Minuscule Multiples &
Reverse Plane Partitions

e Semistandard Young tableaux and irreducible components of
Springer fibers model highest weight crystals in a compatible way.

e We present a generalization of these correspondences to ADE
minuscule Demazure crystals.

e With Elek, Kamnitzer and Morton-Ferguson our generalization
uses reverse plane partitions in place of tableaux and quiver
Grassmannians of preprojective algebra modules in place of flags.

e Do reverse plane partitions play with good bases or clusters?



Heaps, crystals and preprojective algebra modules

e Goal: to extend (partially and in a type independent way) the crystal
isomorphism Irr F'/(A) — Y ()

o A: CN — CV order n nilpotent of Jordan type A

o F(A)={Vy CViC - CVp=CN: AV, C Vi1}

o Y (M) is the set of SSYT of shape Ain {1,2,...,m}

o Partial: A minuscule or minuscule witness for somew € W
e Th.2: a crystal isomorphism Irr G(w,n) — R(w,n)

e Th.1: a crystal isomorphism R(w,n) — B(n\)



Minuscule
Let g be semisimple, with Cartan b and weight lattice A

e Def. A € A™ is minuscule if W acts transitively on the weights of V' ()

e Def. A\ € A" is aminuscule witness for w € W if
o for some reduced word (%1, ...,1;)
WA = A — @, — -+ — Q Wy 1= S;, *** 8j,
e Def. wis (dominant) minuscule if it admits a (dominant) witness

o E.g. w = 81838482 is minuscule for A = wy (I' = Dy) A

e Stembridge: If w is minuscule then it's fully commutative and the
condition above holds for any reduced word



Heaps and the abacus model

e Heaps encode reduced words for minuscule w

e letw = (41,...,1%;) be areduced word for w
e H(w) CT x Rygistheposet{1,2,...,1}

got by taking the transitive closure of the
relation

s <t & s>tanda;; <0
e '=Dsandw = (5,3,2,4,1,3,2,5,3,4)

e If wis minuscule then H (w) is well-defined

o Moreover{v e W :v <p w} = J(H(w))
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Crystals

e Def. The set B is a g-crystal if the following maps satisfy some axioms
owt: B—> A
og;,p; : B— N
o é;,f;i: B-— B

e We write B(\) for the crystal of V()

e Def. Foranyw € W andw = (%1,...,1%;) reduced the Demazure
crystal By, (A) C B(A) is the set

U o fMby

ms >0



Crystal heaps
e Prop. If w be A-minuscule then J(H (w)) = B, ()

o wt(v) = vA
~ S;V v <8v<rw
O f’l,(v) p— {

0 else

o JCI; Wy = (s;:j € J);the set of minimal length
representatives

W7 =J(H(w])=BA) A=) w;
j#d

e We can generalize this to minuscule multiples By, (n\)




Reverse plane partitions

e Def. Reverse plane partitions of shape H(w) and height n are elements
of the set

R(w,n) := {H(w) — {0,1,...,n} : ®(z) > ®(y) if z < y}

e d — (¢1,...,0,)defines R(w,n) — J(H (w))"
o the layers ¢y := ® 1 ({n — k + 1,...,n}) form anincreasing chain
o the tensor product rule preserves {¢ : ¢ C dr11}

o commutes with By, (nA) < By, (A)®"
! 0 0 0 1
.E.g.ifw:(2,1,3,2)then243,_>o10®011®1 1®1113nd

1
the RHS can be viewed as an element of B,, (w5 )®*



RPP’'s and tableaux via GT patterns

e Intype A,,_1 we can go from tableaux to RPP's via GT patterns

e The GT pattern of a tableau 7 is the shape array ()\(1), e )\(m)) made
up of shapes (@) of tableaux 7(9) got by deleting from 7 any box with
label exceeding 7

o When T is a rectangular tableau having shape A = (n?) its GT pattern
can be identified with ap X (m — p) rectangular array

o This array can be viewed as an RPP

o This is a crystal isomorphism up to Schutzenberger involution and then
the crystal structure is B(nw,) A



Reflecting in a vertical axis and rotating 90 degrees counter-clockwise we
arrive at ®(7) € R(wy ,n)




® (1) has shape H (wy ) for J = I \ {p}, the heap of the Grassmannian
permutationwO‘] thattakes12...mtom —p+1...ml...m —p
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Modules (for the preprojective algebra) from heaps

e Let A = ) n;w; € AT and consider Q(\) = @, Q (7)™ where Q(7)
denotes the injective hull of S(%)

o Th. (Nakajima, Savage-Tingley) Gr(Q(\)) :={M C Q(\)} = B(\)
e If Xisminusculeand J = {j : s;A = A} then Q(A\) = CH (wy)
o Moreover ¢ — Ca is a bijection J(H(w({)) — IrrGr(Q (X))

e Th. With the help of certain ad hoc nilpotent endomorphisms of modules
we upgrade this to a map IrrGr(Q (M) ®") — R(wy ,n)

o Thecase A = wporJ =1\ {p} recovers F(A) — Y ()
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Connections to cluster algebras

Consider

< B \J C G generated by B™ and the 1-parameter root subgroups
{z"(t) : i & J} respectively

o the unipotent radical N\ y of Br\ ;

e the injective preprojective algebra module QI\J — EBing(i)

e Geiss, Leclerc, and Schroer constructed a cluster algebra A; C (C[NI\J]
and lifted it to a cluster algebra

AJCC[G/BI\J @ L

)\EHI\J
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The fundamental example
e WhenI' = Ay and I \ J = {p} thisis the familiar Grassmannian
cluster algebra
gJ:C[G/B;]:C[Gr (p, N @L nwp)
n>0

e GLS: recipe for initial seeds from basic complete rigid modules
parametrized by certain reduced words for wg in Sub Qp ;

o mutation (in the direction of an indecomposable nonprojective direct
summand X of such a module) using short exact sequences

e Qu.no. 1: How do the RPP crystals for L(nw, ) interact with the cluster

structure on this coordinate ring?
K



The open question

e Qu.no. 1": In particular, what does mutation look like for RPP's?
e GLS: C[Np\ ;] C C[N]asSpan({¢n : M € SubQ;})

e Wild conjecture: the various perfect bases of C|IN | intersect in the set of
cluster monomials

e With Bai and Kamnitzer, we checked that the MV basis in the sl4 case
contains the cluster monomials

o We relied on the geometry of the affine Grassmannian and an MV
iIsomorphism

o Conceptually easy but computationally difficult
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Fusion by toggling?
e In this type A check we could label our geometrically constructed basis

elements by tableaux

o |In terms of tableau the exchange relations we witnessed were of the
form

T-O=T<0+T—>0O

e Observation: Translating our equations to RPP's we notice that the
mutation ¢ = p;(7) can be obtained by toggling ®(7) at ¢
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GPT toggling RPP’s

e Garver, Patrias and Thomas extended the notion of toggle for a poset to
the toggle of p € R(w,n) atx € H(w) by fixing p(y) foranyy # x

and replacing p(x) by
max p(y1) + min p(y2) — p(z)

T <<Yi Y2 T
e The resulting RPP is denoted ¢, (p)

e Ifz,y € m '(7) then [t,, t,] = 0 sothe composition [locn1(s) ta can

be unambiguously referred to as t; the (composite) toggle at 7
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sl, evidence

4
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(1+2—=23)x(1—>2)=P,d S+ P, P (1<« 2)
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(1—=>2+3)*x(1+2)=P3d(1—>2)+ P, DS,
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Thank You ?
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