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INTRODUCTION

The non-𝑘-equal manifold 𝑀
(𝑘)
𝑑

(𝑛)—so named in Baryshnikov preprint
[1]—is defined as the complement in

(
R𝑑

)𝑛 of the diagonal-subspace
arrangement, 𝐴(𝑘)

𝑑
(𝑛), formed by the union of subspaces

𝐴𝐼 =
{
(𝑥1, . . . , 𝑥𝑛) ∈

(
R𝑑

)𝑛 | 𝑥𝑖1 = · · · = 𝑥𝑖𝑘
}
,

where 𝐼 = {𝑖1, . . . , 𝑖𝑘} runs through all cardinality-𝑘 subsets of the seg-
ment n = {1, 2, . . . , 𝑛}.
For the smallest possible value 𝑘 = 2, 𝑀 (𝑘)

𝑑
(𝑛) yields the classical and

extensively studied configuration space of 𝑛 distinct ordered points in
R𝑑 . On the other extreme, 𝑀 (𝑛)

𝑑
(𝑛) ≃ S𝑑𝑛−𝑑−1 whereas 𝑀 (𝑘)

𝑑
(𝑛) =

(
R𝑑

)𝑛
for 𝑘 > 𝑛. So, the present thesis will only deal with the cases where
3 ≤ 𝑘 < 𝑛.

THE COHOMOLOGY RING FOR 𝑑 = 1
The cohomology ring of non-𝑘-equal manifolds with coordinates in R
was first described by Baryshnikov in his preprint [1] and later stated
by Dobrinskaya and Turchin in [3, sec. 4]. The essential combinatorial
objects to consider are string preorders encoded in terms of the follow-
ing definition.

Definition 1. A string preorder is an arrangement of alternating () and []-
blocks of the form (

𝐼0
) [
𝐽1

] (
𝐼1

) [
𝐽2

]
· · ·

(
𝐼ℓ−1

) [
𝐽ℓ

] (
𝐼ℓ

)
where the sets 𝐼0, 𝐽1, . . . , 𝐽ℓ , 𝐼ℓ are mutually disjoint and their union is the
set n = {1, 2, . . . , 𝑛}. Such a string preorder determines a submanifold in R𝑛

defined by the following conditions:

• 𝑥𝑘1 = 𝑥𝑘2 if 𝑘1, 𝑘2 ∈ 𝐽𝑚 for some 𝑚 = 1, . . . , ℓ,

• 𝑥𝑖 ≤ 𝑥 𝑗 if 𝑖 ∈ 𝐼𝑚 and 𝑗 ∈ 𝐽𝑚+1 for some 𝑚 = 0, . . . , ℓ − 1,

• 𝑥 𝑗 ≤ 𝑥𝑖 if 𝑗 ∈ 𝐽𝑚 and 𝑖 ∈ 𝐼𝑚.

Hence, the first condition says that []-blocks encode collided coordi-
nates and the second and third conditions ensure that the coordinates
are ordered according to the corresponding sets from left to right.

Example 2. In R8 we can consider, for example, the string preorder

(1) [2, 3, 4] ( ) [5, 6] (7, 8),

and this preorder has the associated submanifold

{(𝑥1, 𝑥2, . . . , 𝑥8) | 𝑥1 ≤ 𝑥2 = 𝑥3 = 𝑥4, 𝑥5 = 𝑥6 ≤ 𝑥7, 𝑥8}.

Definition 3. A string preorder is said to be 𝑘-elementary or just elementary
for short, if it has the form (𝐼) [𝐽] (𝐾) with |𝐽 | = 𝑘 − 1.

Example 4. (1)[2,3,4](5,6,7,8) and (1,2,7,4,5)[6,3,8]( ) are elementary string
preorders in 𝑀 (4)

1 (8).

The elementary string preorders are generators for Borel-Moore homol-
ogy in dimension 𝑘 − 2 subject to the boundary additive relations. After
dualization, the multiplicative structure of the cohomology ring is de-
termined by the transverse intersection—intersection product—of the
corresponding submanifolds. Therefore transverse intersection of man-
ifolds associated with elementary string preorders—or, more specifi-
cally their corresponding string preorders—are the basic elements gen-
erating the cohomology ring in dimensions which are multiples of 𝑘−2.

Theorem 5 (Baryshnikov [1, Theorem 1], Dobrinskaya-Turchin [3, Sec-
tion 4]). For 𝑘 ≥ 3, the cohomology ring 𝐻∗ (𝑀 (𝑘)

1 (𝑛)) is isomorphic to the
(anti)commutative free exterior algebra generated in dimension 𝑘 − 2 by the
elementary preorders subject to the following relations:

1.
∑
𝜄∈𝐼 (−1)𝑔 ( 𝜄) (𝐼−𝜄) [𝐽+𝜄] (𝐾) = ∑

𝜅∈𝐾 (−1)𝑔 (𝜅) (𝐼) [𝐽+𝜅] (𝐾+𝜅) whenever
n can be written as a disjoint union n = 𝐼

∐
𝐽
∐
𝐾 with card(𝐽) = 𝑘−2.

2. (𝐼) [𝐽] (𝐾) · (𝐼 ′) [𝐽 ′] (𝐾 ′) = 0, for elementary preorders (𝐼) [𝐽] (𝐾) and
(𝐼 ′) [𝐽 ′] (𝐾 ′) whose intersection has a [ ]-block of cardinality larger than
𝑘 − 1.

THE COHOMOLOGY RING FOR 𝑑 > 1

The combinatorial description of the cohomology ring of 𝑀 (𝑘)
𝑑

(𝑛) given in [3] is similar to the case 𝑑 = 1. In this case the cohomology is encoded by
combinatorial objects called admissible 𝑘-forests.

Definition 6. A 𝑘-forest on n (or simply a 𝑘-forest) is an acyclic simple graph with two types of vertices, square ones and round ones, each containing a certain
subset of n. A square vertex must contain 𝑘 − 1 elements of n, and cannot be an isolated vertex; in fact the set of immediate neighbors of a square vertex must
contain a round vertex. A round vertex must contain a single element of n, and must be either an isolated vertex or have valency 1, in which case it must be
connected to a square vertex. We require that the subsets of integers inside the various vertices of a 𝑘-forest form a disjoint partition of n. Square vertices are
declared to have degree 𝑑 (𝑘 −2), while edges are declared to have degree 𝑑−1. The degree of a 𝑘-forest is then defined as the sum of the degrees of its square vertices
and edges. An orientation for a 𝑘-forest consists of three ingredients:

(a) An orientation for each edge;

(b) A total ordering for the elements inside each square vertex;

(c) A total ordering for the orientation set, i. e., the set consisting of all edges and all square vertices.

The idea of a 𝑘-forest is to encode elemental cells or manifolds in 𝑀 (𝑘)
𝑑

(𝑛) by keeping track of the sub-indexes corresponding to elements in common
in the square vertices, and denoting inequalities between the first coordinates of the corresponding coordinates with edges.

Example 7. The next figure is a forest in 𝑀3
2 (9) is an oriented 3-forest of degree 11. That 3-forest corresponds to a manifold in 𝑀3

2 (9) as it is indicated in the
right-hand side.

⇒
𝑥1 = 𝑥2, 𝑥

(1)
1 = 𝑥

(1)
2 ≤ 𝑥 (1)3

𝑥4 = 𝑥5, 𝑥
(1)
4 = 𝑥

(1)
5 ≤ 𝑥 (1)6

𝑥7 = 𝑥8, 𝑥
(1)
7 = 𝑥

(1)
8 ≤ 𝑥 (1)9

Hence, since the 𝑘-forests encode manifolds that in turn are cycles in Borel-Moore homology we have nice cup products dictated in terms of the
intersection of the corresponding submanifolds or superposition of their graphs. An example of such a product is the following:

SOME TC VALUES FOR 𝑑 = 2
𝑛\𝑘 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

𝑘 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

𝑘 + 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

𝑘 + 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

𝑘 + 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

𝑘 + 5 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

𝑘 + 6 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

𝑘 + 7 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

𝑘 + 8 ? 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

𝑘 + 9 4 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1

𝑘 + 10 ? 3 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

𝑘 + 11 ? 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1

𝑘 + 12 ? 4 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

𝑘 + 13 ? 4 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1

𝑘 + 14 ? 4 3 3 3 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

𝑘 + 15 ? ? 4 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1

𝑘 + 16 ? 5 4 3 3 3 2 2 2 2 2 2 2 2 1 1 1 1 1 1

𝑘 + 17 ? 5 4 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1

𝑘 + 18 ? ? 4 4 3 3 3 2 2 2 2 2 2 2 2 2 1 1 1 1

𝑘 + 19 ? ? 4 4 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1

𝑘 + 20 ? 6 5 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1 1

𝑘 + 21 ? ? 5 4 4 3 3 3 2 2 2 2 2 2 2 2 2 2 2 1

𝑘 + 22 ? ? 5 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2

𝑘 + 23 ? ? 5 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2

𝑘 + 24 ? ? ? 5 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2

𝑘 + 25 ? ? 6 5 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2 2

𝑘 + 26 ? ? 6 5 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2 2

𝑘 + 27 ? ? 6 5 4 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2

𝑘 + 28 ? ? ? 5 5 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2

𝑘 + 29 ? ? ? 5 5 4 4 3 3 3 3 3 2 2 2 2 2 2 2 2

𝑘 + 30 ? ? 7 6 5 4 4 4 3 3 3 3 3 2 2 2 2 2 2 2

𝑘 + 31 ? ? 7 6 5 4 4 4 3 3 3 3 3 2 2 2 2 2 2 2

𝑘 + 32 ? ? ? 6 5 5 4 4 3 3 3 3 3 3 2 2 2 2 2 2

𝑘 + 33 ? ? ? 6 5 5 4 4 4 3 3 3 3 3 2 2 2 2 2 2

𝑘 + 34 ? ? ? 6 5 5 4 4 4 3 3 3 3 3 3 2 2 2 2 2

𝑘 + 35 ? ? 8 ? 6 5 4 4 4 3 3 3 3 3 3 2 2 2 2 2

𝑘 + 36 ? ? ? 7 6 5 5 4 4 4 3 3 3 3 3 3 2 2 2 2

𝑘 + 37 ? ? ? 7 6 5 5 4 4 4 3 3 3 3 3 3 2 2 2 2

𝑘 + 38 ? ? ? 7 6 5 5 4 4 4 3 3 3 3 3 3 3 2 2 2

𝑘 + 39 ? ? ? 7 6 5 5 4 4 4 4 3 3 3 3 3 3 2 2 2

𝑘 + 40 ? ? ? ? 6 6 5 5 4 4 4 3 3 3 3 3 3 3 2 2

𝑘 + 41 ? ? ? ? 6 6 5 5 4 4 4 3 3 3 3 3 3 3 2 2

𝑘 + 42 ? ? ? 8 7 6 5 5 4 4 4 4 3 3 3 3 3 3 3 2

𝑘 + 43 ? ? ? 8 7 6 5 5 4 4 4 4 3 3 3 3 3 3 3 2

𝑘 + 44 ? ? ? 8 7 6 5 5 5 4 4 4 3 3 3 3 3 3 3 3

𝑘 + 45 ? ? ? ? 7 6 6 5 5 4 4 4 4 3 3 3 3 3 3 3

𝑘 + 46 ? ? ? ? 7 6 6 5 5 4 4 4 4 3 3 3 3 3 3 3

𝑘 + 47 ? ? ? ? 7 6 6 5 5 4 4 4 4 3 3 3 3 3 3 3

𝑘 + 48 ? ? ? 9 ? 7 6 5 5 5 4 4 4 4 3 3 3 3 3 3

𝑘 + 49 ? ? ? 9 8 7 6 5 5 5 4 4 4 4 3 3 3 3 3 3

𝑘 + 50 ? ? ? ? 8 7 6 6 5 5 4 4 4 4 3 3 3 3 3 3

𝑘 + 51 ? ? ? ? 8 7 6 6 5 5 4 4 4 4 4 3 3 3 3 3

𝑘 + 52 ? ? ? ? 8 7 6 6 5 5 5 4 4 4 4 3 3 3 3 3

𝑘 + 53 ? ? ? ? 8 7 6 6 5 5 5 4 4 4 4 3 3 3 3 3

𝑘 + 54 ? ? ? 10 ? 7 7 6 5 5 5 4 4 4 4 4 3 3 3 3

𝑘 + 55 ? ? ? ? ? 7 7 6 6 5 5 4 4 4 4 4 3 3 3 3

𝑘 + 56 ? ? ? ? 9 8 7 6 6 5 5 5 4 4 4 4 3 3 3 3

𝑘 + 57 ? ? ? ? 9 8 7 6 6 5 5 5 4 4 4 4 4 3 3 3

𝑘 + 58 ? ? ? ? 9 8 7 6 6 5 5 5 4 4 4 4 4 3 3 3

𝑘 + 59 ? ? ? ? 9 8 7 6 6 5 5 5 4 4 4 4 4 3 3 3

𝑘 + 60 ? ? ? ? ? 8 7 7 6 6 5 5 5 4 4 4 4 4 3 3

𝑘 + 61 ? ? ? ? ? 8 7 7 6 6 5 5 5 4 4 4 4 4 3 3

𝑘 + 62 ? ? ? ? ? 8 7 7 6 6 5 5 5 4 4 4 4 4 3 3

𝑘 + 63 ? ? ? ? 10 ? 8 7 6 6 5 5 5 4 4 4 4 4 4 3

𝑘 + 64 ? ? ? ? 10 9 8 7 6 6 5 5 5 5 4 4 4 4 4 3

𝑘 + 65 ? ? ? ? 10 9 8 7 6 6 6 5 5 5 4 4 4 4 4 3

MAIN RESULTS

The LS category and (higher) topological complexity of non-𝑘-equal ar-
rangements with 𝑑 = 1 were found in [6].

Theorem 8. Summarizing, the Lusternik-Schnirelmann and (higher) topo-
logical complexity for 𝑀 (𝑘)

1 (𝑛) are

cat(𝑀 (𝑘)
1 (𝑛)) =

⌊ 𝑛
𝑘

⌋
, TC(𝑀 (𝑘)

1 (𝑛)) = 2
⌊ 𝑛
𝑘

⌋
, TC𝑠 (𝑀 (𝑘)

1 (𝑛)) = 𝑠
⌊ 𝑛
𝑘

⌋
.

The invariants were fully determined by the well known upper and
lower bounds for LS category and TC:

Lemma 9 ([4, Theorem 7] and [2, Theorem 3.9]). Let 𝑋 be a 𝑐-connected
space having the homotopy type of a CW complex, then

zcl𝑠 (𝑋) ≤ TC𝑠 (𝑋) ≤
𝑠 hdim(𝑋)
𝑐 + 1

.

Here hdim(𝑋) stands for the cellular homotopy dimension of 𝑋 ,
zcl0 (𝑋) = cl(𝑋) is the cup-length of 𝑋 , and zcl𝑠 (𝑋) is the length of 𝑠-
th zero-divisors for 𝑋 .
Both bounds coincide for the case 𝑑 = 1 but, unfortunately, do not co-
incide for the case 𝑑 > 1. The inequalities determined by Lemma 9 for
non-𝑘-equal spaces for 𝑑 > 2 are:

Corollary 10 ([5], Theorem 3.3). The LS category and TC𝑠 for 𝑀 (𝑘)
𝑑

(𝑛) is
bounded by

𝑠

⌊ 𝑛
𝑘

⌋
≤ TC𝑠 (𝑀 (𝑘)

𝑑
(𝑛)) ≤ 𝑠

(⌊ 𝑛
𝑘

⌋
+

⌊ ( ⌊
𝑛
𝑘

⌋
+ 𝑏 − 1

)
(𝑑 − 1)

𝑎

⌋)
.

where 𝑎 = 𝑑 (𝑘 − 1) − 1 and 𝑏 = 𝑛 − 𝑘
⌊
𝑛
𝑘

⌋
(so 0 ≤ 𝑏 < 𝑘).

Where we identify TC0 with the LS category, TC1 is the reduced topo-
logical complexity and TC𝑠 is the reduced higher topological complex-
ity. However, a small improvement could be done by applying usual
methods of obstruction theory. Hence, the best bounds obtained so far
are the following:

Theorem 11 ([5], Theorem 3.3). For 𝑠 ≥ 1,

𝑠

⌊ 𝑛
𝑘

⌋
≤ TC𝑠 (𝑀 (𝑘)

𝑑
(𝑛)) ≤ 𝑠

(⌊ 𝑛
𝑘

⌋
+

⌈ ( ⌊
𝑛
𝑘

⌋
+ 𝑏 − 1

)
(𝑑 − 1)

𝑎
− 1

⌉)
,

where ⌈ℓ⌉ stands for the ceiling function at ℓ.

Finally, Theorem 11 could be stated in more concise terms for 𝑑 = 2:

Corollary 12 ([5], Corollary 4.3). If 3 ≤ 𝑘 < 𝑛 ≤ 𝑘2 + 𝑘 − 2 and 𝑠 ≥ 1, then

TC𝑠 (𝑀 (𝑘)
2 (𝑛)) = 𝑠

⌊ 𝑛
𝑘

⌋
.

CONCLUSION

Computing the LS category and (higher) topological complexity of these manifolds is a highly non-trivial problem with potential applications to
motion planning problems in robotics. We hope that the developments in this work can be successfully applied or generalized in the future. For
instance, an interesting open problem that would benefit from our contribution is the design of reasonably efficient motion planning algorithms of
automated guided particles that are allowed to interact (collision) among them in an organized and controlled way.
Our results show that, unlike the case of ordinary configuration spaces on R𝑑 , the parity of the dimension of the ambient Euclidean space does not
seem to be a decisive parameter for the actual value of the topological complexity of collision-controlled motion planning of particles in R𝑑 . While
the 1-dimensional case is as difficult as it can get, there is the (intuition-compatible) possibility that the higher dimensional situation exhibits lower
TC values that could actually be independent of (the parity of) 𝑑.
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