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Abstract

We introduce an algorithm that constructs a discrete gradient field on any simplicial complex. We show that, in all situations,
the gradient field is maximal possible and, in a number of cases, optimal. We make a thorough analysis of the resulting
gradient field in the case of Munkres’ discrete model for C(K;,,2), the configuration space of two ordered non-colliding
particles on the complete graph K, on m vertices.

Introduction to the algorithm and some
notation

Let K be a finite abstract ordered simplicial complex of dimension d
with ordered vertex set (V, <). We describe and study an algorithm A
that constructs a discrete gradient field I (which depends on <) on K.
As we will watch (both by explicit and generic examples), W is either
optimal” (perhaps after a selection of <) or close to being optimal (for
generic =), depending of course on the complex K. Furthermore, as
observed in (1) below, W turns out to be maximal for any K. In fact,
our algorithm can be thought of as a generalization of the inclusion-
exclusion method (with respect to a fixed vertex) that yields an optimal
gradient field on a full simplex. In the case of a general complex, the
ordering = plays a heuristic role that guides the inclusion-exclusion
process.

By the order-extension principle, we may as well assume = is linear
from the outset. Let 7' denote the set of i-dimensional faces of K. Re-
call a face a!) € F' is identified with the ordered tuple [ag, oy, -, o],
ag < a < - =< q; of its vertices. In such a setting, we say that o,
appears in position r of «. The ordered-tuple notation allows us to lex-
icographically extend < to a linear order (also denoted by <) on the
set F of faces of K. We write < for the strict version of <.

For a vertex v € V, a face « € 7' and an integer r > 0, let

(v, a) = {(;U {v},
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ifaU{v} e F*ho appears in position r of o U {v}:
otherwise.

At the start of the algorithm we set W := & and initialize auxiliary
variables F' := F' for 0 < i < d which, at any moment of the al-
gorithm, keep track of i-dimensional faces not taking part of a pair-
ing in W. Throughout the algorithm A, pairings (a, 8) € F' x F'*!
are added to W by means of a family of processes P’ running for
i=d—1,d—2,...,1,0 (in that order), where P’ is executed provided
(at the relevant moment) both F? and F't! are not empty (so there is a
chance to add new pairings to W). Process P’ consists of three levels
of nested subprocesses:

1. At the most external level, P' consists of a family of processes P""
fori+12>r >0, executed in descending order with respect to r.

2.In turn, each P"" consists of a family of subprocesses P forv eV,
executed from the <-largest vertex to the smallest one.

3. At the most inner level, each process P consists of a fam-
ily of instructions P*""* for o € F, executed following the =-
lexicographic order.

Instruction P’" “""* checks whether, at the moment of its execution,

(a,tr(v,0)) € F' x F'*1, i, whether (q, (v, @) is “available” as a

new pairing. If so, the pairing «v /' 1,-(v, «v) is added to W, while v and

(v, @) are removed from F' and F** 1 respectively. By construction,

at the end of the algorithm, the resulting family of pairs I is a partial

matching in F. Furthermore, from its construction,

all faces and cofaces of an unpaired cell are involved in a W-paring,
1)
so that IV is maximal. Most importantly:
Proposition 0.1. W is a gradient field.
This algorithm can be modified to be more computational-efficient,
even though we have shown this version due to its theoretical advan-
tages.
Example 0.1. Figure 1 gives a triangulation of the projective plane RP2
The gradient field shown by the heavy arrows is determined by A us-
ing the indicated ordering of vertices. The only critical faces are [6] (in
dimension 0), [2, 5] (in dimension 1) and [1, 3, 4] (in dimension 2), so op-
timality of the field follows from the known mod-2 homology of RP.
Although the gradient field depends on the ordering of vertices, we
have verified with the help of a computer that, in this case, all possible
720 gradient fields (coming from the corresponding 6! possible order-
ings of vertices) are optimal. A corresponding optimal gradient field
on the 2-torus (and the vertex-order rendering it) is shown in Figure
2. This time the critical faces are [9] (in dimension 0), 2,8] and (5, 8] (in
dimension 1) and [1,3,7] (in dimension 2). The torus case is interest-
ing in that there are vertex orderings that yield non-optimal gradient
fields. In general, a plausible strategy for choosing a convenient or-
dering of vertices consists on assuring the largest possible number of
vertices with high =<-tag so that no two such vertices lie on a common
face. For instance, in our torus example, no pair of vertices taken from
7,8 and 9 lie on a single face.

“Optimality refers to the property that the number of critical cells in a given dimension agrees with
the corresponding Betti number.
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Figure 2: Algorithmic gradient field in the 2-torus

Collapsibility conditions

In this section we identify a set of conditions implying collapsibility
of a given face.

Definition 0.1. A vertex a; of a face a = |ay, ..., o] € F* is said to be
maximal in « if Op,(a) U{v} ¢ fkfurall vertices v with a; < v. When «;
is non-maximal in «v, we write

o' = max{v € V: a; < vand do,()U{v} € F*} and (i) = da,(@)U{a’}.

Note that o' is maximal in a(i), and that o' is not a vertex of a.

Iterating the construction, for o = [ay, ..., ;) € F* and a sequence of
integers 0 < iy < iy < --- < iy < k, we say that the ordered vertices
Qs Ay oy O, ATC non-maximal in o provided:

® ;, is non-maximal in o, so we can form the face a(iy);

o q;, is non-maximal in a(iy), so we can form the face a(iy,iz) =

a(iy)(ig);

etcetera,

o, is non-maximal in af(iy, ... i,—1), so we can form the face
aliy, ..., ip) = alit, ... ip—1)(ip).

When p = 0 (so there is no constructing process), a(iy, i, . .. ,ip) is inter-

preted as a.

Lemma 0.1. No vertex of a redundant k-face o € F* is maximal in a.
Corollary 0.1. The following conditions are equivalent for a k-face o =
lag, ..., o) € F*

(1) vy, is maximal in cv.

(2) Dy (r) /v

Proposition 0.2. For a face o = [ay..... o] € F* and an integer
r € {0,1,...,k} with o, maximal in «v, the pairing 9a, (o) /* « holds
provided

for any sequence r+1<t) <. <t, <k,

the ordered vertices ay,. ... ay, are non — mazximal in a.
Definition 0.2. A vertex oy of a face a = |ay, ..., ) € F" is said to be

collapsing in o provided:
(i) The face o is not redundant.
(ii) Condition (0.2) holds.
(iii) For every v with cy < v and 9o (o) U {v} € F¥, there is a vertex ajof
a with v < ay such that aj is collapsing in du, (@) U {v}.
The first and third conditions in Definition 0.2 hold when a; is max-
imal in . Note the recursive nature of Definition 0.2.
Theorem 0.1. If o, is collapsing in «v, then d, () /* cv.

Application to configuration spaces

We use the gradient field in the previous section in order to describe
the cohomology ring of the configuration space of 2 ordered points
on a complete graph.

Definition 0.3. Munkres” homotopy simplicial model

Let Iy, be the 1-dimensional skeleton of the full (m — 1)-
dimensional simplex on vertices Vy, = {1,2,...,m}. Thus
| K| is the complete graph on the m vertices. The homotopy
type of Conf(| K|, 2) is well understood for m < 3, so we as-
sume m > 4 from now on. We think of Ky, as an ordered
simplicial complex with the natural order on Vy,, and study
Conf(|Km|,2) through its simplicial homotopy model C, [3,
Lemma 70.1]. The condition m > 4 implies that C,, is a pure
2-dimensional complex, i.e., all of its maximal faces have di-
mension 2. Furthermore, 2-dimensional faces of C,, have one

of the forms
aad
bee

A
or [;/ ;)/ ;i’} )

where

d>a¢{bc} b<c#d d>V¢{d,J} and o < #d.

3)

Proposition 0.3. Let W), be the gradient field on Cy, con-
structed by the algorithm in Section 22 with respect to the lex-
icographic order on the vertices Z = (a,0) € Vip x Vip \ Ay,
of Cyy,. The full list of W,-pairings is:
@) [35] 2 [335 ] for a < m > d.
W [a] 7 [pamt] fora<m—1.
@[] 7 [f55] forb<m> e

am am m
@ [35] 2[5 ) forb<m —1.
@[3 /i) fora<cb<db#cand(c<m>dor

c=m>d+1).

OS] s fora<e b<da#dand (b=c<m>
dorc+1l<m=d).

® [ [
o] 7 [mmt] fora<m—1.
Ol P i el

In particular, the critical faces are:

, for either b <m —lora <m—1=b.

m

(j) In dimension 0, the vertex [m—i .

(k) In dimension 1, the simplices:

(k1) {‘;’”’_l},with cithera =m—1>b+lora<m—1>b.

m
(k2) [y, withd <m—1.
(k3) [oo] withe<m— 1.

mm.
aac

(1) In dimension 2, the simplices [§45] with b # c < m > d.

The Morse coboundary map ¢: u“[(?m) — ,ul( ’m) s
forced to vanish since ¢j = 1. More interestingly:
Proposition 0.4. The coboundary o : 1 (C) = p2(Cy) van-
ishes on the duals of the critical faces of types (k.2) and (k.3) in
Proposition 0.3. For the duals of the critical faces of type (k.1)
we have

flam—1 aax aax
(EraD-=hei-=6
rra TrTa
+z [b yy] 72[3/ b b}'
where all four summands run over all integers x and y that
render critical 2-faces. Explicitly, a < x < m in the first and
second summations, x < a in the third and fourth summa-
tions, b < y < m in the second and third summations, y < b
in the first and fourth summations, and b # x # y # a in all
four summations.
The full cohomology R-algebra H*(Conf(K;,,2): R) for

any commutative unital ring R will be described in a next
paper which is close to be send for publishing.
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