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1 Overview of the Field

The purpose of this workshop was to address a question concerning the computation of topological invariants
of hyperk̈ahler quotients. Our approach is based on the successful andwell-developed similar theory for the
case ofsymplecticquotients, so we begin with a brief account of that theory.

Symplectic geometry is the mathematical framework of classical mechanics. A symplectic manifold is
a manifold equipped with asymplectic form, i.e. a non-degenerate closed differential2-form, which is the
geometric data needed to translate a Hamiltonian function on the system to the dynamics of the system.
Examples of symplectic manifolds are any2-dimensional surface equipped with its area form, cotangent
bundlesT ∗M , toric varieties, and flag manifolds. A symplectic manifoldis Kähler if there is also a complex
structure compatible with the symplectic form; when there are threeKähler structures onM , with associated
compatible complex structures interacting like the quaternions, thenM is hyperk̈ahler. Many hyperk̈ahler
manifolds appear naturally in physics and representation theory. Examples from physics areT ∗P1 with
the Eguchi-Hansen metric, K3 surfaces, and moduli spaces ofHiggs bundles over a Riemann surface [7];
examples arising in representation theory are quiver varieties, as studied by Nakajima [14].

In the theory of hyperk̈ahler or symplectic quotients, we are primarily concerned with a situation in which
there is a symmetry of the system, as encoded by the action of acompact Lie groupG. Symplectic manifolds
with an action of a Lie groupG and a corresponding moment map, which is a suitably compatible collection
of Hamiltonian functions, are called HamiltonianG-spaces. For a hyperkähler manifoldM , we require that
there be a moment mapµi : M → g∗, i = 1, 2, 3, for eachof the three K̈ahler structures. Given a symplectic
HamiltonianG-space, the symplectic quotient is defined asM//G := µ−1(0)/G. The reduced space inherits
a symplectic structure fromM . In the hyperk̈ahler case, we take the hyperkähler quotientM////G to be the
quotient byG of the intersection of the zero-level sets of all three moment maps; this is again hyperkähler.

Hyperk̈ahler quotients, and hyperkähler geometry in general, has recently attracted much attention due
to its relationship between many other fields of mathematics. The topological invariants of hyperkähler
manifolds, such as rational cohomology or integralK-theory, are often quite interesting. For example, the
K-theory of quiver varieties give geometric realizations ofrepresentations of certain algebras associated to
quivers. There are also close connections between the cohomology of hyperk̈ahler analogues of toric varieties
and the combinatorial theory of hyperplane arrangements.

We now give an overview of our approach towards the computation of the topology (more specifically,
the rational cohomology ring) of hyperkähler quotients. There is a “meta-principle” for computingsuch
invariants of Hamiltonian quotients of various types, which we call here theKirwan method. Let M be a
HamiltonianG-space of some type (symplectic or hyperkähler, andMG the appropriate Hamiltonian quotient
of M by G. Then the Kirwan method consists of the following three steps:
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“The Kirwan method”:

1. “Meta-Theorem” (Kirwan surjectivity): ForM andMG as above, there is a natural ring homomor-
phism

κ : H∗

G(M ; Q) → H∗(MG; Q)

which issurjective. In particular, in order to computeH∗(MG; Q), it suffices to computeH∗

G(M ; Q)
andker(κ).

2. ComputeH∗

G(M ; Q).

3. Computeker(κ).

The point of this method is that one can often compute the lasttwo objects,H∗

G(M ; Q) andker(κ), using
equivarianttechniques which are unavailable on the quotient. In the symplectic case, this “Kirwan method”
has been well-developed; in particular, Step (1) in this case was proven by Kirwan [9], and various explicit
solutions of Steps (2) and (3) can be found e.g. in [8, 17, 3, 4]. Thus, our research program is to develop the
Kirwan method for hyperk̈ahler quotients. The focus of our BIRS workshop was in the proof of Step (1) for
this hyperk̈ahler case.

2 Recent Developments and Open Problems

Kirwan’s proof of Step (1) in the case of symplectic quotients involves showing that the norm-square‖µ‖2

of the symplectic moment mapµ : M → g∗ gives rise to an equivariantly perfect Morse-type stratification
of M , which gives surjectivity since the0-level set ofµ is the absolute minimum of the norm-square.1 We
propose to prove an analogue of Kirwan surjectivity in the setting of finite-dimensional hyperk̈ahler quotients
using Morse-type methods similar to Kirwan’s proof. There are already specific known examples where such
a hyperk̈ahler analogue of Kirwan surjectivity result does hold [10,11]. Moreover, in the specific infinite-
dimensional case of the moduli space of Higgs bundles over a Riemann surface, Daskalopoulos, Weitsman,
and Wilkin have developed several new Morse-theoretic techniques using the norm-square of the moment
map to obtain new Kirwan surjectivity results in rational Borel-equivariant cohomology [2, 18].

In the case of a hyperkähler manifold with the action of a groupG which is Hamiltonian with respect
to each of the three K̈ahler structures (ahyperhamiltoniangroup action), there are three moment mapsµi :
M → g, i = 1, 2, 3 (one for each of the K̈ahler structures).

In an unpublished draft manuscript, Kirwan suggested that one could first use the Morse theory of‖µ2‖
2+

‖µ3‖
2 = ‖µC‖

2 (whereµC = µ2 + iµ3 : M → g ⊗ C) to construct a mapH∗

G(M) → H∗

G(µ−1
C

(0)), and
then use the Morse theory of the function‖µ1‖

2 on the spaceµ−1
1 (0) to construct a mapH∗

G(µ−1
C

(0)) →
H∗

G(µ−1
1 (0) ∩ µ−1

C
(0)). It would then remain to show that both of these maps are surjective. There are two

main technical difficulties in carrying out the second step,firstly that the gradient flow of‖µ1‖
2 on µ−1

C
(0)

might not converge (we need convergence to construct a Morsetheory on this space), and secondly that the
spaceµ−1

C
(0) is singular so we would need to provide some extra analysis for the Morse theory to work. Both

of these difficulties are new to the hyperkähler situation; the first does not arise in the presence of only one
moment map (assuming we take the preimage of a regular value), and the second does not arise since in the
symplectic or K̈ahler case one usually assumes that the moment map is proper,so the level set is compact.

Nevertheless, despite these difficulties, Wilkin has made Kirwan’s second approach work in the infinite-
dimensional case of the moduli spaces of Higgs bundles. In particular, Wilkin (in collaboration with his Ph.D.
supervisor Georgios Daskalopoulos and Jonathan Weitsman)

1. proved the gradient flow converges, despite the non-properness of the moment maps [18],

2. showed there exists a Morse-type theory for the norm-square‖µR‖
2 onµ−1

C
(0) [2], and

3. showed how to use the singularities in the preimageµ−1
C

(0) to obtain the correct formula for the
Poincaŕe polynomial of the moduli space by developing a theory whichcan be described as “Morse
theory in a stratified sense” [2].

1There are technical difficulties arising from the fact that‖µ‖2 is not, in fact, Morse; this is the technical and important contribution
of Kirwan’s proof, which has had wide applications.
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We intend to follow the approach of Daskaopoulous, Weitsman, and Wilkin, and in particular to prove
finite-dimensional analogues of their theorems to obtain a general surjectivity result in the hyperkähler case.

3 Progress made at the BIRS workshop and outcomes of the meeting

3.1 The Morse theory of the norm-square of the moment maps

• As in the outline of Wilkin’s work in Section 2 above, we first need to prove that the gradient flow of
‖µ1‖

2 converges to a critical point. A result of Lojasiewicz in [12] shows that this problem reduces
to proving that the gradient flow remains in a compact set. As afirst test case, we proved explicitly
that for the case ofS1 acting onT ∗Cn, the flow indeed stays in a compact set. We also discussed how
Hitchin proved the gradient flow convergence in [7] for the case of Higgs bundles, where he uses the
fact that the finite-time gradient flow lies on aGC orbit to compute estimates along the flow. We can
describe the case of quiver varieties via a setup similar to Hitchin’s. During the BIRS workshop we
computed simple examples of quivers and came up with specfic conjectures of analytic estimates on
the gradient flow which would suffice to prove its convergencein the case of quiver varieties.

• We also made progress at the BIRS meeting in understanding the singularites arising in the Morse
theory of‖µ1‖

2. Previous to the meeting, we proved the following theorem about the Morse index of
‖µ1‖

2.

Theorem. LetM be a finite-dimensional hyperkähler manifold, and letf(x) = ‖µ1(x)‖2 onM . At a
critical point x ∈ µ−1

C
(0) ⊂ M let N(x) ⊂ TxM denote the negative eigenspace off , and letL(x)

denote the linearisation of the complex moment mapµC. ThenN(x) ⊆ L(x).

This is the first step in relating the Morse index calculations of‖µ1‖
2 on the smooth manifoldM (where

Kirwan’s results show that the index is well-defined) to the Morse index calculations on the singular
spaceµ−1

C
(0). To carry out the approach of [2] in our case, we need to show that the negative directions

at a critical point arecontained withinthe spaceµ−1
C

(0), not just the linearisation of this space. During
the BIRS workshop we computed several concrete examples andshowed that the negative directions are
indeed contained withinµ−1

C
(0) in each case. Using these examples, we formulated explicit strategies

to prove the more general cases.

• We were also able to prove the following theorem regarding the critical sets of the functional‖µ1‖
2 on

the spaceµ−1
C

(0) for quiver varieties.

Theorem. At a critical point of‖µ1‖
2 the quiver splits into sub-quivers. In particular, each connected

component of the set of non-minimal critical points can be expressed as the product of quiver varieties
of simpler quivers.

Hence we can inductively build up the critical sets by studying quivers with simpler structures. This is
analogous to the well-known setting for the Yang-Mills functional, where a holomorphic bundle splits
into sub-bundles at a critical point (see for example [1]). This fact (for Higgs bundles) is used heavily
in [2], which leads us to believe that in the case of quiver varieties many of the methods of [2] for Higgs
bundles will hold.

3.2 Alternative Approaches

During the BIRS workshop, we also discussed possible alternative approaches to our problem. In particular,
we discussed the possibility of first taking the Kähler quotientN := T ∗Cn//αG with respect to the real
moment mapµR, and then further restricting toµ−1

C
(0), asT ∗Cn////(α,0)G = N∩µ−1

C
(0). With this method,

the Kähler quotientN should be a smooth manifold, and we expect that its relation to the hyperk̈ahler quotient
M////G can be obtained using Morse theory for the norm square of the complex moment map‖µC‖

2.
In this case, we hope to use theS1-action rotating the fibers ofT ∗Cn and its corresponding moment

maps on the K̈ahler and hyperk̈ahler quotients in order prove that the cohomology of the Kähler quotient
surjects onto the cohomology of the hyperkähler quotient. Using Morse theory to build both of the quotients
simultaneously, we note that the minimal level sets of theS1-moment maps are the same in both cases. As



4

we pass each higher critical level, we hope to prove that surjectivity still holds, and in order to show this we
have formulated the following conjecture:

Conjecture. For each connected componentC of theS1-fixed set ofT ∗Cn//G, the restriction toµ−1
C

(0)
induces a surjection in cohomology,H∗(C) ։ H∗(C ′), and the two Morse indices agree:λC = λC′ .

We verified that this argument works for hyperpolygon spacesby performing explicit computations based
on [11]. In this case, theS1-fixed sets in both the K̈ahler and hyperk̈ahler quotients are compact projective
spaces, and our above conjecture holds. If this argument works in general, then we can establish the surjec-
tivity from the Kähler quotient to the hyperkähler quotientH∗

(

T ∗Cn//αG
)

։ H∗
(

T ∗Cn////(α,0)G
)

. To
establish the hyperkähler analogue of Kirwan surjectivity, we must further establish Kirwan surjectivity for
the Kähler quotient:H∗

G(T ∗Cn) ։ H∗
(

T ∗Cn//αG
)

. Since the spaces involved are non-compact, we must
prove that the gradient flow converges in order to apply Kirwan’s surjectivity arguments.

A further approach which we discussed at BIRS is to do Morse theory using linear combinations of the
S1-moment map and‖µC‖

2. Although we need to restrict to the minimum of‖µC‖
2, theS1-moment map

much better behaved. We explored the possibility of starting with one such moment map and perturbing it by
adding a multiple of the other, hoping to obtain the same quotient without the Morse-Kirwan difficulties.

3.3 Abelianization

Another related topic which we discussed at BIRS is the “abelianization” of hyperk̈ahler quotients. When
working with symplectic quotients, one can use the techniques of Tolman-Weitsman [17] and Goldin [3] to
compute the cohomology ofM//T whereT is abelian. For quotients of the formM//G whereG is not
abelian, we must first abelianize, by restricting fromG to a maximal torusT . Working in the hyperk̈ahler
case, we studied the following abelianization conjecture of Tamás Hasusel:

Conjecture (Hausel) LetG be a compact, connected Lie group andT a maximal torus inG. If both of the
hyperk̈ahler quotientsT ∗Cn////G andT ∗Cn////T are hypercompact, then

H∗(T ∗Cn////G) ∼=
H∗(T ∗Cn////T )W

Ann(eT (g/t)2)
,

whereeT (g/t) ∈ H∗

T (pt) is the equivariant Euler class of the representationg/t of T .

In [6], Hausel and Proudfoot prove anS1-equivariant version of this abelianization theorem basedon
Martin’s proof [13] of the analogous result for symplectic quotients. They use theS1-equivariance in order
to establish integral formulae, which allow them to reproduce Martin’s Poincaŕe duality arguments in the
non-compact setting. However, our alternative proof [5] ofMartin’s theorem does not use Poincaré duality,
and we believe that this will allow us to generalize our techniques to the non-compact hyperkähler setting
without S1-equivariance. A close analysis of this conjecture leads usto believe that it is best approached
using the algebro-geometric language of holomorphic symplectic quotients, in lieu of hyperkähler quotients.
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