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A standard set of tools

On R and Riemannian manifolds, calculus is strongly based upon the concepts of:
- Sobolev function
- Elliptic operator

- Banach space

It is unclear what any of this is in Lorentzian signature, where:

gm (v, v) = [vo|® — Z v | replaces gE(v,v) 1= Z v |
S = 0ot — Zafm:f replaces Af = Zaiif




A motivation: going towards non-smooth geometry

~40 years ago Gromov proposed to study how curvature affects the shape of Riemannian manifolds
(also) via metric geometry. The program has been a success.

More recently, a similar program has been started for Lorentzian geometry.

Clear indications that some non-trivial geometry is in place are:
- The non-smooth version of the Hawking singularity theorem (Cavalletti-Mondino 20)

- The non-smooth Lorentzian analogue of the Splitting theorem for Sectional> 0
(Beran-Ohanyan-Rott-Solis ’22)

In the ‘elliptic’ case, lower Ricci bounds in the non-smooth setting are encoded via

- A “curvature-dimension condition” related to optimal transport (after Lott-Sturm-Villani
'05)

- “Infinitesimal Hilbertianity” related to Sobolev functions (after G. '12)
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The flat case

the unit ball is:

- compact
the induced norm ||v||g := v/gr (v, v) satisfies: - convex

R? equipped with the Euclidean tensor gg(v,v) := Z Tk
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The flat case

the unit ball is:

- compact
the induced norm ||v||g := v/gr (v, v) satisfies: - convex

R? equipped with the Euclidean tensor gg(v,v) := Z Tk

- of finite measure

the triangle inequality v+ wl||g < ||lv||g + ||w]||g

the Cauchy-Schwarz inequality gE (v, w)| < ||v||gl|w| g N\
for any v, w € R? %
R'*? equipped with the Minkowskian tensor g (v, v) := v3 — Z s the unit ball is:

the induced norm ||v||m := v/gm(v,v) on F := {v : gum(v,v) >0, vg > 0} satisfies: - not compact

- Nnot convex

the reverse triangle inequality v+ w|lam > ||v]|m + [|w]|wm - of infinite measure

the reverse Cauchy-Schwarz inequality gm (v, w) > [|v]|m||w]|m

for any v,w € F




The smooth curved case

A Riemannian manifold has a Euclidean scalar product on each tangent space
Geodesics v are local minimizers of [ ||4| d¢
The formula

We assume completeness

1
Ld9(z,y) = infl/ 2|2 dt,
q 7/,

the inf being among curves from z to y defines a function d : M? — RT
independent on g > 1 that satisfies

d(z, z) < d(x,y) +d(y, 2)



The smooth curved case

A Riemannian manifold has a Euclidean scalar product on each tangent space
Geodesics v are local minimizers of [ ||4| d¢
The formula

We assume completeness

1
Ld9(z,y) = infl/ 2|2 dt,
q 7/,

the inf being among curves from z to y defines a function d : M? — RT
independent on g > 1 that satisfies

d(z, z) < d(x,y) +d(y, 2)

A Lorentzian manifold has a Minkowskian scalar product on each tangent space We assume Global hyperbolocity, i.e.:

Causal geodesics v are local maximizers of [ ||| dt - time orientation
The formula - no closed causal curves
1
: - compactness of causal diamonds
A (x,y) = Supéf 15 1|? dt, P
0

the sup being among curves from x to y defines a function ¢ : M? — Rt U {—o0}
independent on g < 1 that satisfies

lx,z) > l(z,y)+ Ly, 2)
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(Frechet 1906)
A metric space (X, d) is a set equipped with a symmetric function d : X? — RT satisfying
d(z,x) =0 and d(z,z) <d(xz,y) +d(y, 2).

We assume (X, d) complete and separable
Balls {y : d(x,y) < r} generate a topology
d: X? - RT is always continuous w.r.t. such topology.
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The non-smooth case

(Frechet 1906)

A metric space (X, d) is a set equipped with a symmetric function d : X? — RT satisfying
d(z,x) =0 and d(z,z) <d(xz,y) +d(y, 2).

We assume (X, d) complete and separable
Balls {y : d(x,y) < r} generate a topology
d: X? - RT is always continuous w.r.t. such topology.

(Kunzinger-Samann 2017)
An hyperbolic metric space (X, £) is a set equipped with a function £ : X* — RT U{—o00} satisfying

l(x,x) =0 and U(x,z) > l(x,y) + Ly, 2).
¢ induces two partial orders via

r <y & l(x,y) >0 and r <y & l(x,y) >0

and the order > induces a topology that we assume Polish
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Convex energies

f — |df]| is convex

For p > 1 let u, : R™ — R be defined as u,(z) := %zp.

Then f +— wu,(|df|) is convex and thus

f — E,(f) := /up(\df\) dm is convex (and lIsc)

p>1
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Then f +— wu,(|df|) is convex and thus

f — E,(f) := /up(|df\) dm is convex (and lIsc)

f: M — R is a time function if it is monotone, i.e. z <y = flz) < f(y).
f — |df]| is concave on the space of time functions.
For p < 1 let u, : R™ — R be defined as u,(z) := %zp.

Then f +— u,(|df|) is concave and thus

f — E,(f) :=— /up(|df\) dm is convex (and Isc) on time functions

p>1




Subdifferential of convex energies

Convex functionals admit
directional derivatives



Subdifferential of convex energies

—/gApf = lim Ep(f +29) — Bpl/)

el0 E

Convex functionals admit
directional derivatives

In other words A, f := div(\df\p_Qngf)



Subdifferential of convex energies

Convex functionals admit
directional derivatives

—/gApf = lim

el 0

Ep(f‘|‘59) — Ep(f)

In other words A, f := div(\df\p_Qngf)

— =11
/g pf i

In other words

E,(f +eg9) — Ep(f)

pf 1= —div(|df [PV gy [)



Subdifferential of convex energies

el0 E

—/gApf = lim Ep(f +29) — Bp(J)

Convex functionals admit
directional derivatives

In other words A, f := div(\df\p_Qngf)

These definitions only require |df]
and ‘thus’ can be performed
In metric measure spaces

—/g o f :=lim E,(f +eg9) — Ex(f)

el0 E

In other words [, f := —div(|df[P72V,, /)



Sobolev functions & lower Ricci bounds

CD condition introduced by Lott-Sturm-Villani

Theorem (G. '12 - p = q = 2) fter
Let (X, d, m) be CDq(O, N ) r € X and f — (;E Cordero Erasquin-McCann-Schmuckenschlager
Then Otto-Villani
( f 1 g L E Sturm-Von Renesse
— Hﬁ)l < N / pdm

for any p > 0 Lipschitz with bounded support.

Interpreted as: A,f < N.



Sobolev functions & lower Ricci bounds

CD condition introduced by Lott-Sturm-Villani

Theorem (G. '12 - p = q = 2) after
Let (X, d, m) be CDq(O, ]\7)7 T € X and f P — ldq(3_37 ) Cordero Erasquin-McCann-Schmuckenschlager
Then 1 Otto-Villani
E _E Sturm-Von Renesse
g E

for any p > 0 Lipschitz with bounded support.

Interpreted as: A,f < N.

Theorem (BBCGMCCORS 723) TCD condition introduced by Cavalletti-Mondino
Let (X, ¢,m) be TCD,(0, N), z € X and f := %Eq(x, ). after
McCann
Then = = Mondino-Suhr
g E

for any p > 0 such that f + p is a time function.

Interpreted as: Ll,f < N.
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Trading linearity for ellipticity

f = le(ngf) ( — ((9,5,5 — Ax)f) Hyperbolic

pf = —div(|[df|P7*V gy, f) Elliptic on time functions (!!!)

It arises as variation of the energy

f— E(f):= { _/Up(‘df\) it f is time

+00 otherwise

that 1s convex and lsc

Notice that Ll(z, -) = U, 0(Z, -)




A case for / / Hamiltonian geometry

After Agrachev '97, Ohta '13

( 1 %
_1 c
H(p) := L|pf H(p):={ “»Phw P
(p) p‘P‘E (p) <\ +00, otherwise




A case for / / Hamiltonian geometry

After Agrachev '97, Ohta '13

r _l D F
H .— L1|p|P H T—= < p‘p|M’ e
(p) plg (p) | +oo, otherwise

p(v) < H(p)+ L(v) Vp, v df(VHf) = H(df) + L(VHf) defines V¥ f
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A case for / / Hamiltonian geometry

After Agrachev '97, Ohta '13

(1P
p(v) < H(p) + L(v)  ¥p, v Af(VHf) = H(Af) + L(VTf)  defines V! §

p-Laplacian/p-d’Alambertian is nothing but A¥ f := div(VH f)

Ricci curvature along every/future direction can be read in terms of a suitably defined Rict

Such Ric™ satisfies the non-linear Bochner-Ohta identity:
— 0y (A" fr(ve))le=0 = ||[Hess" f|[s ) + Ric™ (df, df)
where Oi ft + H(df:) = 0 and ~ = VZ fi ().

Here ||Hess" f lhs(z) = 0 and it is 0 iff f is affine along the Hamiltonian flow.



An example: the splitting theorem (statement)

Theorem (Cheeger-Gromoll '71)
Let M be with Ricpy; > 0 and containing a line, i.e. a curve v : R — M with
d(/ytfyS) — |8_t| Vt78€R°

Then M ~ R xg N for some Riemannian manifold N with Ricy > 0.



An example: the splitting theorem (statement)

Theorem (Cheeger-Gromoll '71)

Let M be with Ricpy; > 0 and containing a line, i.e. a curve v : R — M with
d(”thVg) — ‘S_t| Vt78€R°

Then M ~ R xg N for some Riemannian manifold N with Ricy > 0.

Theorem (Galloway ’84 - Eschenburg 88 - Newman "90)

Let M be with Ricy; > 0 in the timelike directions and containing a timelike line, i.e. a curve
v : R — M with
O(ve,vs) =8 — t Vit <s, t,s € R.

Then M ~ R xp N for some Riemannian manifold NV with Ricy > 0.



The splitting theorem (basic considerations)

M ~ R xg N iff there is b : M — R non-constant with null Hessian

M ~ R xyp N iff there is b : M — R time, non-constant with null Hessian



The splitting theorem (basic considerations)

M ~ R xg N iff there is b : M — R non-constant with null Hessian

tToo
b- (= limt — d(',’"}/_t) Then

t1Too

b := limd(-,y:) — ¢
Let

M ~ R xyp N iff there is b : M — R time, non-constant with null Hessian

tToo
b~ = %%m g() /y_t) — ¢ Then

b = lim ¢ — (-, V)
Let

on M
along -y

[V




The splitting theorem (formal proof)

: Lapl.comp. i Ab_l_ <0 strong max.pr. _
Ric > 0 — X _ — bt = b
= A >0

Use the Bochner identity A[df[* — (df,dAf) = |[Hess f||is + Ric(Vf,Vf) > 0 to conclude that
Hess bt = 0




The splitting theorem (formal proof)

Lapl.comp. ( Ab_l_ < 0 strong max.pr. b+

Ric > 0 — <\ Ab= > 0 — = b

Use the Bochner identity A[df[* — (df,dAf) = |[Hess f||is + Ric(Vf,Vf) > 0 to conclude that
Hess bt = 0

Ric Z 0 q—d’Algg.comp. , q Zi_ E 8 strong:r>nax.pr. b+
q all

:b_

Use the Bochner-Ohta identity —0: (A fi(v)) =g = HHeSSHfHaS(H) + Ric” (df,df) > 0 to
conclude that ||Hess™ bt sy = 0
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A Banach space 1is:
e a vector space B together with

e a norm, i.e. amap || - || : B — R such that

lov 4 Bw|| < [afllof| +|B]llw]  for any o, f € R, v,w € B.
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Basic properties and constructions

i) Dual: set of linear continuous maps L : B — R with || L[|, := supy,; =1 |L(v)

ii) Hahn-Banach theorem and isometric embedding in the bi-dual
iii) Banach-Alaoglu theorem: norm bounded sets are weakly™* relatively compact in dual spaces.

iv) Bochner integration: integral defined via Cauchy-limits of integrals of simple functions

i) Dual: set of sup-respecting linear maps L : B — [0, 00| with ||L||, := inf ), =1 L(v)
ii) Hahn-Banach theorem and isometric embedding in the bi-dual

iii) Banach-Alaoglu theorem: order bounded sets are weakly* relatively compact in dual spaces.

iv) Bochner integration: integral defined via Dedekind-limits of integrals of simple functions
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2
functions f : X — |0, oo] with Ly >g — (Lﬁ > f = /fg dm)
1 e (LL(X,m))* ~ LI*(X,m), where ||f|—oc := essinf f 0
Il = ([ £7am)” —+
' o Self-dual case p = 0 exists only for m(X) = 1 with || f||o := exp( [ log(f) dm).
It satisfies —00

‘L__

I fllollgllo = [[fgllo
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