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Homotopic Distance

Let X and Y be path-connected topological spaces and f, g : X → Y two continuous
maps.

The homotopic distance D(f, g) between f and g is the least integer k ≥ 1 such
that there exists an open covering U1 ∪ · · · ∪ Uk = X with the property that f|Uj
and g|Uj

are homotopic for all j.

Let A ⊂ X be a subspace. The subspace distance between the two maps f, g on
A, is defined as

DX(A; f, g) := D(f|A, g|A) = D(f ◦ iA, g ◦ iA),

where iA : A ↪→ X is the inclusion.

• The L-S-category of X is the distance between the identity idX and any
constant map, catX = D(idX , x0).

• Let p1, p2 : X ×X → X be the projections. The topological complexity of
X is TC(X) = D(p1, p2).

Properties of the homotopic distance

Let P(f, g) be the space of pairs (x, γ) where x ∈ X and γ is a continuous path on Y ,
such that γ(0) = f (x) and γ(1) = g(x). Notice that π∗ = (f, g)∗π : P(f, g) → X

is the pullback fibration of the path fibration π : Y [0,1] → Y × Y , where π(γ) =
(γ(0), γ(1)), by the map (f, g) : X → Y × Y :

P(f, g) Y [0,1]

X Y × Y .

π∗ π

(f,g)

Theorem 1 D(f, g) equals the Svarc genus of π∗, that is, the minimum number
k ≥ 1 such that there exists an open covering U1 ∪ · · · ∪ Uk = X , where for each Uj
there is a continuous section sj : Uj → P(f, g) of the pullback fibration π∗.

Note that if X is not connected and {Ai}ni=1 are the connected components of X ,
then

D(f, g) = DX(X ; f, g) = max
i

DX(Ai; f, g).

Let {Vi}ki=1 be a finite open covering of X . Then:

D(f, g) ≤
k∑
i=1

DX(Vi; f, g).

Let M be a compact differentiable manifold. A smooth function Φ: M → R is
called a Morse-Bott function if the critical set Crit Φ is a disjoint union of connected
submanifolds Si and for each critical point p ∈ Si ⊂ Crit Φ the Hessian is non-
degenerate in the directions transverse to Si.
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Fig. 1: Morse-Bott function on the torus.

Theorem 2 Let Φ: M → R be a Morse-Bott function in a compact smooth manifold M . Let
c1 < · · · < cp be its critical values, and let Σi = Φ−1(ci)∩Crit Φ be the set of critical points in
the level Φ = ci. If f, g : M → Y are two continuous maps, then

D(f, g) ≤
p∑

i=1

DM (Σi; f, g).

This extends analogous results for the topological complexity ([1]) and the L-S-category ([6]).

Navigation functions and generalized motion planning
problem

We can interpret that the homotopic distance between f and g solves the following:

Generalized planning problem: Let f, g : X → Y be two continuous maps between topological
spaces. Given an arbitrary point x ∈ X find a continuous path s(x), joining f (x) and g(x) in
Y , in such a way that the path s(x) depends continuously on x.

Assume that we have two continuous maps f, g : M → Y , defined on the manifold M , and
a Morse-Bott function Φ: M → R, with critical values c1, . . . , cp. The generalized motion
planning problem can be reduced to the critical set, by using the gradient flow of Φ as in Fig. 2.
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Fig. 2: Navigation function.

Note that Gi
j is a covering by ENRs for each critical submanifold Σi.

Examples

1. IfA ⊂ X is a subspace, the LS category of A in X , catXA, is the minimum
integer k ≥ 1 such that there is a covering U1 ∪ · · · ∪ Uk = A, verifying that
each subset Uj is open in A and the inclusion map Uj ⊂ X is homotopic to a
constant map.

catXA = DX(A; idX , x0) = D(iA, x0).

For x0 ∈ X , we define the axis inclusion maps i1, i2 : X → X ×X as i1(x) =
(x, x0) and i2(x) = (x0, x). Then, D(i1, i2) = catX .

2. Let A ⊂ X ×X be a subspace. The subspace topological complexity of
A, TCX(A), is the smallest integer k ≥ 1 such that there is a cover U1 ∪ · · · ∪
Uk = A with the property that each Uj ⊂ A is open in A, and the projections
Uj ⇒ X on the first and the second factors are homotopic to each other.

If p1, p2 : X ×X → X are the projections, then

TCX(A) = DX×X(A; p1, p2).

3. Let us suppose that X is the configuration space of a multi-arm robot and Y
is the workspace (the spacial region that can be effectively attained by the end
device of the arm). A work map f : X → Y assigns to each state of X the
corresponding position of the end effector.

The topological complexity of f , tc(f ), is the least integer n such that
X ×X can be covered by n open subsets {Ui}ni=1 such that for each Ui there

exists a continuous map fi : Ui → Y I satisfying fi(x0, x1)(0) = f (x0) and
fi(x0, x1)(1) = f (x1) ([4]).

The topological complexity of f equals the distance of the projections composed
with the map f . That is,

tc(f ) = D(f ◦ p1, f ◦ p2).

4. The topological complexity of a fibration f : X → Y , cx(f ), is the
number of partial solutions to the motion planning problem πf : X

I → X×Y ,
π(γ) = (γ(0), f (γ(1))), which assigns to each path in the configuration space
the initial state x and the end effector position f (y) at the final state ([5]).

If πX : X × Y → X and πY : X × Y → Y are the projections, then

cx(f ) = D(f ◦ πX , πY ).
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