon-type inequality, an information inequalitythat is independent of the polymatroidal axioms.
Since then, many more such inequalities have been found, andconnections between the entropy function
and a number of fields in information science, mathematics, and physics have been established. Yeung gave
several examples of such connections to the fields of probability theory, network coding, combinatorics,
group theory, Kolmogorov complexity, matrix theory, and quantum information theory.

Frantisek Mat úš considered the problem of characterizing the closed cone,Γ
∗

N
, formed by taking the

closure of the set of entropic points onN random variables. He showed that this cone is not polyhedral,
meaning that it cannot be characterized by finitely many linear inequalities, if and only ifN ≥ 4. He also
discussed the problem of determining which matroids lie within Γ

∗

N
, and mentioned that it remains an open

problem to identify the excluded minors for this class of “almost entropic” matroids.
The third talk of this session was given byAndreas Winter, and was mainly based on a joint paper

with N. Linden on quantum (van Neumann) entropy inequalities. Pippenger has initiated the generalization
of the programme to find all the “laws of information theory” to quantum entropy. The standard quantum
information inequalities derive from strong subadditivity (SSA), which corresponds to the third polymatroidal
axiom. SSA of the von Neumann entropy, proved in 1973 by Lieb and Ruskai (who was present at the
workshop), is a cornerstone of quantum information theory.All other known inequalities for entropies of
quantum systems may be derived from it. In his talk, Winter proved a new inequality for the von Neumann
entropy which is independent of strong subadditivity: it isan inequality which is true for any four party
quantum state, provided that it satisfies three linear relations (constraints) on the entropies of certain reduced
states. He also discussed the possibility of finding an unconstrained inequality (work with N. Linden and
B. Ibinson).

Randall Dougherty gave his second talk of the workshop in this session, this talk being on non-Shannon-
type information inequalities and linear rank inequalities. He first gave an alternate proof of Zhang and Ye-
ung’s non-Shannon-type inequality in four random variables. Zhang and Yeung’s original proof used the
technique of adding two auxiliary variables with special properties and then applying Shannon-type inequali-
ties to the enlarged list. Dougherty presented a derivationof this inequality by adding just one auxiliary vari-
able. He then used the same basic technique of adding auxiliary variables to give many other non-Shannon
inequalities in four variables (which, surprisingly, are all of the same general form). He also derived rules for
generating new non-Shannon inequalities from old ones, which can be applied iteratively to generate infinite
families of inequalities such as the one used by Matúš to show that the coneΓ

∗

4
is not polyhedral.

Dougherty further showed how a variant of this approach (using a different sort of auxiliary variable)
allowed one to derive inequalities which always hold for ranks of linear subspaces, but need not hold for
entropies of random variables. It is known that the Ingletoninequality and the Shannon inequalities give a
complete list of the rank inequalities for four variables (subspaces). Dougherty derived a list of 24 additional
inequalities in five variables which, together with the Shannon inequalities and instances of the Ingleton
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inequality, are complete for rank inequalities on five subspaces. He also gave general many-variable families
of rank inequalities.

3.6 Short talk sessions

The remaining sessions of the workshop consisted of short talks on several different topics related to the
overall theme of the workshop.

Alex Grant presented his work with Terence Chan on quasi-uniform codesand their applications. Quasi-
uniform random variables have probability distributions that are uniform over their support. They are of
fundamental interest because a linear information inequality is valid if and only if it is satisfied by all quasi-
uniform random variables. In his talk, Grant investigated properties of codes induced by quasi-uniform
random variables. He proved that quasi-uniform codes (which include linear codes as a special case) are
distance-invariant and that Greene’s Theorem holds in the setting of quasi-uniform codes. He also showed
that almost affine codes are a special case of quasi-uniform codes in the sense that quasi-uniform codes are
induced by entropic polymatroids while almost affine codes are induced by entropic matroids. Applications
of quasi-uniform codes in error correction and secret sharing were also given.

Serap Savaripresented a combinatorial study of linear deterministic relay networks. This network model
has gained popularity in the last few years as a means of studying the flow of information over wireless com-
munication networks. This model considers layered directed graphs, and a node in the graph receives a linear
transformation of the signals transmitted to it by neighbouring nodes. There is recent work extending the cel-
ebrated max-flow/min-cut theorem of Ford and Fulkerson to this model. This result was first established by a
randomized transmission scheme over large blocks of transmitted signals. In joint work with S. Tabatabaei-
Yazdi, Savari demonstrated the same result with a simple, deterministic, polynomial-time algorithm which
takes as input a single transmitted signal instead of a long block of signals. Their capacity-achieving transmis-
sion scheme requires the extension of a one-dimensional Rado-Hall transversal theorem on the independent
subsets of columns of a column-partitioned matrix into a two-dimensional variation for block matrices. The
rank function arising from the study of cuts in their model has an important difference from the rank functions
considered in the literature on matroids in that it is submodular but not monotone.

Eimear Byrne presented upper bounds for a particular model of error-correcting codes for coherent
network coding. Versions of the Singleton, sphere-packing, and Gilbert-Varshamov bounds for this model
were previously given by Yang and Yeung. In her talk, Byrne showed how to extend the classical Plotkin and
Elias bounds for the same model.

The final session of the workshop began with a talk byDillon Mayhew on the excluded minors for
real-representable matroids. Rota conjectured that ifF is a finite field, then there is only a finite number
of minor-minimal matroids that are notF -representable. Such matroids are called excluded minors for F -
representability. Rota’s conjecture contrasts with the long-established fact that there are infinitely many
excluded minors for representability over the real numbers. Geelen (2008) conjectured a much stronger fact:
if M is any real-representable matroid, then there is an excluded minor,N , for real-representability, such that
N containsM as a minor. Mayhew presented a proof of Geelen’s conjecture (joint work with Mike Newman
and Geoff Whittle).

Michael Langberg discussed the algorithmic complexity of network coding, focusing on how ”hard” it
is to find a network coding scheme that achieves, or approximately achieves, capacity. He gave proofs of
the fact that deciding whether or not a given instance of a network coding problem (acyclic network plus
communication requirements) has scalar linear capacity of1 is NP-complete. He further showed that it is
“hard” (in the sense of being reducible to an open problem in graph colouring) to find a scalar linear code
that enables communication with any constant factor of capacity. The same hardness result extends to the
problem of finding a vector linear code of a fixed dimension.

Olgica Milenkovic gave a talk which approached the problem of compressive sensing via matroid the-
ory. Compressive sensing is a new sampling technique for sparse signals that has the potential to significantly
reduce the complexity of many data acquisition techniques.Most compressive sensing reconstruction tech-
niques are still prohibitively time-consuming, narrowingthe scope of practical applications of this method.
Milenkovic, in joint work with Wei Dai and Vin Pham Hoa, proposed a new method for compressive sens-
ing signal reconstruction of logarithmic complexity that combines iterative decoding methods with greedy
subspace pursuit algorithms. The performance of the methoddepends on certain characteristics of support
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weight enumerators of the codes used for constructing the sensing matrix, which can be described via matroid
theory.

The final talk of the workshop was given byAlexander Barg on the subject of linear codes in the ordered
Hamming space. As is well known, the weight distribution of MDS codes in the Hamming metric can be
recovered easily from the rank function of a uniform matroid. No such association has been established for
the ordered Hamming space (the Niederreiter-Rosenbloom-Tsfasman space), although the weight distribution
of MDS codes is also easily found. The question becomes more challenging when one considers codes with
distance even one less than the MDS distance. Barg presentedhis work with Punarbasu Purkayastha which
computes such weight distributions for an arbitrary poset metric and characterizes distributions of points in
the unit cube that arise from near-MDS codes in the ordered metric.

4 Outcome of the Meeting

The workshop achieved its stated goal of encouraging interactions between researchers from several different
disciplines, for whom there is currently no other forum (conference or workshop) that could serve as a natural
meeting point. As a result, the workshop was extremely well received by all the participants, making it an
unqualified success. Here we list some of the feedback that wereceived from the participants.

Thanks for organizing a beautiful workshop. I enjoyed my time during the workshop days no less than a
fantastic weekend of hikes. —Alexander Barg (University of Maryland, College Park)

Once again, many thanks for the invitation to Banff – it was a very enlightening workshop.
— Eimear Byrne (University College Dublin)

It was very nice to be in Banff, thank you once again for the invitation.
— František Mat́uš (Institute of Information Theory and Automation Prague)

Thanks for your role in the workshop, it was very educational.
— Dillon Mayhew (Victoria University of Wellington)

Thanks a lot for the invitation to Banff – was a great workshop! Just continue organizing more of these.
— Olgica Milenkovic (University of Illinois, Urbana-Champaign)

Thanks again for the great workshop! —Michael Langberg (The Open University of Israel)

Thanks very much for putting together such an interesting workshop. I have enjoyed it very much indeed and
am very glad I was invited to speak. —James Oxley (Louisiana State University)

Thanks for organizing an interesting and stimulating workshop. I also want to thank you for the opportunity
to present at the workshop. I personally benefited a lot from the workshop especially in the sense of gaining
a big picture of the associations between various fields. I was glad to have had some useful discussions with
some of the workshop participants. —Pradeep Kiran Sarvepalli (University of British Columbia)

Thanks again for all of your work in organizing the workshop. — Serap Savari (Texas A&M University)

Thank you so much for letting me participate in this workshop. I learned a lot and enjoyed it very much.
— Beth Ruskai (Tufts University)

Best workshop that I’ve attended for quite a while. —Alex Vardy (University of California, San Diego)

Thanks again for organizing the workshop. —Martin Wainwright (University of California, Berkeley)

It was indeed a very nice meeting, I learnt a lot of new maths, and enjoyed myself very much!
— Andreas Winter (University of Bristol)
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