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IDS FOR EINSTEIN FIELD EQUATIONS

o Einstein (field) equations: the model of a gravitational system evolving through the time is a
Lorentzian manifold (9*', g), g with signature (+ + +—), solving the system of equations

Ric — %%g = 8nT. (Einstein equations)
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Ric — %%g = 8nT. (Einstein equations)

o Initial data set: by [Fourés-Bruhat ‘52 - ACTA], Einstein equations can be interpreted as a system of
PDEs for a given initial value (M, g, K), where (M, g) is a Riemannian manifold endowed with a symmetric
(0,2)-tensor K satisfying the following constraints

w=28nT(n,n) = %(R + (trK)? — |K]?) (Energy density)

J=8nT(n, ) =div(K —trKg) (Momentum density)
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Einstein (field) equations: the model of a gravitational system evolving through the time is a
Lorentzian manifold (9*', g), g with signature (+ + +—), solving the system of equations

Ric — %S‘ig = 8nT. (Einstein equations)

Initial data set: by [Fourés-Bruhat 52 - ACTA], Einstein equations can be interpreted as a system of
PDEs for a given initial value (M, g, K), where (M, g) is a Riemannian manifold endowed with a symmetric
(0,2)-tensor K satisfying the following constraints
1 —0 1
p=8rT(nn) = 5(R+(erK)* = [K]P) = 5

J=8nT(n, ) =div(K —trKg) =0 (Momentum density)

R (Energy density)

Dominant energy condition: generalise the requirement that the energy density is nonnegative
K=0

pw>1J| ~ R>0.

Time-symmetric: K = 0 ~» apparent horizons are minimal surfaces.


https://doi.org/10.1007/BF02392131
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o Isolated gravitational system: a system where gravitational influences at large distances can be
neglected ~~ (M, g) is asymptotically flat
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ISOLATED GRAVITATIONAL SYSTEMS

o lIsolated gravitational system: a system where gravitational influences at large distances can be
neglected ~~ (M, g) is asymptotically flat

Asympitotically flat manifold
(M, g) is €X-asymptotically flat provided M ~. K =2 R3 \ Bz and |g — 6| = Oc(|x| 7).

%'-asymptotically flat

If (M, g) is €'-asymptotically flat
lgi — 6il < Clx|™'
981l < Clxl 2
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Setting

(M, g) is an asymptotically flat 3-Riemannian manifold with R > 0 and connected, outermost, minimal,
boundary.

SETTING AND MAIN EXAMPLE
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SETTING AND MAIN EXAMPLE

Setting
(M, g) is an asymptotically flat 3-Riemannian manifold with R > 0 and connected, outermost, minimal,

boundary.

Schwarzschild solution
Given m > 0, the Schwarzschild solution is

(&(m), ), where G(m) = R? \ By, and

4
m

Scalar flat (R = 0), asymptotically flat with min-
imal outermost boundary. The quantity m is the
mass of the black hole and satisfies

o
~ VYV o16r
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How TO DEFINE THE TOTAL MASS OF YOUR GRAVITATIONAL SYSTEM?
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M=~R"
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/M 8w dvol; 167 / Rdvolg PRI VR (g = 0)dx
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o ADM mass: defined by [Arnowitt, Deser, Misner ‘61].
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M=~R"
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o ADM mass: defined by [Arnowitt, Deser, Misner ‘61]. [Bartnik ‘86], [Chrusciel ‘86] ~~ is a geometric
invariant provided (M, g) is €} -asymptotically flat, 7 > 1/2.


https://mathscinet.ams.org/mathscinet-getitem?mr=127946
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POSITIVE MASS THEOREM

Theorem - [Schoen, Yau ‘79 - CMP]

Let (M, g) a €?*-asymptotically flat Riemannian manifold, 7 > 1/2, with R. > 0, then mapm > 0. Moreover,
mapm = 0 if and only if (M, g) = (R?,5).

In dimension 3 < n < 7 [Schoen, Yau ‘79 - Proc. Nat. Acad. Sci. USA], [Lohkamp 6], for spin manifolds
[Witten ‘81 - CMP], [Bray, Kazaras, Khuri, Stern ‘22 - J. Geom. Anal] using harmonic functions with linear growth
and [Agostiniani, Mazzieri, Oronzio 24 - CMP] using the harmonic Green function.


http://projecteuclid.org/euclid.cmp/1103904790
https://doi.org/10.1073/pnas.76.3.1024
https://doi.org/10.48550/arXiv.math/0608795
http://projecteuclid.org/euclid.cmp/1103919981
https://doi.org/10.1007/s12220-022-00924-0
https://doi.org/10.48550/arXiv.2108.08402
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o In (&(m), o), it holds mapm = m.
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RIEMANNIAN PENROSE INEQUALITY

Theorem - [Huisken, limanen ‘01 - JDG]
Let (M, g) be a ¢ -asymptotically flat 3-Riemannian manifold with R > 0 and Ric > —C/|x|* and connected,
outermost, minimal boundary. Then

|OM|
=< . RPI
or = MADM (RPI)
Moreover, the equality holds if and only if (M, g) = (&(mapm), o).
For multiple horizons [Bray ‘01 - JDG], in dimension 3 < n < 7 [Bray, Lee ‘09 - DMJ] and [Agostiniani,

Mantegazza, Mazzieri, Oronzio ‘22] using nonlinear potential theory.


https://mathscinet.ams.org/mathscinet-getitem?mr=1916951
https://mathscinet.ams.org/mathscinet-getitem?mr=1908823
https://doi.org/10.1215/00127094-2009-020
https://doi.org/10.48550/arXiv.2205.11642
https://doi.org/10.48550/arXiv.2205.11642

IDEA BEHIND THE PROOF

A “smooth” proof.
Take X and evolve it using the IMCF, namely a family of diffeomorphisms F(X) = X C M with

15) v
T w

where v is the unit outward pointing vector field and H is the mean curvature of ¥..

(IMCF)
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IDEA BEHIND THE PROOF

A “smooth” proof.
Take X and evolve it using the IMCF, namely a family of diffeomorphisms F(X) = X C M with

0 v
a,:E =0 (IMCF)
where v is the unit outward pointing vector field and H is the mean curvature of ¥..
Consider the Hawking mass
|OM| || H’ ,
M) = — ) = — (1- — EIY
my(OM) o my(X) T _6r dH’ (Hawking mass)
The function t — my(X¢) is monotone nondecreasing, indeed
d =] T 4o \VT i
() = 167T T <s7r ZtR dH +/z[]h\ +R+20— 1 dH?
> 0 Gauss-Bonnet >0
Moreover,
my(X) < lim mp(Z:) < mapm. 0
t—+o0

f

asymptotic assumptions on g
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LEVEL SET FORMULATION

Pick a function w : M — R such that Q = {w < 0}.
Define Q. = {w < t} and X = 0%Q..

\ \W”’p
it
\y ““&“\\“‘“&%’0 i

S

N ,,
""’;}’;‘llll; /

'7//



LEVEL SET FORMULATION
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— Less control on the regularity of X.
+ The flow survives through singularities.



LEVEL SET FORMULATION

Pick a function w : M — R such that Q = {w < 0}.
Define Q. = {w < t} and X = 0%Q..

— Less control on the regularity of X.
+ The flow survives through singularities.

WE NEED TO CHOOSE THE FUNCTION w WISELY
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NPT AnD IMCF

NONLINEAR POTENTIAL THEORY (p < 2)

Dpwp = [Vw,lP on M\ Q
wp, = 0 on 092
Wp — 400 as |x| = +o0

where Apf = div(|Vw, [P Vwp).

INVERSE MEAN CURVATURE FLOW

Aiw = |Vw| on M Q
w =0 on 0Q
w) — +00 as |x| = +o0

in this case H = Ayw.
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o up,=e P=1is p-harmonic in the weak sense.

INVERSE MEAN CURVATURE FLOW

Aiw = |Vw| on M Q

w =0 on 0Q
as |x| = +oo

w — +00
in this case H = Ayw.

o Solution in a nonstandard variational sense [Huisken,
llmanen ‘01 - JDG].
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Dpwp = [Vw,lP on M\ Q
wp, = 0 on 092
Wp — 400 as |x| = +o0

where Apf = div(|Vw, [P Vwp).
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up =e P=1is p-harmonic in the weak sense.

¢"P everywhere and > away from the critical
set. Moreover, |[Vwp| € W2,

A generic level is almost everywhere regular.

Defining the (normalised) p-capacity of a set as

cp(K) = inf{Cp [|VulP : u€ €, u> Xk},
cp(0QP)) = et ¢, (090).

INVERSE MEAN CURVATURE FLOW
Aiw = |Vw| on M Q
w =0 on 0Q
w) — +00 as |x| = +o0
in this case H = Ayw.

Solution in a nonstandard variational sense [Huisken,
llmanen ‘01 - JDG].

Only Lipschitz.
A generic level is €' and strictly outward minimising.

Defining Q2 the strictly outward minimising hull of
Q,

100" | = et |o0*|.
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up =e P=1is p-harmonic in the weak sense.
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A generic level is almost everywhere regular.
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WHAT HAPPENS SENDING p — 177

INVERSE MEAN CURVATURE FLOW
Aiwy = |Vw| on M Q
w =0 on 0Q
w) — 400 as |x| = +o0
in this case H = Ayw.

Solution in a nonstandard variational sense [Huisken,
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Only Lipschitz.
A generic level is €' and strictly outward minimising.
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Proposition - [Fogagnolo, Mazzieri ‘22 - JFA]
In this setting, c¢,(92) — |0Q*|/4m as p — 1*. In particular, cp(m&”)) — |0§2£])\/47r.

CONVERGENCE AS p — 17


https://doi.org/10.1016/j.jfa.2022.109638
https://doi.org/10.1353/ajm.2022.0016
https://doi.org/10.4171/JEMS/73
https://doi.org/10.24033/asens.2089

Proposition - [Fogagnolo, Mazzieri ‘22 - JFA]
In this setting, c¢,(92) — |0Q*|/4m as p — 1*. In particular, cp(aQEP’) — |3§2£1)|/47r.

Theorem - [Mari, Rigoli, Setti ‘22 - AJM]
In this setting, w,, are uniformly Lipschitz and w, — w; uniformly on compact subsets of M as p — 1"

After the works [Moser ‘07 - JEMS] in R" and [Kotschwar, Ni ‘09 - Ann. Sci. Ec. Norm. Supér] in nonnegative
sectional curvature.

CONVERGENCE AS p — 17
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MONOTONICITY FORMULAS IN NPT

[Agostiniani, Mantegazza, Mazzieri, Oronzio ‘22] introduced the p-Hawking mass

m(%) = ==

and proved that t — mff)(aQEP)

() TP

r 4G - pPr

) is monotone nondecreasing along regular values.

(p-Hawking mass)


https://doi.org/10.48550/arXiv.2205.11642
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MONOTONICITY FORMULAS IN NPT

[Agostiniani, Mantegazza, Mazzieri, Oronzio ‘22] introduced the p-Hawking mass

m{ (%) =

and proved that t — m(HP)(é?QEP)

() TP

2

|VWP| / |VWP‘ H 42
1+/ T -

) is monotone nondecreasing along regular values.

Theorem - [B—, Pluda, Pozzetta ‘24]
Almost every level of wy is a curvature varifold and

(p-Hawking mass)

1 P 2
d ep (095 - 2 IVTIVwell” , 5—p (VW] H
Py > LBk h 2 Pl 12 P ) aw’
ac™” (8 E (3—p)erm /E,ng R+ R+ |V w|? + p (3 -p 2 7
holds for almost every t € [0, +00). Q>0


https://doi.org/10.48550/arXiv.2205.11642
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MONOTONICITIES IN COMPARISON

INVERSE MEAN CURVATURE FLOW [Huisken, llmanen ‘01 - JDG]
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NONLINEAR POTENTIAL THEORY [B — , Pluda, Pozzetta ‘24]
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GEROCH MONOTONICITY FORMULA

Theorem - [B—, Pluda, Pozzetta ‘24]
In our setting, Vwp, — Vw in L] _
aa!"

WQ” |VTH\

g'l'l'IH 89

i m|+R+2

for almost every t € [0, +00).

We recover the monotonicity formula proved in [Huisken, limanen ‘01 - JDG].

for every q < +oo. Moreover, 8Q§P ) converges in the sense of varifold to

dH’.
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4 FIGHTING THE JABBERWOCKY
RIEMANNIAN PENROSE INEQUALITIES

SCAN & DOWNLOAD
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OTHER DEFINITIONS OF MASS

[Huisken ‘06] introduced the concept of isoperimetric mass: given {Q} an exhaustion of M

{Q} k—too 0] 64/T

R3 isoperimetric deficit

3
Miso i= sup lim miso (%) where Miso () = 2 (Qk| - lanlz).

[Jauregui ‘20] introduced the concept of isocapacitary mass (p = 2 only): given {2} an exhaustion of M

® = im m®(Q h D)= (o] - T (007
Miso {S;;kp}kJToom ( k) where m|so( k) ZPWCP(an) ‘ k| 3 CP( k) .

RR3 iscopacitary deficit

o Mis and mP)

o are geometric invariants without any asymptotic assumption.

o In (&(m), o), it holds miss = m?) = m.

iso

WHAT ABOUT THE EQUIVALENCE WITH mapm ?
RIEMANNIAN PENROSE INEQUALITY IS VALID FOR m{?) AND mie?

iso
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RELATIONS BETWEEN CONCEPTS OF MASS

Theorem - [Fan, Shi, Tam ‘09 - Comm. Anal. Geom.]
Miso(Br) — Mapm as R — 400, provided mapm is defined. In

particular, mapm < Miso.

Theorem - [Jauregui ‘20]

ISO(BR) — MapMm dS R —> +00, provided mapwm is defined. In
particular, mapm < mlso The equality holds for harmonically
flat manifolds.

Theorem - [Jauregui, Lee ‘19 - CRELLE]
If mp(0) < m for Q in a given class, then miso < m.
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particular, mapm < Miso.

Theorem - [Jauregui ‘20]

i(szo)(BR) — mapm as R — 400, provided mapwm is defined. In
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iso *

m
particular, mpapy < m,
flat manifolds.

The equality holds for harmonically

Theorem - [Jauregui, Lee ‘19 - CRELLE]
If mp(0) < m for Q in a given class, then miso < m.

Combining them with [Huisken, llmanen ‘01 - JDG] we get

Equivalence of masses - RPI
If (M, g) is 6'-asymptotically flat and Ric > —C/|x|>
|OM| )
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SUMMING UP
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WHAT HAPPENS BELOW THIS THRESHOLD?
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Theorem - [B—, Fogagnolo, Mazzieri 22], [B— , Fogagnolo, Mazzieri ‘23 - SIGMA]
Let (M, g) be a €} -asymptotically flat 3-Riemannian manifold, T > 1/2, with R > 0 and connected, outermost,
minimal boundary. Then,

OM
[oM| < mapm = Migo = mP)
167

(RPI)

iso *

PENROSE INEQUALITIES - SHARP DECAY
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Let (M, g) be a €} -asymptotically flat 3-Riemannian manifold, T > 1/2, with R > 0 and connected, outermost,
minimal boundary. Then,
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Some remarks

*)

o We already know mapm < m..

o It is easy to prove that mi(spo) < miso: Sharp isoperimetric inequality ~~ sharp isocapacitary inequality via
symmetrization [Jauregui ‘12] (taking the ball of R of the same volume of QEP)). The definition of mjs, ~~
sharp asymptotic isoperimetric inequality, thus

3-p

25 < (%) 7 oon) + PO (%) 7 00 E (rua + o)
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o

2 3
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Let (M, g) be a €} -asymptotically flat 3-Riemannian manifold, T > 1/2, with R > 0 and connected, outermost,
minimal boundary. Then,
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Some remarks
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o We already know mapm < m..

o It is easy to prove that mi(spo) < miso: sharp isoperimetric inequality ~» sharp isocapacitary inequality via
symmetrization [Jauregui ‘12] (taking the ball of R of the same volume of QEP)). The definition of mjs, ~~
sharp asymptotic isoperimetric inequality, thus
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o If we show miso < mapm ~~ m{®)

iso
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< mjse < mapm < M. ~» they are equal.
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Theorem - [B—, Fogagnolo, Mazzieri 22], [B— , Fogagnolo, Mazzieri ‘23 - SIGMA]
Let (M, g) be a €} -asymptotically flat 3-Riemannian manifold, T > 1/2, with R > 0 and connected, outermost,
minimal boundary. Then,

oM
1oM] < mapm = Migo = mP)

o (RPI)

Some remarks
()

o We already know mapm < m..

o It is easy to prove that mi(spo) < miso: sharp isoperimetric inequality ~» sharp isocapacitary inequality via
symmetrization [Jauregui ‘12] (taking the ball of R of the same volume of QEP)). The definition of mjs, ~~
sharp asymptotic isoperimetric inequality, thus

. 3p
|Q|3§*P < (%ﬂ) 3 p(0) + @ (%ﬁ) 3 CP(aQ)g%g(miso + o(1))
as |Q] = +oo.

o If we show miso < mapm ~~ m{®)

iso

(p)

iso

< mjse < mapm < M. ~» they are equal.

o We want to apply [Jauregui, Lee ‘19 - CRELLE]: proving mu(9€2) < mapwm is enough to conclude.
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SKETCH OF THE PROOF

IMCF proof
Take © C M and evolve with Q" = {w < t}

t — mu(0Q")

is monotone nondecreasing. By asymptotic as-

sumptions on g

mu(09) < Tim mu(092") < mapm.
t—+o00

[Huisken, llmanen ‘01 - IDG]

JIEL ,/"i 2
1r \' /. i6r 47

Linear potential proof
Take Q C M and evolve with Q¥ = {w; < t}

t — m{(90P)

is monotone nondecreasing. By refined integral
asymptotic behaviour of w;

m(09) < Tim m((02(”) < mapw.

“— [Agostiniani, Mazzieri, Oronzio ‘24 - CMP] —

(%) / (2Vw| —H)*  H
2 <1 + 5 167 167 drt
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IMCF proof
Take © C M and evolve with Q" = {w < t}

t — mu(0Q")

is monotone nondecreasing. By asymptotic as-

sumptions on g

mp(0Q) <

Tim mu(092") < mapm.
t—+o00

[Huisken, llmanen ‘01 - IDG]
= f 'i
167 1 s 16w dr’

Take Q, evolve with Q) = {wm < t},

mH(OQ) ||m mH(OQ )

t—+o0

Linear potential proof
Take Q C M and evolve with Q¥ = {w; < t}

t»—)mH (()Q )

is monotone nondecreasing. By refined integral
asymptotic behaviour of w;
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SKETCH OF THE PROOF

IMCF proof Linear potential proof
Take © C M and evolve with Q" = {w < t} Take Q C M and evolve with Q¥ = {w; < t}
t > my(0Q") t - m?(00?)
is monotone nondecreasing. By asymptotic as- is monotone nondecreasing. By refined integral
sumptions on g asymptotic behaviour of wy
mp(0Q) < t@ m4(09") < mapwm. m?(09) < I|m m 2(600?) < mapwm.
[Huisken, llmanen ‘01 - IDG] — [Agostiniani, Mazz:erl, Oronzio 24 - CMP] —
([ /
= [ =d 1 == dH
16w s 16w " + 5 167T
Take 2, evolve with Qf) = {w < t}, at any time t control the Hawking mass with the 2-Hawking mass:
— o VAR
mH(OQ) ||m mH(OQ ) lim |7t‘mm,(f)(09£2)) S I|m ‘7|mmADM S MADM
t——+o00 t—+o00 \/Tmz(aﬂt ) t—+o00 \/7C2(C)Q )
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ISOPERIMETRIC PENROSE INEQUALITY

Theorem - [B—, Fogagnolo, Mazzieri 22]
Let (M, g) be a 3-Riemannian manifold " -asymptotically flat with R > 0 and connected, outermost, minimal
boundary. Then,
M
i < Miso. (isoperimetric RPI)
6T

Moreover, the equality holds if and only if (M, g) = (&(mis), 7).

—


https://doi.org/10.48550/arXiv.2212.10215
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Proof.
Evolving OM using IMCF Q. = Q) = {w < t} we have

- 3
Mo > lim mao(2) > lim 2 <|Qt|—dmz>
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ISOCAPACITARY PENROSE INEQUALITY

Theorem - [B—, Fogagnolo, Mazzieri 23 - SIGMA]
Let (M, g) be a 3-Riemannian manifold ¢°-asymptotically flat with R, > O (+ an extra assumption) and con-

nected, outermost, minimal boundary. Then,

cp(c‘)M)%P < 2P —Pp®

> oY (isocapcitary RPI)
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https://doi.org/10.48550/arXiv.2212.10215
https://doi.org/10.48550/arXiv.2306.00744
https://doi.org/10.48550/arXiv.2305.19784
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Let (M, g) be a 3-Riemannian manifold ¢°-asymptotically flat with R, > O (+ an extra assumption) and con-

nected, outermost, minimal boundary. Then,

o(OM)7F < 2= Prl®).

o The proof is almost the same. We need two “de I'Hopital steps” and the second one requires a further

(isocapcitary RPI)

technical assumption on the asymptotic behaviour of w,. We are note able to remove it at this point.
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Let (M, g) be a 3-Riemannian manifold ¢°-asymptotically flat with R, > O (+ an extra assumption) and con-
nected, outermost, minimal boundary. Then,

cp(aM)ﬁ < E);—Pmi(fg.

o The proof is almost the same. We need two “de I'Hopital steps” and the second one requires a further

(isocapcitary RPI)

technical assumption on the asymptotic behaviour of w,. We are note able to remove it at this point.
o The isocapacitary Riemannian Penrose inequality is not sharp, it becomes sharp as p — 17 where it
recovers the isoperimetric one.
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nected, outermost, minimal boundary. Then,

cp(aM)ﬁ < E);—Pmi(fg.

o The proof is almost the same. We need two “de I'Hopital steps” and the second one requires a further

(isocapcitary RPI)

technical assumption on the asymptotic behaviour of w,. We are note able to remove it at this point.
o The isocapacitary Riemannian Penrose inequality is not sharp, it becomes sharp as p — 17 where it
recovers the isoperimetric one.
o With IMCF: [Bray, Miao ‘08] (p = 2) and [Xiao ‘16] (p < 2) proved a sharp version for the ADM mass and
(with the same technique) in [B— , Fogagnolo, Mazzieri ‘22] for mis, (When ADM is not defined).
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Theorem - [B—, Fogagnolo, Mazzieri 23 - SIGMA]
Let (M, g) be a 3-Riemannian manifold ¢°-asymptotically flat with R, > O (+ an extra assumption) and con-

nected, outermost, minimal boundary. Then,

cp(aM)ﬁ < E);—Pmi(fg.

o The proof is almost the same. We need two “de I'Hopital steps” and the second one requires a further

(isocapcitary RPI)

technical assumption on the asymptotic behaviour of w,. We are note able to remove it at this point.

o The isocapacitary Riemannian Penrose inequality is not sharp, it becomes sharp as p — 17 where it
recovers the isoperimetric one.

o With IMCF: [Bray, Miao ‘08] (p = 2) and [Xiao ‘16] (p < 2) proved a sharp version for the ADM mass and
(with the same technique) in [B— , Fogagnolo, Mazzieri ‘22] for mis, (When ADM is not defined).

o With NPT: [Xia, Yin, Zhou ‘24 - Adv. Math.] and [Mazurowski, Yao ‘24] proved a sharp version for the ADM
mass ~+ wait for Chao Xia's talk.
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FINAL REMARKS

()

o The equivalence of masses m;) = mis, = Mapwm is proved whenever mapwm is defined. There are cases

1so

where mapwm is not defined, but we still have mis, and m
) mi as p— 11,
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m
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At this point, we are only able to prove that
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) mi as p— 11,

o All proofs based on IMCF can deal with disconnected boundaries (in the sense that IMCF is able to jump

At this point, we are only able to prove that
m

over horizons). The proofs based on NPT are not able to do that at this point.



FINAL REMARKS

o The equivalence of masses m®? = mis = mapwm is proved whenever mapw is defined. There are cases

iso
(p)

where mapm is not defined, but we still have mis, and m;_;.

P 5 mig,as p— 17

o All proofs based on IMCF can deal with disconnected boundaries (in the sense that IMCF is able to jump

At this point, we are only able to prove that
m

over horizons). The proofs based on NPT are not able to do that at this point.
o These are results towards understanding the geometry of initial data sets endowed with € metrics ~»
wait for Gioacchino Antonelli’s talk.



Thank you for your attention!
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