Mutations, dilogarithm, and pentagon relation

Tomoki Nakanishi
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Bases for Cluster Algebras, The Casa Mateméatica Oaxaca (CMO), September 25-30, 2022
to celebrate 60th birthday of Bernard Leclerc

This talk is mainly based on the review article:

[N21] T. Nakanishi, Cluster algebras and scattering diagrams, Part Ill. Cluster scattering diagrams,
preliminary draft for a monograph, arXiv:2111.00800, v4, 108 pp.

This slide will be put on my website soon.
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Cluster algebra vs cluster scattering diagram

Cluster scattering diagrams (CSDs) were introduced by [GHKK18].
[GHKK18] M. Gross, P. Hacking, S. Keel, M. Kontsevich, Canonical bases for cluster algebras,
J. Amer. Math. Soc. 31 (2018), 497608, arXiv:1411.1394 [math.AG]

The following work is also fundamental for more general scattering diagrams.

[KS14] M. Kontsevich, Y. Soibelman, Wall-crossing structures in Donaldson-Thomas invariants,
integrable systems and mirror symmetry,

in Homological mirror symmetry and tropical geometry, Lect. Notes Unione ltal., vol. 15, Springer,
2014, pp. 197-308; arXiv:1303.3253 [math.AG]

cluster algebra / cluster pattern CSD

initial data | B: r x r skew-symmetrizable integer matrix | B: the same as left

(+ auxiliary data) | x = (z1,...,x,): r-tuple of variables N': lattice of rank r
y = (y1,...,yr): r-tuple of variables ei,...,e,. basisof N
principle of construction | mutation consistency
structure behind | — structure group GG

The most basic result in [GHKK18]

@ The G-fan for a cluster pattern is embedded in the corresponding CSD.
Thus, the CSD knows everything about the cluster pattern.

@ In addition, the CSD contains a highly complex structure outside the G-fan (the Badlands).
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Example: G-fan vs CSD

Example: Initial data

0O -3
r =2, B_<3 O)

G-fan = the geometrical presentation of G-matrices = tropicalization of a cluster pattern
(detropicalization: The cluster pattern can be reconstructed from it.)

> _______ J[ N + ‘ " ~ S'J-elhdfiwl/lv

-

CSD (only the support is presented): constructed inductively on the degree with consistency

N +he Bad lams
NN Er
demge

deg <1 deg < 2 deg < 3 deg < 4 EDastovx
~Mandel )
The force is balanced between “the Light side” and “the Dark side”.
So, it is natural to regard the cluster pattern and the CSD as “one inseparable object”. J
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Badlands (the Dark side)

Badlands National Park, South Dakota, USA
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Goal of Talk

| explain the roles of the dilogarithm (dilogarithm elements) and the pentagon relation in cluster
algebras and CSDs.

The conclusion is very simple.

Summary (Message)

@ The dilogarithm interpolates the two principles, mutation and consistency.

@ The dilogarithm elements and the pentagon relation are everything for CSDs.

This point of view was implicit in [GHKK18] and clarified explicitly in [N21].
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2. Mutations and dilogarithm
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Fock-Goncharov decomposition

(B,y): agiven initial Y'-seed
Consider a sequence of mutations
123% e 'ukip_]_
(B,y) = (B(0),y(0)) — (B(1),y(1)) — .-+ —" (B(P),y(P)).
We regard each mutation 5, as a field isomorphism

pis): Qly(s+1) — Qly(s))
Ur, () b= ks,
yils +1) ~ {yf(s)yks (5)'0kai N (1 4 g (5)%) 7 PRail®) i oL k.

Here, the RHS is independent of e € {1, —1}.
For €, we especially choose the sign (tropical sign) < of the corresponding c-vector ci (s).
Then, we consider the decomposition

pu(s) = p(s) o7(s),

7(s): Q(y(s+1)) — Q(y(s))
y_sl (s) 1 = kg,
D Lo, () O ik,
p(s): Qy(s)) — Q(y(s))

vi(s) = ()L g, (5)%) ki ()
We call it the Fock-Goncharov decomposition.
The map 7(s) is the tropical part, while the map p(s) is the automorphism part of ji(s).
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Composition of the Fock-Goncharov decompositions

Next, we introduce compositions of the tropical parts (s = 0,..., P — 1)
7(5;0) :=7(0) o 7(1) 0 -~ 0 7(s) : Qly(s + 1)) — Qy).
Thanks to the choice of the sign e, the following formula holds:
7(5:0)(yi (s + 1)) =y T (¢, (s + 1): e-vector)

We have a commutative diagram

T(P —1 T(P —2;0
Q(y(P)S — &(Y(P — 1)) ( ) Q(y)
u(P —1) F&lmp—n l“P_”
(P — 2) (P — 3;0)
Qy(P —-1)) = Q(y(P —2)) Qy)
(1) r0)
Q(y(2)) — Q(y(1)) ——= Q(y)
L& lmn a(1)
or(1) — Vs o)
w8 | g0
Q(y)

By the commutativity, we have the formula

- (s c; (s +8 - LS
q(s) (5 ) = gD (1 4y TR O o (6) 1= e e, (9).
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Poisson bracket and dilogarithm

Following [Fock-Goncharov09, Gekhtman-N-Rupel16], we reformulate the above automorphism
(s (s ot (5) b s
Q(S)(y%( )) =y i( )(1—|—y ks ( )) bgi(s)

by the dilogarithm. Vo ndebein
e Following [Gekhtamn-Shapiro-Wesstein02], consider a Poisson bracket on Q(y) as

{vi,yi} = dibiiyiyi,

where D = diag(dq, . .., d,) is any rational skew-symmetrizer of B.
e Recall the Euler dilogarithm:
Lis () il 7 d(L'( ) i(_l)jHj log(1 + x)
1 xr) = -—= I, r—\—Lll — X = ———— I =10 XI).
2 p 2 Az 2 s J g

e Also recall the following fact [Nakanishi-Zelevinsky12]:
DB(s) = C(s)T (DB)C(s).

e Using the above formulas, one can derive

el (s c,; (s c;(s el (s),— (s
{esdyy ' Lia(—y ks ),y (D} = 4% () Jog(1 4 s ) Toksi (),

Thus, the automorphism q(s) is described as the time-one flow by the Hamiltonian %i— z Q v, —Y 1

€s

H(s) := y

+ S
LiQ(—ycks ( )).
ks
This gives an intrinsic connection between mutations and dilogarithm.

([FGO09] used this observation to quantize mutations with the quantum dilogarithm.)
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Lie algebra gq

Temporally, forget about the initial skew-symmetrizable matrix B.

e initial data
Q = (w;;): skew-symmetric r x r rational matrix
N ~ Z": lattice of rank r
e1,...,er. basisof N
The data determines the followings:
@ (a). skew-symmetric bilinear form {-,-} : N x N — Q:

{ei, ej} = Wi
@ (b). semi-group of positive elements NT
: /
N+::{n:2aiei|a¢€ZZO,n;é()}. ///r
=1 '—‘QP—--——-

e Lie algebra g
Define an N -graded Lie algebra go, associated with the above data as follows:
@ basis (generator): X,, (n € NT)

neE N+
@ Lie bracket

[Xn, Xn/] — {n, n/}Xn+n/ .
It is easy to check the Jacobi identity.
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Structure group Gq

e completion go
Forn =Y. a;e; € N1, define deg(n) as

deg(n) = Zr: a;.
=1

Then, we have the completion g, of g with respect to deg. An element of g, has the form

Z cnXn (possibly infinite sum)
n€N+

e Group G
We define a group G, as follows:
Gao = {exp(X) | X € ga},
where
exp: g — Gq
is a formal bijection, and the product is defined by the Baker-Campbell-Hausdorff (BCH) formula

exp(X) exp(Y')

= exp|( X +Y + 1[X,Y] + i[X, [ X, Y]] — i[Y, (X, Y]]+ ).
2 12 12

@ This is the relation of the formal sumexpx = > 72, x® / k! of an element x of a Lie algebra.
@ Since §is N T-graded, the infinite sum of the RHS is well-defined.

This construction of G, is due to [Kontsevich-Soibelman14]. There is no specific name of Gg,.

We call it the structure group of the forthcoming scattering diagrams.
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Normal subgroup G>* and quotient G=*

We write G as G, when there is no confusion.

e Normal subgroup G~*
For any positive integer ¢, we define

(NT)”t .= {n e NT | deg(n) > ¢£}.

Let G™* be the set of all elements of G having the form

exp( > chn> (possibly infinite sum).
ne(N+)>%¢

Then, G~* is a normal subgroup of G.

e Quotient group G=*
For the above G~ ¢, we define

G=f.=aGq/G”".

By the construction, we have
G = lim G=*.

$—

Infinite product in G

The infinite product in G is given by the limit of the finite product in G=* compatible with the
canonical projections 7, : G — Gy.
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Dilogarithm elements (Algebraic formulation of dilogarithm)

e Recall the Euler dilogarithm
<01 d > (—1)I T
Liz(z) := » j—Q:UJ, x%(—Lig(—x)) => %xj = log(1 + ).

j=1 j=1
e Dilogarithm element: For each n € N1, we define the dilogarithm element for n

Jj+1
(1] —eXp<Z( 1) 3n>EG.

=1

e y-representation of G: We define the action of X,, on the formal power series ring Q[[y]] of

variablesy = (y1,...,vy.,) as / /
Xn(yn ) = {n,n/}yn+n :
This is a derivation, and it induces the group homomorphism

, i G Aut(Q[lyl]), exp(X) — Z X" /K1

We call it the y-representation of G. Under this actlon we have

win)(y") = y™ L +y™)
In particular, we recover the automorphism part q(s) of the Fock-Goncharov decomposition as

(s (s o ()b (s B
\IJ[CZ_S(S)] €s/dk:s (ycz( )) — yC’L( )(1+y ks( )) bkzs'z,( ) — q(S)(yCl( ))

@ A dilogarithm element ¥ [n] ™~ corresponds to (the time-one flow of) the Hamiltonian
Liz(—y").

@ The Poisson bracket is replaced with the group G and its action. .
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Pentagon relation (Algebraic formulation of pentagon identity)

Advantages of working with the group G

@ We can study the relations among ¥[n]’s in G.
@ Infinite products are available in the group G.

@ All relevant representations (y-rep, x-rep, principal z-rep, etc) and their mutations are treated
in a unified and more intrinsic way.

V.

The dilogarithm elements ¥[n] (n € N ) satisfy a remarkable relation in G.

Theorem [GHKK18, N21]

Foranyn’/,n € N* and ¢, ¢’ € Q, the following relations hold:
a). If {n",n} =0,

/

(commutative relation) ¥[n']® W[n]® = W[n]°W[n']" .
b). If {n’,n} = c (£ 0),
(pentagon relation) U[n']*W[n]* ¢ = U[n] U[n + n']*/ U [n]HC.

§

Proof. (a) [X,, X /] = {n,n'}X,_,» = 0. (b) Use y-representation. [J
This is an algebraic formulation of the pentagon identity (Abel’s identity) for the Euler dilogarithm

1 1 —
Liz(x)+L12(y)+Liz(—w) +L12(1—xy)+Liz< y)
1 —=xy 1 —=xy

7'('2

1l—=x 11—y
= — —logzlog(l —z) —logylog(l —y) — log log :
2 1 Y 1 —xy
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We continue to use the initial data:

Q = (w;;): skew-symmetric r x r rational matrix,
N ~ 7" lattice of rank ; e1, . . . , e,.: basis of N,
G = Gq: the group determined by the above data
e Additional definitions

@ M :=Hom(N,Z) ~7Z", Mg := M ®; R ~ R"
(A scattering diagram is defined in the space Mr.)

@ (-,-): N x Mr — R: the canonical paring and its linear extension.
@ Forn € N, we define the hypersurface n* in My as
nT = {z € Mg | (n,z) = 0}.
@ Forn € N, we say it is primitive if it is not divisible by t € Z~1 in NT.
Let N, denote the set of all primitive elements in N*.

@ Forn ¢ N;Fr, let G|l be the abelian subgroup of G' consisting of all elements $1S [ n
oA

exp(Z;";l c; X jn) (possibly infinite sum). We call it the parallel subgroup for n. on O N
e Wall — —\
— . B 3 N L
We call a triplet w = (9, g)», a wall, where ﬂa n
@ normal vector: n € N\, s

4

@ support: 0 C n—, aconein My of dimension » — 1 (not necessarily strongly convex)

@ wall element: g € G|l

Ex: Forn € NT

T, w=(n",¥[n]), is awall
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Scattering diagrams

e Scattering diagram

@ Acollection of walls ® = {wx = (0x,9x)n, }rea IS a scattering diagram if it satisfies the

following finiteness condition:
For any positive integer ¢, there are only finitely many w, such that 7, (g, ) # id.

(Here, 7, : G — G=* is the canonical projection.)
@ For each positive integer ¢, the following (finite) subset ®, of © is called the reduction of ® at
degree 4:
Dy ={wx €D | mp(gx) # id}.
@ The union of the supports of walls Supp(®) := (J, A 0 is called the support of .

e Path-ordered product

For a scattering diagram ® and a smooth curve ~ in My satisfying a certain generic condition (an
admissible curve), the path-ordered product po -, € G is defined as follows:

For each positive integer ¢, when ~ crosses the walls w, ..., wi of ®, in this order, we set

— %k €1
Po,y = 9F 95t

po 4 = el_i)rg() po,,~ (well-defined thanks to the finiteness condition.)

Here, the intersection sign ; is defined as below.

8 81:1

6221
84:1
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Consistent scattering diagrams

e equivalence
Scattering diagrams © and ®’ are equivalent.

def .
£  For any admissible curve ~, Po,~ = pops - holds.

For a given scattering diagram 2, we have infinitely many equivalent scattering diagrams by 3

splitting and unifying the supports of walls and wall elements. 3eg2 s 4—

e consistency

A scattering diagram © is consistent if, for any admissible closed curve v, po ~ = id holds.

e Existence theorem 7 C,f
CTi={z€ Mp|{e,2z)>0 (i=1,...,7)}, ¥ -
C ={z€ Mp|{ei,z)y <0 (i=1,...,7)}.

Let v, _ be any admissible curve starting in Int(C™) and ending in Int(C ™). e C

For any consistent scattering diagram %, any wall of © does not intersect Int(Ci). So, an element
g(D) :=po vy € G is uniquely determined, and it only depends on the equivalence class of ©.

Theorem ([KS14, GHKK18])
The following map is bijective:

{equivalence classes of consistent scattering diagrams} — G
(D] = g(?D).

The proof depends on some (abstract) decompositions of G.
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Rank 2 example: CSD of type A,

Covaivted o tton! as

Q. How can we construct CS5s more explicitly?

Some (special) consistent scattering diagrams can be constructed only from dilogarithm elements
and the pentagon relation.

Throughout all examples below, let

0 -1
Q:(]_ O), {62,61}21.

Example 1. We have the pentagon relation
Ulea|Wle1] = Yler|¥ler + ex]¥les].
This is interpreted as a (unique) consistent relation
PD,v1 = PD,vy
for the consistent scattering diagram © with walls

wi = (e1, ¥lei])ey, w2 = (ez, ¥lea])ey, Wz = (Rxo(e] —e3), Uler + ea])es ey

>
A
,/4/72

W3

This is indeed a CSD of type As. (The definition of a CSD will be given later.)

The support of © also coincides with the G-fan of type As. 21725
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Rank 2 example: CSD of type B,

Example 2. Below, for n = nie; + noea, we write ¥[n] as nl} .

Applying the pentagon relation repeatedly, we have
012 [1] _ [o] /1] [1] Jol\ _ [1] [1] [o] [1] [o
10__1_011_0_1111

1] 1117 [1] [ol?

- _O_ 1 20 |1 °

The LHS is anti-ordered, while the RHS is ordered. This gives a (unique) consistent relation for the

following consistent scattering diagram ©:

1% [1
1 2
Here, the identification My ~ R? is given by e* + e, e} /2 — es.
This is a CSD of type B5. The support of © also coincides with the G-fan of type Bs.
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Rank 2 example: CSD of type G5

Example 3. Applying the pentagon relation repeatedly, we have

9 6= IR B ET)
) (1) :}:2 ; :}: ;r Zéﬁ {gr
SIENHIEREE)

The LHS is anti-ordered, while the RHS is ordered. This gives a (unique) consistent relation for the
following consistent scattering diagram ©:

11°121117131
1 3112 3
Here, the identification My ~ R? is given by e* +— e, €% /3 — es.

This is a CSD of type GG2. The support of © also coincides with the G-fan of type Gs.
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Initial data for CSD

e initial data for CSD:
skew-symmetrizable r x r integer matrix B
decomposition

B = AQ
A positive integer diagonal matrix, €2: skew-symmetric rational matrix.

Thus, A~ is a skew-symmetrizer of B.
(Such a decomposition is not unique, but we do not care at this moment.)

e As we did so far,

Q0 = (w;;): the above skew-symmetric rational matrix
N ~ 7" lattice of rank r; e1,...,e,: basisof N
{ei, e; } = w;;: skew-symmetric form on N

G q: the group defined by the above data

e Meanwhile, from A = diag(éq, ..., d,), we have

N°® := @!_, Zé;e;: sublattice of N

M® := Hom(N°®,Z) = @._, Ze; /d;: M C M° C Mg

Also, for n € N, let §(n) be the smallest positive rational number such that §(n)n € N°. We
call it the normalization factor of n (e.g., 6(e;) = ;).

e We have a homomorphism of abelian groups
p": N — M° C Mg, nw {,n}.

The representation matrix of p™ with respect to the above bases is B.
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Cluster Scattering Diagrams (CSDs)

e incoming and outgoing walls
A wallw = (0, g), of a scattering diagram ® with the structure group Gq, is incoming (resp.
outgoing) if p* (n) € 0 (reps. otherwise).

Since (n, p*(n)) = {n,n} = 0, we have p*(n) € n=".
% (n) § /
nt

e Cluster scattering diagrams
We are ready to define cluster scattering diagrams.

Theorem-Definition [GHKK18]

For any skew-symmetrizable » x r integer matrix B and its decomposition B = AS2, there is a
unique (up to equivalence) consistent scattering diagram ® with the structure group G, satisfying
the following condition:

incoming wall outgoing wall

The set of all incoming walls in © is given by {w., := (ej‘, \If[ez-]‘s’i)ez. |i=1,...,7}.

A consistent scattering diagram satisfying the above condition is called a cluster scattering diagram
(CSD) associated with B and denoted by © (B).

y

For another decomposition B = A’Q’, one can identify the corresponding CSD through the
isomorphism of the structure groups G ~ Gq.
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Ordering Lemma

Let us temporarily concentrate on the rank 2 case.

We say that a (possibly infinite) product of ¥'[n]“ (¢ € Q) is ordered (resp. anti-ordered) if, for any
/

adjacent factors ' [n']® ¥[n]®, {n’,n} > 0 (resp. {n', n} < 0) holds.

Ordering Lemma [N21]

Any finite anti-ordered product of ¥ [n]° (n) is rewritten as a (possibly infinite) ordered product of
\lf[n]5(”) by applying the pentagon relation (possibly infinitely many times).

Proof. One can given an explicit algorithm. Also, there is a program for SageMath [N21]. O
Examples: Let A Mo

_ (0 —01\ _ (o1 0 0 -1
B—<52 0)‘(0 52><1 0) (01,02 € Z>0).

(1). type Agl): (61,02) = (2, 2). ([Reineke11], [Matsushita21] by the pentagon relation)

B =W R TR B

(2). non-affine type: (61, d2) = (3, 3). Uj;s:eomy program! R Badlawds &
S o =] G BT BT B EL BB [ meae
R ¢ 3 2, w % W ]
NN
deg < 1 deg < 2 deg < 3 deg < 4
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Theorems on CSDs

Theorem A. (Positive realization [GHKK18])

For any skew-symmetrizable matrix B, there is a CSD © (B) such that any wall element have the
form Ww{n]°(™).

To prove it, an alternative construction of a CSD was introduced in [GHKK18].

Theorem B. ([GHKK18])

For a CSD © (B) with minimal support, the corresponding G-fan is embedded in Supp(® (B))
under the identification Mr ~ R" with e; — J;e;.

the construction in Theorem A = the mutation invariance of © (B) —> Theorem B.
Theorem B — the sign-coherence of C-matrices.
Theorems A & B —> the Laurent positivity.

Modifying the construction for Theorem A with Ordering Lemma, we obtain the following result.

Theorem C. ([N21])

Every consistency relation of a CSD © (B) reduces to a trivial one g = g by applying the
commutative relation and the pentagon relation (possibly infinitely many times).

Summary (Message)

@ The dilogarithm interporates the two principles (mutation and the consistency).

@ The dilogarithm elements and the pentagon relation are everything for CSDs.
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Example: the Badlands in a rank 3 CSD

the stereo graphic projection of the support: (The right figure is the magnified one of the shaded
region in the left figure.)

3 \
%—»;%
— =

— —~—— NS
- ‘\\\\\ \

—
_—
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See
[N21] T. Nakanishi, Cluster algebras and scattering diagrams, Part Ill. Cluster scattering diagrams,

preliminary draft for a monograph, arXiv:2111.00800, 106 pp.
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