Thermodynamic Formalism on Generalized Markov Shifts
 Research Project jointly with Eric O. Endo (NYU-Shanghai)
 R. Exel (UFSC/University of Nebraska-Lincoln), Thiago Raszeja (USP),
 R. Frausino (USP), Elmer R. Beltrán (USP)...

Rodrigo Bissacot - (IME-USP)

Partially supported by CNPq, CAPES and FAPESP

Symbolic Dynamical Systems - Oaxaca - 2019

Main references

2 Generalized shift spaces

- Countable Markov Shifts and Exel-Laca Algebras
- X_A the candidate to replace Σ_A
- Renewal Shift

3 Thermodynamic Formalism

4 Conformal measures on X_A in (and out) of Σ_A

2 Generalized shift spaces

- Countable Markov Shifts and Exel-Laca Algebras
- X_A the candidate to replace Σ_A
- Renewal Shift
- 3 Thermodynamic Formalism
- 4) Conformal measures on X_A in (and out) of Σ_A

- Video of Ruy Exel's talk at the youtube channel of ICM 2018. For those who want to see more algebraic aspects of the results: groupoids, equivalence relations, \mathbb{C}^* -algebras...

- Video of Ruy Exel's talk at the youtube channel of ICM 2018. For those who want to see more algebraic aspects of the results: groupoids, equivalence relations, \mathbb{C}^* -algebras...

Preprints online:

- Conformal Measures on Generalized Renault-Deaconu Groupoids. [RB, R. Exel, T. Raszeja, R. Frausino]

- Quasi-invariant measures for generalized approximately proper equivalence relations. [RB, R. Exel, T. Raszeja, R. Frausino]

- Video of Ruy Exel's talk at the youtube channel of ICM 2018. For those who want to see more algebraic aspects of the results: groupoids, equivalence relations, \mathbb{C}^* -algebras...

Preprints online:

- Conformal Measures on Generalized Renault-Deaconu Groupoids. [RB, R. Exel, T. Raszeja, R. Frausino]

- Quasi-invariant measures for generalized approximately proper equivalence relations. [RB, R. Exel, T. Raszeja, R. Frausino]

- Infinite DLR Measures and Volume-Type Phase Transitions on Countable Markov Shifts. [E. R. Beltrán, RB, E.O. Endo]

御 と く ヨ と く ヨ と

- Alphabet \mathbb{N} .

电

<ロ> (日) (日) (日) (日) (日)

- Alphabet \mathbb{N} .
- An irreducible transition matrix A ($A(i, j) \in \{0, 1\}$).

┌──▶ ▲ 臣 ▶ ▲ 臣 ▶

- Alphabet \mathbb{N} .
- An irreducible transition matrix A ($A(i,j) \in \{0,1\}$).
- The Countable Markov shift $\Sigma_{\mathcal{A}}$, in general, is not locally compact.

御 と く き と く き と

- Alphabet \mathbb{N} .
- An irreducible transition matrix A ($A(i, j) \in \{0, 1\}$).
- The Countable Markov shift $\Sigma_{\mathcal{A}}$, in general, is not locally compact.

御 と くき とくきと

- Alphabet \mathbb{N} .
- An irreducible transition matrix A ($A(i, j) \in \{0, 1\}$).
- The Countable Markov shift $\Sigma_{\mathcal{A}}$, in general, is not locally compact.

• X_A locally compact polish space. (in many cases compact)

- Alphabet \mathbb{N} .
- An irreducible transition matrix A ($A(i,j) \in \{0,1\}$).
- The Countable Markov shift $\Sigma_{\mathcal{A}}$, in general, is not locally compact.

- X_A locally compact polish space. (in many cases compact)
- Σ_A is dense in X_A .

- Alphabet \mathbb{N} .
- An irreducible transition matrix A ($A(i, j) \in \{0, 1\}$).
- The Countable Markov shift Σ_A , in general, is not locally compact.

- X_A locally compact polish space. (in many cases compact)
- Σ_A is dense in X_A .
- $Y_A = X_A \setminus \Sigma_A$ is a set of finite words of the shift, it is also dense in X_A . (empty words are possible)
- When Σ_A is locally compact, then $\Sigma_A = X_A$.

御下 不管下 不算下 …

Figure: The Renewal shift Σ_A

- 一司

3 🕨 🖌 3

$$X_A = \Sigma_A \cup Y_A$$

Rodrigo Bissacot - (IME-USP) (University of Thermodynamic Formalism on Generalized M

电

イロン イ理ト イヨト イヨト

 $X_A = \Sigma_A \cup Y_A$

 $Y_A = \{ \text{finite words ending in } 1 \} \cup \{ \xi_0 \}, \text{ where } \xi_0 \text{ is the empty word.}$

Main reference:

- R. Exel and M. Laca, *Cuntz-krieger algebras for infinite matrices*. J. Reine Angew. Math., **512**, 119-172, (1999).

Partial isometries satisfiyng:

(*EL*1)
$$S_i^* S_i$$
 and $S_j^* S_j$ commute for every $i, j \in \mathbb{N}$;
(*EL*2) $S_i^* S_j = 0$ whenever $i \neq j$;
(*EL*3) $(S_i^* S_i)S_j = A(i, j)S_j$ for all $i, j \in \mathbb{N}$;
(*EL*4) for every pair X , X of finite subsets of \mathbb{N} such the

(*EL*4) for every pair X, Y of finite subsets of \mathbb{N} such that the quantity

$$A(X,Y,j) := \prod_{x \in X} A(x,j) \prod_{y \in Y} (1 - A(y,j)), j \in \mathbb{N}$$

is non-zero only for a finite number of j's, we have

$$\left(\prod_{x\in X}S_x^*S_x\right)\left(\prod_{y\in Y}(1-S_y^*S_y)\right)=\sum_{j\in\mathbb{N}}A(X,Y,j)S_jS_j^*.$$

伺 ト イヨト イヨト

Exel-Laca algebras

For each $s \in \mathbb{N}$, consider the following operators on $\mathfrak{B}(\ell^2(\Sigma_A))$,

$$T_{s}(\delta_{x}) = \begin{cases} \delta_{sx} \text{ if } A(s, x_{0}) = 1, \\ 0 \text{ otherwise;} \end{cases} \quad \text{with} \quad T_{s}^{*}(\delta_{x}) = \begin{cases} \delta_{\sigma(x)} \text{ if } x \in [s], \\ 0 \text{ otherwise,} \end{cases}$$

where $\{\delta_x\}_{x \in \Sigma_A}$ is the canonical basis.

▶ 《 문 ▶ 《 문 ▶ …

Exel-Laca algebras

For each $s \in \mathbb{N}$, consider the following operators on $\mathfrak{B}(\ell^2(\Sigma_A))$,

$$T_{s}(\delta_{x}) = \begin{cases} \delta_{sx} \text{ if } A(s, x_{0}) = 1, \\ 0 \text{ otherwise;} \end{cases} \quad \text{with} \quad T_{s}^{*}(\delta_{x}) = \begin{cases} \delta_{\sigma(x)} \text{ if } x \in [s], \\ 0 \text{ otherwise,} \end{cases}$$

where $\{\delta_x\}_{x\in\Sigma_A}$ is the canonical basis.

Definition (Exel-Laca algebra)

The Exel-Laca algebra \mathcal{O}_A is the subalgebra of $\widetilde{\mathcal{O}}_A$ which is the unital C^* -algebra generated by the partial isometries T_s , $s \in \mathbb{N}$.

There exists a collection of projections indexed by the free group generated by \mathbb{N} : $e_g := T_g T_g^*$, $g \in \mathbb{F}_{\mathbb{N}}$ reduced word.

These elements commute each other.

Generalized shift spaces

- Countable Markov Shifts and Exel-Laca Algebras
- X_A the candidate to replace Σ_A
- Renewal Shift
- 3 Thermodynamic Formalism
- [4] Conformal measures on X_A in (and out) of Σ_A

Consider $\mathcal{D}_A := C^*(\{e_g : g \in \mathbb{F}_{\mathbb{N}}\})$ the commutative unital C^* -subalgebra of \mathcal{O}_A generated by the projections.

Definition

Given an irreducible transition matrix A on the alphabet \mathbb{N} , define the sets

$$X_A := \operatorname{spec} \mathcal{D}_A \quad \text{and} \quad \widetilde{X}_A := \operatorname{spec} \widetilde{\mathcal{D}}_A$$

where the second one is only considered in the case that \mathcal{O}_A is non-unital.

Consider $\mathcal{D}_A := C^*(\{e_g : g \in \mathbb{F}_{\mathbb{N}}\})$ the commutative unital C^* -subalgebra of \mathcal{O}_A generated by the projections.

Definition

Given an irreducible transition matrix A on the alphabet \mathbb{N} , define the sets

$$X_A := \operatorname{spec} \mathcal{D}_A$$
 and $\widetilde{X}_A := \operatorname{spec} \widetilde{\mathcal{D}}_A$

where the second one is only considered in the case that \mathcal{O}_A is non-unital.

On the weak^{*} topology it is well known that X_A is at least locally compact and that \widetilde{X}_A is always compact. Gelfand's Theorem $\Rightarrow \mathcal{D}_A := C_0(X_A)$ and $\widetilde{\mathcal{D}}_A := C(\widetilde{X}_A)$

Consider $\mathcal{D}_A := C^*(\{e_g : g \in \mathbb{F}_{\mathbb{N}}\})$ the commutative unital C^* -subalgebra of \mathcal{O}_A generated by the projections.

Definition

Given an irreducible transition matrix A on the alphabet \mathbb{N} , define the sets

$$X_A := \operatorname{spec} \mathcal{D}_A$$
 and $\widetilde{X}_A := \operatorname{spec} \widetilde{\mathcal{D}}_A$

where the second one is only considered in the case that \mathcal{O}_A is non-unital.

On the weak^{*} topology it is well known that X_A is at least locally compact and that \widetilde{X}_A is always compact. Gelfand's Theorem $\Rightarrow \mathcal{D}_A := C_0(X_A)$ and $\widetilde{\mathcal{D}}_A := C(\widetilde{X}_A)$ When we have finite number of symbols we have $\mathcal{D}_A := C(\Sigma_A)$.

Consider $\mathcal{D}_A := C^*(\{e_g : g \in \mathbb{F}_{\mathbb{N}}\})$ the commutative unital C^* -subalgebra of \mathcal{O}_A generated by the projections.

Definition

Given an irreducible transition matrix A on the alphabet \mathbb{N} , define the sets

$$X_A := \operatorname{spec} \mathcal{D}_A$$
 and $\widetilde{X}_A := \operatorname{spec} \widetilde{\mathcal{D}}_A$

where the second one is only considered in the case that \mathcal{O}_A is non-unital.

On the weak^{*} topology it is well known that X_A is at least locally compact and that \widetilde{X}_A is always compact. Gelfand's Theorem $\Rightarrow \mathcal{D}_A := C_0(X_A)$ and $\widetilde{\mathcal{D}}_A := C(\widetilde{X}_A)$ When we have finite number of symbols we have $\mathcal{D}_A := C(\Sigma_A)$. X_A is a locally compact version of Σ_A .

Actually, when Σ_A is locally compact we have $X_A = \Sigma_A$.

Figure: The black dots represents that the configuration ξ is filled.

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

$$\begin{cases} \xi \in \{0,1\}^{\mathbb{F}} : \xi_e = 1, \ \xi \text{ connected}, \\ \text{if } \xi_{\omega} = 1, \text{ then there exists at most one } y \in \mathbb{N} \text{ s.t. } \xi_{\omega y} = 1, \\ \text{if } \xi_{\omega} = \xi_{\omega y} = 1, \ y \in \mathbb{N}, \text{ then for all } x \in \mathbb{N} \ (\xi_{\omega x^{-1}} = 1 \iff A(x, y) = 1) \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Generalized shift spaces

- Countable Markov Shifts and Exel-Laca Algebras
- X_A the candidate to replace Σ_A
- Renewal Shift

3 Thermodynamic Formalism

4) Conformal measures on X_A in (and out) of Σ_A

The set Y_A : finite words on the Renewal shift

The set Y_A : finite words on the Renewal shift

Finite words ending with the symbol 1 are the elements of Y_A for the renewal shift.

The empty word on the Renewal shift

Rodrigo Bissacot - (IME-USP) (University of Thermodynamic Formalism on Generalized M

The empty word on the Renewal shift

- The shift map σ is partially defined on X_A , we can not apply the shift on empty words.

▶ < 프 ► < 프 ►</p>

- The shift map σ is partially defined on X_A , we can not apply the shift on empty words.
- Let $U \subseteq X_A$ the open set of non-empty words, including infinite words of Σ_A and the finite words of Y_A .

A D A D A D A

- The shift map σ is partially defined on X_A , we can not apply the shift on empty words.
- Let $U \subseteq X_A$ the open set of non-empty words, including infinite words of Σ_A and the finite words of Y_A .
- The dynamics will be given by the shift map $\sigma: U \subseteq X_A \to X_A$.

・聞き ・ヨキ・・ヨキ

- The shift map σ is partially defined on X_A , we can not apply the shift on empty words.
- Let $U \subseteq X_A$ the open set of non-empty words, including infinite words of Σ_A and the finite words of Y_A .
- The dynamics will be given by the shift map $\sigma: U \subseteq X_A \to X_A$.
- We will assume the potential $F: U \subseteq \rightarrow \mathbb{R}$ at least continuous.

- * 聞 * * 注 * * 注 * -

Definition (Ruelle transformation)

For a given continuous potential $F : U \to \mathbb{R}$ and inverse of the temperature $\beta > 0$, the Ruelle transformation $L_{-\beta F}$ is given by

$$L_{-\beta F}: C_c(U) \to C_c(X),$$

 $f \mapsto L_{-\beta F}(f)(x) := \sum_{x=\sigma(y)} e^{-\beta F(y)} f(y)$

Definition (Eigenmeasure associated to the Ruelle Transformation)

Given the Borel σ -algebra \mathbb{B} on X, $\sigma : U \to X$ the shift map, $F : U \to \mathbb{R}$ a continuous potential and $\beta > 0$. A measure μ on \mathbb{B} is said to be a eigenmeasure associated with the Ruelle transformation $L_{-\beta F}$ when

$$\int_{X} L_{-\beta F}(f)(x) d\mu(x) = \int_{U} f(x) d\mu(x), \qquad (1)$$

for all $f \in C_c(U)$.

Definition (Conformal measure - Denker-Urbański)

Let (X, \mathcal{F}) be a measurable space, $\sigma : U \subseteq X \to X$ a measurable endomorphism and $D : U \to [0, \infty)$ also measurable. A set $A \subseteq U$ is called special if $A \in \mathcal{F}$ and $\sigma_A := \sigma \upharpoonright_A : A \to \sigma(A)$ is injective. A measure μ in X is said to be D-conformal in the sense of Denker-Urbański if

$$\mu(\sigma(A)) = \int_{A} Dd\mu, \qquad (2)$$

for all special sets A.

Definition (Conformal measure - Denker-Urbański)

Let (X, \mathcal{F}) be a measurable space, $\sigma : U \subseteq X \to X$ a measurable endomorphism and $D : U \to [0, \infty)$ also measurable. A set $A \subseteq U$ is called special if $A \in \mathcal{F}$ and $\sigma_A := \sigma \upharpoonright_A : A \to \sigma(A)$ is injective. A measure μ in X is said to be D-conformal in the sense of Denker-Urbański if

$$\mu(\sigma(A)) = \int_{A} Dd\mu, \qquad (2)$$

for all special sets A.

As an example, in the Markov shifts, a Borel set contained in a cylinder set is special.

Definition

Let X be a locally compact Hausdorff and second countable topological space. Let $\sigma : U \subseteq X \to X$ a local homeomorphism. Given a borel measure μ on X we define the measure $\mu \odot \sigma$ on U by

$$\mu \odot \sigma(E) := \sum_{i \in \mathbb{N}} \mu(\sigma(E_i)).$$

For all measurable $E \subseteq U$, where the E_i are pairwise disjoint measurable sets such that $\sigma \upharpoonright E_i$ is injective, for each *i*, and $E = \sqcup_i E_i$.

Definition

Let X be a locally compact Hausdorff and second countable topological space. Let $\sigma : U \subseteq X \to X$ a local homeomorphism. Given a borel measure μ on X we define the measure $\mu \odot \sigma$ on U by

$$\mu \odot \sigma(E) := \sum_{i \in \mathbb{N}} \mu(\sigma(E_i)).$$

For all measurable $E \subseteq U$, where the E_i are pairwise disjoint measurable sets such that $\sigma \upharpoonright E_i$ is injective, for each *i*, and $E = \sqcup_i E_i$.

The measure $\mu \odot \sigma$ is well defined since there always exists at least one family of E_i 's. Moreover, the definition independs of the choice of the E_i 's.

Definition (Conformal measure - Sarig)

A measure μ in X is called (βF , λ)-conformal in the sense of Sarig if there exists $\lambda > 0$ such that

$$\frac{d\mu \odot \sigma}{d\mu}(x) = \lambda e^{-\beta F(x)} \quad x \in U.$$

When we are in the standard thermodynamic formalism $X_A = \Sigma_A$ and the potential is regular enough, $\lambda = e^{P_G(\beta F)}$ where $P_G(\varphi)$ is the Gurevich's pressure of the potential φ .

Theorem (R. B., R. Exel, R. Frausino, T. Raszeja - 2019+)

Let X be locally compact, Hausdorff and second countable space, $U \subseteq X$ open and $\sigma : U \to X$ a local homeomorphism. Let μ be a finite measure on the Borel sets of X. For a given continuous potential $F : U \to \mathbb{R}$, the following are equivalent:

- (i) μ is $e^{\beta F}$ -conformal measure in the sense of Denker-Urbański;
- (ii) μ is an eigenmeasure (fix point) associated to the Ruelle transformation $L_{-\beta F}$;

(iii)
$$\mu$$
 is $(-\beta F, 1)$ -conformal in the sense of Sarig.

Some results for the classical case and the standard symbolic space:

Theorem (Sarig - CMP - 2001)

Let Σ_A be the renewal shift and let $F : \Sigma_A \to \mathbb{R}$ be a weakly Hölder continuous function such that sup $F < \infty$. Then there exists $0 < \beta_c \le \infty$ such that:

- (i) For $0 < \beta < \beta_c$, there exists a $(-\beta F, e^{P(\beta F)})$ conformal measure in the sense of Sarig.
- (ii) For $\beta_c < \beta$, there is no $(-\beta F, e^{P(\beta F)})$ conformal measures in the sense of Sarig.

Volume-Type phase transitions:

Theorem (RB, E.R. Beltrán, E.O. Endo, 2019+)

Let Σ_A be the renewal shift and let $F : \Sigma_A \to \mathbb{R}$ be a weakly Hölder continuous function such that sup $F < \infty$. For $\beta > 0$, consider ν_β be the eigenmeasure associated to the potential βF . Let $\beta_c \in (0, +\infty]$ from the previous theorem. Then, there exists $\tilde{\beta}_c \in (0, \beta_c]$ such that:

(i) For
$$0, u_{eta} is finite.$$

(ii) For $\tilde{\beta}_c < \beta < \beta_c$, ν_{β} is infinite.

$$\tilde{\beta}_{c} = \sup\left\{\beta \in (0, \beta_{c}] : \limsup_{n \to \infty} \frac{1}{n} \sum_{j=2}^{n} \phi(\gamma_{j}) < \frac{P_{G}(\beta\phi)}{\beta}\right\}$$

where $\gamma_j = \overline{(j, j - 1, j - 2, ..., 1)}$.

There are examples where $\tilde{\beta}_c < \beta_c$ and $\tilde{\beta}_c = \beta_c$. Consider the constant potential $\phi \equiv c$ with $c \in \mathbb{R}$. It is easy to see $\tilde{\beta}_c = \beta_c = +\infty$. When $\phi(x) = x_0 - x_1$, we have $\tilde{\beta}_c = \log 2$ and $\beta_c = +\infty$.

Corolary

Let Σ_A be the renewal shift and let $F : \Sigma_A \to \mathbb{R}$ be a weakly Hölder continuous function such that sup $F < \infty$. For $0 < \beta$ small enough the eigenmeasure is finite.

Warning! Differences between renewal shift and reversal renewal shift:

 $X_A \neq \Sigma_A$, we have finite words on X_A and the eigenmeasure (in the standard formalism) is finite $\beta > 0$ small enough.

 $X_A = \Sigma_A$ and the eigenmeasure can be infinite for every $\beta > 0$.

Theorem (RB, R. Exel, R. Frausino, T. Raszeja - 2019+)

Consider the space X_A associate with the renewal shift and potential $F: X_A \setminus \{\xi^0\} \to \mathbb{R}$ in the form

$$F(\omega)=\beta f(\omega_0),$$

where $\beta > 0$ is the inverse of the temperature and $f : X_A \setminus \{\xi^0\} \to \mathbb{R}$ depends on the first coordinate. Suppose that f is bounded and a non-negative function on $X_A \setminus \{\xi^0\}$. We let M > 0 be a lower bound. We have the results:

(i) If $\beta > \frac{\log 2}{M}$, there exists a unique $e^{\beta f}$ -conformal measure μ_{β} that vanishes in Σ_A .

(ii) If $\beta < \frac{\log 2}{\|f\|_{\infty}}$ there are no $e^{\beta f}$ -conformal measures that vanish in Σ_A .

Corolary (RB, R. Exel, R. Frausino, T. Raszeja - 2019+)

Let $f \equiv 1$. Then, for the constant $\beta_c = \log 2$, the result follows:

- (1) For $\beta > \beta_c$ we have a unique e^{β} -conformal probability measure that vanishes on Σ_A .
- (2) For $\beta \leq \beta_c$ there is no e^{β} conformal probability measure that vanishes on Σ_A .
- (3) $\lim_{\beta \to \beta_c} \mu_{\beta} = \mu_{\beta_c}$ (weak convergence) where μ_{β_c} lives on Σ_A and it is a conformal measure in the classical framework.

Corolary (RB, R. Exel, R. Frausino, T. Raszeja - 2019+)

Let $f \equiv 1$. Then, for the constant $\beta_c = \log 2$, the result follows:

- (1) For $\beta > \beta_c$ we have a unique e^{β} -conformal probability measure that vanishes on Σ_A .
- (2) For $\beta \leq \beta_c$ there is no e^{β} conformal probability measure that vanishes on Σ_A .
- (3) $\lim_{\beta \to \beta_c} \mu_{\beta} = \mu_{\beta_c}$ (weak convergence) where μ_{β_c} lives on Σ_A and it is a conformal measure in the classical framework.

$$\mu_{\beta_c}[\alpha] = 2^{-|\alpha|}$$
, where α is a word ending in 1.

M. Denker and M. Yuri (2015) + M. Denker and M. Urbański (1991) Pressure for Iterated Function Systems - (IFS)

||伊卜 (三) (三)

M. Denker and M. Yuri (2015) + M. Denker and M. Urbański (1991) Pressure for Iterated Function Systems - (IFS)

Given a point in $x \in X_A$, and $F : U \to \mathbb{R}$ we define:

$$Z_n(F,x) := \sum_{\sigma^n(y)=x} e^{S_n F(y)}$$

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

M. Denker and M. Yuri (2015) + M. Denker and M. Urbański (1991) Pressure for Iterated Function Systems - (IFS)

Given a point in $x \in X_A$, and $F : U \to \mathbb{R}$ we define:

$$Z_n(F,x) := \sum_{\sigma^n(y)=x} e^{S_n F(y)}$$

Pressure of *F* **at a point** $x \in X_A$ (can be a finite word)

$$P(F,x) := \limsup_{n \to \infty} \frac{1}{n} \log(Z_n(F,x)),$$

個 と く ヨ と く ヨ と

Theorem (M. Denker and M. Yuri)

Let X_A be compact, $F : U \to \mathbb{R}$ a continuous potential such that the Ruelle operator L_F is well defined. Suppose there exists a $x \in X_A$ such that $P(F, x) < \infty$ then there exists an eigenmeasure (probability) m for L_F with eigenvalue $e^{P(F,x)}$.

Theorem (M. Denker and M. Yuri)

Let X_A be compact, $F : U \to \mathbb{R}$ a continuous potential such that the Ruelle operator L_F is well defined. Suppose there exists a $x \in X_A$ such that $P(F, x) < \infty$ then there exists an eigenmeasure (probability) m for L_F with eigenvalue $e^{P(F,x)}$.

Example: $F: U \to \mathbb{R}$ $F(x) = \log(x_0) - \log(x_0 + 1)$, well defined on all $x \in U$.

Theorem (M. Denker and M. Yuri)

Let X_A be compact, $F : U \to \mathbb{R}$ a continuous potential such that the Ruelle operator L_F is well defined. Suppose there exists a $x \in X_A$ such that $P(F, x) < \infty$ then there exists an eigenmeasure (probability) m for L_F with eigenvalue $e^{P(F,x)}$.

Example: $F: U \to \mathbb{R}$ $F(x) = \log(x_0) - \log(x_0 + 1)$, well defined on all $x \in U$. Take $x = 1\xi_0$, then $P(\beta F, x) = P_G(\beta F) < \infty$ for every $\beta > 0$ and:

- There exists a probability m_{β} such that $L_{\beta F}^{*}m_{\beta} = e^{P_{G}(\beta F)}m_{\beta} \ \forall \beta > 0.$
- By O. Sarig there exists $\beta_c \in (1, 2)$ such that for $\beta > \beta_c$ there is no eigenmeasure which comes from the standard RPF theorem.

Technical slides

In addition, define projection operator $Q_s := T_s^* T_s$, given by

$$egin{aligned} \mathcal{Q}_{s}(\delta_{\omega}) &= egin{cases} \delta_{\omega} ext{ if } \omega \in \sigma([s]); \ 0 ext{ otherwise}. \end{aligned}$$

Consider the free group $\mathbb{F}=\mathbb{F}_{\mathbb{N}}$ and the map

$$T: \mathbb{F}_{\mathbb{N}} \to \widetilde{\mathcal{O}}_{\mathcal{A}},$$

$$s \mapsto T_{s},$$

$$s^{-1} \mapsto T_{s^{-1}} := T_{s}^{*}.$$

Technical slides

In addition, define projection operator $Q_s := T_s^* T_s$, given by

$$egin{aligned} \mathcal{Q}_{s}(\delta_{\omega}) &= egin{cases} \delta_{\omega} ext{ if } \omega \in \sigma([s]); \ 0 ext{ otherwise}. \end{aligned}$$

Consider the free group $\mathbb{F}=\mathbb{F}_{\mathbb{N}}$ and the map

$$T: \mathbb{F}_{\mathbb{N}} \to \widetilde{\mathcal{O}}_{\mathcal{A}},$$
$$s \mapsto T_{s},$$
$$s^{-1} \mapsto T_{s^{-1}} := T_{s}^{*}$$

Also, for any word g in \mathbb{F} , take its reduced form $g = x_1...x_n$ and define that T realizes the mapping

$$g\mapsto T_g:=T_{x_1}\cdots T_{x_n},$$

and that $T_e = 1$.

▲口> ▲圖> ▲注> ▲注> 三張

Consider the projections

$$e_g:= \mathcal{T}_g \, \mathcal{T}_g^*, \quad g\in \mathbb{F} ext{ reduced word}.$$

电

イロン イ理ト イヨト イヨト

Consider the projections

$$e_g:=\mathcal{T}_g\mathcal{T}_g^*, \quad g\in\mathbb{F} ext{ reduced word.}$$

Such elements commute each other. Consider the following commutative unital C^* -subalgebra of \mathcal{O}_A :

$$\mathcal{D}_{\mathcal{A}} := C^*(\{e_g : g \in \mathbb{F}\})$$

J. Renault, *Cuntz-like algebras*, Operator theoretical methods. (Timioara, 1998), Theta Found (2000) 371-386.

• • = • • = •