BENNY DAVIDOVITCH

KLEIN

HOW BUBBLES COLLAPSE

CURVATURE-DRIVEN VISCOUS 2D HYDRODYNAMICS

Debrégeas, ... 1998; De Silviera 2000 ...; Oratis, ... 2020

BACKGROUND: A RECENT EXPERIMENT (ORATIS-BUSH-STONE-BIRD, SCIENCE 2020) "A NEW WRINKLE ON LIOUID SHEETS"

AT ORATIS

JC BIRD

BACKGROUND: A RECENT EXPERIMENT (ORATIS-BUSH-STONE-BIRD, SCIENCE 2020) "A NEW WRINKLE ON LIQUID SHEETS"

CURVATURE DRIVEN HYDRODYNAMICS OF 2D LIQUIDS

Experiment suggests dynamics of bubble collapse is governed by:

viscous hydrodynamics

 \leftrightarrow

interfacial <u>thermodynamics</u>

WHAT IS "HYDRODYNAMICS" ?

Macroscopic flow, characterized in the bulk by local thermodynamics & conservation laws:

MOMENTUM-CONSERVING HYDRODYNAMICS OF CURVED VISCOUS FILMS

OUTLINE

Introduction (+ bubble collapse in a nutshell)

■ *Hydrodynamics* of viscous films *vs*. *Electrostatics* in conducting media: momentum conservation $\leftarrow \rightarrow$ dynamo-geometric <u>charge</u> & curvature <u>current</u>

INTRODUCTION: LAPLACE LAW (NORMAL FORCE BALANCE)

INTRODUCTION: <u>**RAPID</u></u> DEPRESSURIZATION** $\tau_{dep} \ll \tau_{vc}$ </u>

$$\mathbf{0} \approx \Delta P(t) \approx \frac{2\sigma(t)}{R(t)} \approx \frac{2(2\gamma + \eta h \nabla v)}{R(t)}$$

$$\Delta P(t) = \Delta P_0 \cdot e^{-t/T}$$

INTRODUCTION: <u>**RAPID</u></u> DEPRESSURIZATION** $\tau_{dep} \ll \tau_{vc}$ </u>

$$\mathbf{0} \approx \Delta P(t) \approx \frac{2\sigma(t)}{R(t)} \approx \frac{2(2\gamma + \eta h \nabla v)}{R(t)} \approx \mathbf{0}$$

$$\eta h \nabla v \approx -2\gamma$$

> purely tangential flow !

$$v \propto r/ au_{vc}$$

INTRODUCTION: <u>RAPID</u> DEPRESSURIZATION $(T \ll \tau_{vc})$

INTRODUCTION: THE PHANTOM BUBBLE PARADOX

How does bubble's shape evolve after rapid depressurization ?

"phantom bubble"

- mass & momentum conserved
- <u>nonequilibrium</u>, <u>stress-free</u> state

enabled by viscous flow

• <u>steady spherical shape</u> no net tangential or normal force

 $\Delta U \neq Q - W$ • <u>violating the 1st law of thermodynamics</u> no source of energy to fuel heat generated by viscous flow

INTRODUCTION: THE PHANTOM BUBBLE PARADOX

What drives flattening of rapidly-depressurized bubble ?

What causes radial wrinkles ?

How general is this behavior?

INTRODUCTION: PARADOX RESOLVED !

bubble flattens by front propagation (akin to phase transformation)

- flat "island" of radius $r_f \sim \sqrt{T}$ nucleates in a spherical stress-free "sea" during depressurization
- planar core invades spherical periphery at velocity $\dot{r}_f \sim R_0/ au_{vc}$
- release of surface energy \rightarrow heat generated by viscous flow in spherical (stress-free) portion

INTRODUCTION: WHY RADIAL WRINKLES ?

planar core is under <u>hoop compression</u> \rightarrow wrinkling instability

• planar-wrinkled annulus $r_i < r < r_o$ expands between planar core and spherical periphery

OUTLINE

Introduction (+ bubble collapse in a nutshell)

■ *Hydrodynamics* of viscous films *vs*. *Electrostatics* in conducting media: momentum conservation $\leftarrow \rightarrow$ dynamo-geometric <u>charge</u> & curvature <u>current</u>

NON-INERTIAL DYNAMICS OF MOMENTUM CONSERVING FILM

AS FRONT PROPAGATION IMPOSED ON CHARGE-CONSERVING MEDIA

NON-INERTIAL DYNAMICS OF MOMENTUM CONSERVING FILM

AS FRONT PROPAGATION IMPOSED ON CHARGE-CONSERVING MEDIA

NON-INERTIAL DYNAMICS OF MOMENTUM CONSERVING FILM

AS FRONT PROPAGATION IMPOSED ON CHARGE-CONSERVING MEDIA

INTERIM SUMMARY

- Rapid depressurization \rightarrow "Phantom bubble" <u>steady</u>, <u>spherical</u>, <u>stress-free</u> state
- Topological instability: dynamical nucleation of a "disclination-front" pair

(akin to electrostatic quadruple)

Axisymmetric flattening process: curvature flows out, damping only on front

(quadruple is expanding)

WRINKLING INSTABILITY

hoop compression \rightarrow Instability (radial wrinkles suppress compression)

 $z \approx z_0(r, t) + z_m(r, t) \cos m\theta$ $\sigma_{ij} \approx \sigma_{ij,0}(r, t) + \sigma_{ij,m}(r, t) \cos m\theta$

WRINKLED SURFACE DYNAMICS

"POLAR METAL" ANNULUS INVADES "VACUUM" CORE & "CONDUCTING" SEA

 $\vec{E} = \nabla(\operatorname{Tr} \overleftrightarrow{\sigma})$

Simulation of a rapidly collapsing bubble

Supplementary video to How viscous bubbles collapse: topological and symmetrybreaking instabilities driven by curvature-limited dynamics of liquid films

For numerical details see Appendix E

SUMMARY: COLLAPSE OF VISCOUS BUBBLE

 $0 < t \lesssim T$

A

 P_0

 $P_0 + \Delta P$

 $t \leq 0$

Rapid depressurization \rightarrow "Phantom bubble" – <u>steady</u>, <u>spherical</u>, <u>stress-free</u> state

 $t \sim T$

- Topological instability: dynamical nucleation of a "diclination-front" pair
- Axisymmetric flattening process: curvature flows out, damping only on front
- Symmetry breaking instability: wrinkles suppress hoop compression

 $\tau_{ins} < t < \tau_{vc}$

OUTLINE

Introduction

• Hydrodynamics of viscous films vs. Electrostatics in conducting media: momentum conservation $\leftarrow \rightarrow$ dynamo-geometric <u>charge</u> & curvature <u>current</u>

Hydrodynamics of viscous films versus elastic deformations of solids

SOME QUESTIONS PUSHED UNDER THE RUG ...

- I. Does film's thickening suppress or amplify in-plane compression ? Amplify !
- II. What is the role of the meniscus? Crucial !

Flatten or Shrink ?

SOME QUESTIONS PUSHED UNDER THE RUG ...

III. What determines the number of wrinkles

NOT linear stability analysis !

data suggests $n \sim \sqrt{R_0/h}$

far from threshold analysis (ala elasticity) ??

IV. What about "Stokes-Rayleigh analogy" (viscous dynamics $\leftarrow \rightarrow$ elastic deformations) ?

Signature: asymptotic stress discontinuity

$$\sigma \propto \eta \nabla v \xrightarrow{\eta \partial_t u \leftrightarrow Eu} \sigma \sim Eh \nabla u$$

$$\nabla^4 \Psi \propto \eta \partial_t \det R^{\overleftarrow{-1}} \xrightarrow{\eta \partial_t u \leftrightarrow Eu} \nabla^4 \Psi \propto E \det R^{\overleftarrow{-1}}$$
only if det $R^{\overleftarrow{-1}} = 0$

2D Stokes hydrodynamics in curved topography

Nonlinear dynamics Imparted by surface geometry rather than by fluid inertia

$$\overset{\leftrightarrow}{\sigma} \propto \overset{\leftrightarrow}{\sigma}_{elas} + \eta h \cdot [\nabla \vec{v} + \partial_t \overset{\leftrightarrow}{g}]$$
state-dependent

"... if you want to innovate, don't look for a great idea, look for a good problem" (G. Satell)

MOMENTUM-CONSERVING VISCOUS FLOW IN 2D: BEYOND CLASSICAL HYDRODYNAMICS

Example: Grahene drumhead (electrons are strongly correlated, forming viscous 2D fluid)

I. at *t*<0, a suspended portion of Graphene flake is deflected by constant force (*e.g.* AFM tip, pressure ..)

II. at t=0, the external force is suddenly removed

III. Assume inertia is negligible and **energy** is dissipated solely in heat generated by electric current

How will the curved shape flatten?

Curvature driven hydrodynamics in viscous films:

Rapidly depressurized bubble -- a peephole into a mostly unexplored branch of "laminar" yet geometrically-nonlinear fluid mechanics in 2D

NSF DMR 1822439 (BD) ISF 3467/21 ,NSF PHY 1748958 (AK)