

An algorithmic discrete gradient field

MSc. Emilio J. González Rivero

Dr. Jesus González Math Department, CINVESTAV

jgonzalez@math.cinvestav.mx

Abstract

We introduce an algorithm that constructs a discrete gradient field on any simplicial complex. We show that, in all situations, the gradient field is maximal possible and, in a number of cases, optimal. We make a thorough analysis of the resulting gradient field in the case of Munkres' discrete model for $C(K_m, 2)$, the configuration space of two ordered non-colliding particles on the complete graph K_m on m vertices.

Introduction to the algorithm and some notation

Let K be a finite abstract ordered simplicial complex of dimension d with ordered vertex set (V,\preceq) . We describe and study an algorithm $\mathcal A$ that constructs a discrete gradient field W (which depends on \preceq) on K. As we will watch (both by explicit and generic examples), W is either optimal a (perhaps after a selection of \leq) or close to being optimal (for generic \preceq), depending of course on the complex K. Furthermore, as observed in (1) below, W turns out to be maximal for any K. In fact, our algorithm can be thought of as a generalization of the inclusionexclusion method (with respect to a fixed vertex) that yields an optimal gradient field on a full simplex. In the case of a general complex, the ordering ≤ plays a heuristic role that guides the inclusion-exclusion

By the order-extension principle, we may as well assume \leq is linear from the outset. Let \mathcal{F}^i denote the set of *i*-dimensional faces of K. Recall a face $\alpha^{(i)} \in \mathcal{F}^i$ is identified with the ordered tuple $[\alpha_0,\alpha_1,\cdot]$ $\alpha_0 \prec \alpha_1 \prec \cdots \prec \alpha_i$, of its vertices. In such a setting, we say that α_r appears in position r of α . The ordered-tuple notation allows us to lexicographically extend \leq to a linear order (also denoted by \leq) on the set \mathcal{F} of faces of K. We write \prec for the strict version of \prec For a vertex $v \in V$, a face $\alpha \in \mathcal{F}^i$ and an integer $r \geq 0$, let

$$\iota_r(v,\alpha) = \begin{cases} \alpha \cup \{v\}, & \text{if } \alpha \cup \{v\} \in \mathcal{F}^{i+1}, v \text{ appears in position } r \text{ of } \alpha \cup \{v\} \\ \varnothing, & \text{otherwise}. \end{cases}$$

Algorithm

At the start of the algorithm we set $W := \varnothing$ and initialize auxiliary At the start of the algorithm we set $W = \mathcal{D}$ and infinitely availables $F^i := \mathcal{F}^i$ for $0 \le i \le d$ which, at any moment of the algorithm, keep track of i-dimensional faces not taking part of a pairing in W. Throughout the algorithm \mathcal{A} , pairings $(\alpha, \beta) \in \mathcal{F}^i \times \mathcal{F}^{i+1}$ are added to W by means of a family of processes \mathcal{P}^i running for $i = d - 1, d - 2, \ldots, 1, 0$ (in that order), where \mathcal{P}^i is executed provided (at the relevant moment) both F^i and F^{i+1} are not empty (so there is a chance to add near pairings to W). Process \mathcal{P}^i consists of three levels chance to add new pairings to W). Process \mathcal{P}^i consists of three levels of nested subprocesses:

- 1. At the most external level, \mathcal{P}^i consists of a family of processes $\mathcal{P}^{i,i}$ for $i+1 \geq r \geq 0,$ executed in descending order with respect to r.
- 2. In turn, each $\mathcal{P}^{i,r}$ consists of a family of subprocesses $\mathcal{P}^{i,r,v}$ for $v \in V$, executed from the $\preceq\text{-largest}$ vertex to the smallest one.
- 3. At the most inner level, each process $\mathcal{P}^{i,r,v}$ consists of a family of instructions $\mathcal{P}^{i,r,v,\alpha}$ for $\alpha \in \mathcal{F}^i$, executed following the \preceq lexicographic order.

Instruction $\mathcal{P}^{i,r,v,\alpha}$ checks whether, at the moment of its execution, $(\alpha,\iota_r(v,\alpha)) \in F^i \times F^{i+1}$, i.e., whether $(\alpha,\iota_r(v,\alpha))$ is "available" as a new pairing. If so, the pairing $\alpha\nearrow \iota_r(r,\alpha)$ is added to W, while α and $\iota_r(v,\alpha)$ are removed from F^i and F^{i+1} , respectively. By construction, at the end of the algorithm, the resulting family of pairs W is a partial matching in F. Furthermore, from its construction,

all faces and cofaces of an unpaired cell are involved in a W-paring,

so that ${\cal W}$ is maximal. Most importantly:

Proposition 0.1. W is a gradient field.

This algorithm can be modified to be more computational-efficient, even though we have shown this version due to its theoretical advan-

Example 0.1. Figure 1 gives a triangulation of the projective plane $\mathbb{R}P^2$. The gradient field shown by the heavy arrows is determined by $\mathcal A$ using the indicated ordering of vertices. The only critical faces are $\left[6\right]$ (in dimension 0), [2, 5] (in dimension 1) and [1, 3, 4] (in dimension 2), so optimality of the field follows from the known mod-2 homology of $\mathbb{R}P^2$ Although the gradient field depends on the ordering of vertices, we have verified with the help of a computer that, in this case, all possible 720 gradient fields (coming from the corresponding 6! possible orderings of vertices) are optimal. A corresponding optimal gradient field on the 2-torus (and the vertex-order rendering it) is shown in Figure 2. This time the critical faces are [9] (in dimension 0), [2,8] and [5,8] (in dimension 1) and [1,3,7] (in dimension 2). The torus case is interesting in that there are vertex orderings that yield non-optimal gradient fields. In general, a plausible strategy for choosing a convenient or dering of vertices consists on assuring the largest possible number of vertices with high \preceq -tag so that no two such vertices lie on a common face. For instance, in our torus example, no pair of vertices taken from

7, 8 and 9 lie on a single face. *Optimality refers to the property that the number of critical cells in a given dimension agrees with the corresponding Betti number.

Figure 1: Algorithmic gradient field in the projective plane

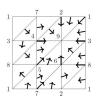


Figure 2: Algorithmic gradient field in the 2-torus

Collapsibility conditions

In this section we identify a set of conditions implying collapsibility

Definition 0.1. A vertex α_i of a face $\alpha = [\alpha_0, \dots, \alpha_k] \in \mathcal{F}^k$ is said to be maximal in α if $\partial_{\alpha_i}(\alpha) \cup \{v\} \notin \mathcal{F}^k$ for all vertices v with $\alpha_i \prec v$. When α_i is non-maximal in α , we write

$$\alpha^i := \max\{v \in V : \alpha_i \prec v \text{ and } \partial_{\alpha_i}(\alpha) \cup \{v\} \in \mathcal{F}^k\} \text{ and } \alpha(i) := \partial_{\alpha_i}(\alpha) \cup \{\alpha^i\}.$$

Note that α^i is maximal in $\alpha(i)$, and that α^i is not a vertex of α . Herating the construction, for $\alpha = [\alpha_0, \dots, \alpha_k] \in \mathcal{F}^k$ and a sequence of integers $0 \le i_1 < i_2 < \dots < i_p \le k$, we say that the ordered vertices $\alpha_{i_1}, \alpha_{i_2}, \dots, \alpha_{i_p}$ are non-maximal in α provided:

- ullet α_{i_1} is non-maximal in α , so we can form the face $\alpha(i_1)$;
- ullet α_{i_2} is non-maximal in $\alpha(i_1)$, so we can form the face $\alpha(i_1,i_2):=$ $\alpha(i_1)(i_2);$

etcetera.

 $\bullet \, \alpha_{i_p}$ is non-maximal in $\alpha(i_1,\ldots,i_{p-1}),$ so we can form the face $\alpha(i_1,\ldots,i_p):=\alpha(i_1,\ldots,i_{p-1})(i_p).$

When p=0 (so there is no constructing process), $\alpha(i_1,i_2,\ldots,i_p)$ is inter-

Lemma 0.1. No vertex of a redundant k-face $\alpha \in \mathcal{F}^k$ is maximal in α .

Corollary 0.1. The following conditions are equivalent for a k-face $\alpha =$ $[\alpha_0, \dots, \alpha_k] \in \mathcal{F}^k$

(1) α_k is maximal in α .

(2) $\partial_{\alpha_k}(\alpha) \nearrow \alpha$.

Proposition 0.2. For a face $\alpha = [\alpha_0, \dots, \alpha_k] \in \mathcal{F}^k$ and an integer $r \in \{0, 1, \dots, k\}$ with α_r maximal in α , the pairing $\partial_{\alpha_r}(\alpha) \nearrow \alpha$ holds provided

for any sequence $r+1 \le t_1 < \cdots < t_p \le k$, the ordered vertices $\alpha_{t_1}, \dots, \alpha_{t_p}$ are non-maximal in α .

Definition 0.2. A vertex α_r of a face $\alpha = [\alpha_0, \dots, \alpha_k] \in \mathcal{F}^k$ is said to be collapsing in α provided:

(i) The face α is not redundant.

(ii) Condition (0.2) holds.

(iii) For every v with $\alpha_r \prec v$ and $\partial_{\alpha_r}(\alpha) \cup \{v\} \in \mathcal{F}^k$, there is a vertex α_j of α with $v \prec \alpha_j$ such that α_j is collapsing in $\partial_{\alpha_r}(\alpha) \cup \{v\}$.

The first and third conditions in Definition 0.2 hold when α_r is maximal in α . Note the recursive nature of Definition 0.2.

Theorem 0.1. If α_r is collapsing in α , then $\partial_{\alpha_r}(\alpha) \nearrow \alpha$.

Application to configuration spaces

We use the gradient field in the previous section in order to describe the cohomology ring of the configuration space of 2 ordered points on a complete graph. Definition 0.3. Munkres' homotopy simplicial model

Definition 0.3, minimizes inomity simple at most interest that Lth Km be the 1-dimensional skeleton of the full (m-1)-dimensional simplex on vertices $V_m = \{1, 2, \dots, m\}$. Thus $|K_m|$ is the complete graph on the m vertices. The homotopy type of $Conf(|K_m|, 2)$ is well understood for $m \le 3$, so we as sume $m \geq 4$ from now on. We think of K_m as an ordered simplicial complex with the natural order on V_m , and study Simplicial complex. Onto the intrinsic of N_m , and is study $Conf(|K_m|, 2)$ through its simplicial homotopy model C_m [3, Lemma 70.1]. The condition $m \geq 4$ implies that C_m is a pure 2-dimensional complex, i.e., all of its maximal faces have dimension 2. Furthermore, 2-dimensional faces of C_m have one of the forms

$$\begin{bmatrix} a & a & d \\ b & c & c \end{bmatrix} \qquad or \qquad \begin{bmatrix} a' & c' & c' \\ b' & b' & d' \end{bmatrix} \tag{2}$$

where

$$d > a \notin \{b, c\}, \ b < c \neq d, \ d' > b' \notin \{a', c'\} \ and \ a' < c' \neq d'.$$

Proposition 0.3. Let W_m be the gradient field on C_m constructed by the algorithm in Section ?? with respect to the lexicographic order on the vertices $\stackrel{a}{b}=(a,b)\in V_m\times V_m\setminus \Delta_{V_m}$ of C_m . The full list of W_m -pairings is:

(a) $\begin{bmatrix} a & a \\ b & d \end{bmatrix} \nearrow \begin{bmatrix} a & a & m \\ b & d & d \end{bmatrix}$, for a < m > d.

(b) $\begin{bmatrix} a & a \\ b & m \end{bmatrix} \nearrow \begin{bmatrix} a & a & m-1 \\ b & m & m \end{bmatrix}$, for a < m-1.

 $\begin{array}{l} (c) \left[\begin{matrix} ac \\ b \end{matrix} \right] \nearrow \left[\begin{matrix} ac \\ b \end{matrix} \right], \textit{for } b < m > c. \\ (d) \left[\begin{matrix} ab \\ b \end{matrix} \right] \nearrow \left[\begin{matrix} ac \\ b \end{matrix} \right], \textit{for } b < m - 1. \\ \end{array}$

 $\begin{array}{c} (e) \begin{bmatrix} ac & bd \\ bd \end{bmatrix} \nearrow \begin{bmatrix} ac & bd \\ bd \end{bmatrix} , for \ a < c, \ b < d, \ b \neq c \ and \ (c < m > d \ or \ c = m > d + 1). \end{array}$

(f) $\begin{bmatrix} a & c \\ b & d \end{bmatrix}$ \nearrow $\begin{bmatrix} a & a & c \\ b & d & d \end{bmatrix}$, for a < c, b < d, $a \ne d$ and (b = c < m > d or c + 1 < m = d).

(g) $\left[egin{smallmatrix} a \\ b \end{smallmatrix} \right] \nearrow \left[egin{smallmatrix} a & m \\ b & m-1 \end{smallmatrix} \right]$, for either b < m-1 or a < m-1 = b.

(h) $\begin{bmatrix} a \\ m \end{bmatrix} \nearrow \begin{bmatrix} a & m-1 \\ m & m \end{bmatrix}$, for a < m-1.

(i)
$$\begin{bmatrix} m-1 \\ m \end{bmatrix} \nearrow \begin{bmatrix} m-1 m-1 \\ m-2 & m \end{bmatrix}$$
.

In particular, the critical faces are:

(j) In dimension 0, the vertex $\begin{bmatrix} m \\ m-1 \end{bmatrix}$.

(k) In dimension 1, the simplices:

(k.1)
$$\begin{bmatrix} am-1 \\ b & m \end{bmatrix}$$
, with either $a = m-1 > b+1$ or $a < m-1 \ge b$.

 $\begin{array}{ll} \text{(k.2)} & \begin{bmatrix} m m \\ b \ d \end{bmatrix}, \text{ with } d < m-1. \\ \text{(k.3)} & \begin{bmatrix} a \ c \\ mm \end{bmatrix}, \text{ with } c < m-1. \end{array}$

(1) In dimension 2, the simplices $\begin{bmatrix} aac \\ bdd \end{bmatrix}$ with $b \neq c < m > d$.

The Morse coboundary map $\delta\colon \mu^0(C_m) \ \to \ \mu^1(C_m)$ is forced to vanish since $c_0 = 1$. More interestingly:

Proposition 0.4. The coboundary $\delta: \mu^1(C_m) \to \mu^2(C_m)$ vanishes on the duals of the critical faces of types (k.2) and (k.3) in Proposition 0.3. For the duals of the critical faces of type (k.1)

$$\delta\left(\begin{bmatrix} a & m-1 \\ b & m \end{bmatrix}\right) = \sum \begin{bmatrix} a & a & x \\ y & b & b \end{bmatrix} - \sum \begin{bmatrix} a & a & x \\ b & y & y \end{bmatrix} + \sum \begin{bmatrix} x & x & a \\ b & y & y \end{bmatrix} - \sum \begin{bmatrix} x & x & a \\ y & b & b \end{bmatrix},$$
(4

where all four summands run over all integers x and y that render critical 2-faces. Explicitly, a < x < m in the first and second summations, x < a in the third and fourth summations, b < u < m in the second and third summations, u < bin the first and fourth summations, and $b \neq x \neq y \neq a$ in all

The full cohomology R-algebra $H^*(Conf(K_m, 2); R)$ for any commutative unital ring R will be described in a next paper which is close to be send for publishing.

References

- [1] Farley, Daniel, and Lucas Sabalka. "On the cohomology rings of tree braid groups." Journal of Pure and Applied Algebra 212.1 (2008): 53-71.
- [2] Forman, Robin. "Discrete Morse theory and the coho-mology ring." Transactions of the American Mathe-matical Society 354.12 (2002): 5063-5085.
- [3] Munkres, James R. "Elements of algebraic topology.[S1]." (1984): 21.