Robust Dual Dynamic Programming

Angelos Georghiou

McGill University
Desautels Faculty of Management

(joining University of Cyprus in 2020)

CMO BIRS 2019

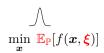
Angelos Tsoukalas American University of Beirut Olavan School of Business

Wolfram Wiesemann Imperial College Business School

Inspired by SDDP

Stochastic optimization

- Optimizes expected value
- Requires knowledge of distribution



Robust optimization

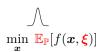
- Optimizes for the worst case scenario
- Uses only support information (uncertainty set)

$$\min_{\boldsymbol{x}} \; \max_{\boldsymbol{\xi} \in \Xi} f(\boldsymbol{x}, \boldsymbol{\xi})$$

Inspired by SDDP

Stochastic optimization

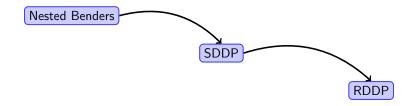
- Optimizes expected value
- Requires knowledge of distribution



Robust optimization

- Optimizes for the worst case scenario
- Uses only support information (uncertainty set)

 $\min_{\boldsymbol{x}} \; \max_{\boldsymbol{\xi} \in \Xi} f(\boldsymbol{x}, \boldsymbol{\xi})$



$$\begin{aligned} & \max_{\boldsymbol{\xi} \in \Xi} \ \sum_{t=1}^T \boldsymbol{q}_t^\top \boldsymbol{x}_t(\boldsymbol{\xi}^t) \\ & \text{subject to} & & \boldsymbol{T}_t(\boldsymbol{\xi}_t) \, \boldsymbol{x}_{t-1}(\boldsymbol{\xi}^{t-1}) + \boldsymbol{W}_t \boldsymbol{x}_t(\boldsymbol{\xi}^t) \geq \boldsymbol{H}_t \boldsymbol{\xi}_t \\ & & & \boldsymbol{x}_t(\boldsymbol{\xi}^t) \in \mathbb{R}^{n_t}, \, \boldsymbol{\xi}^t = (\boldsymbol{\xi}_1, \cdots, \boldsymbol{\xi}_t) \end{aligned} \right\} \forall \boldsymbol{\xi} \in \Xi, \ \forall t$$

$$\begin{aligned} & \max_{\boldsymbol{\xi} \in \Xi} \ \sum_{t=1}^T \boldsymbol{q}_t^\top \boldsymbol{x}_t(\boldsymbol{\xi}^t) \\ & \text{subject to} & & \boldsymbol{T}_t(\boldsymbol{\xi}_t) \, \boldsymbol{x}_{t-1}(\boldsymbol{\xi}^{t-1}) + \boldsymbol{W}_t \boldsymbol{x}_t(\boldsymbol{\xi}^t) \geq \boldsymbol{H}_t \boldsymbol{\xi}_t \\ & & & & \boldsymbol{x}_t(\boldsymbol{\xi}^t) \in \mathbb{R}^{n_t}, \, \boldsymbol{\xi}^t = (\boldsymbol{\xi}_1, \cdots, \boldsymbol{\xi}_t) \end{aligned} \right\} \forall \boldsymbol{\xi} \in \Xi, \; \forall t$$

Features/Difficulties:

lacksquare Optimize over decision policies $oldsymbol{x}_t(\cdot)$

$$\begin{aligned} & \underset{\boldsymbol{\xi} \in \Xi}{\text{minimize}} & & \underset{\boldsymbol{\xi} \in \Xi}{\text{max}} & \sum_{t=1}^{T} \boldsymbol{q}_t^{\top} \boldsymbol{x}_t(\boldsymbol{\xi}^t) \\ & \text{subject to} & & \boldsymbol{T}_t(\boldsymbol{\xi}_t) \, \boldsymbol{x}_{t-1}(\boldsymbol{\xi}^{t-1}) + \boldsymbol{W}_t \boldsymbol{x}_t(\boldsymbol{\xi}^t) \geq \boldsymbol{H}_t \boldsymbol{\xi}_t \\ & & & & \boldsymbol{x}_t(\boldsymbol{\xi}^t) \in \mathbb{R}^{n_t}, \, \boldsymbol{\xi}^t = (\boldsymbol{\xi}_1, \cdots, \boldsymbol{\xi}_t) \end{aligned} \right\} \forall \boldsymbol{\xi} \in \Xi, \; \forall t$$

Features/Difficulties:

- lacksquare Optimize over decision policies $oldsymbol{x}_t(\cdot)$
- Polyhedral uncertainty sets $\Xi = \Xi_1 \times \cdots \times \Xi_T$

$$\begin{aligned} & \underset{\boldsymbol{\xi} \in \Xi}{\text{minimize}} & & \underset{\boldsymbol{\xi} \in \Xi}{\text{max}} & \sum_{t=1}^{T} \boldsymbol{q}_t^{\top} \boldsymbol{x}_t(\boldsymbol{\xi}^t) \\ & \text{subject to} & & \boldsymbol{T}_t(\boldsymbol{\xi}_t) \, \boldsymbol{x}_{t-1}(\boldsymbol{\xi}^{t-1}) + \boldsymbol{W}_t \boldsymbol{x}_t(\boldsymbol{\xi}^t) \geq \boldsymbol{H}_t \boldsymbol{\xi}_t \\ & & & & \boldsymbol{x}_t(\boldsymbol{\xi}^t) \in \mathbb{R}^{n_t}, \, \boldsymbol{\xi^t} = (\boldsymbol{\xi}_1, \cdots, \boldsymbol{\xi}_t) \end{aligned} \right\} \forall \boldsymbol{\xi} \in \Xi, \ \forall t$$

Features/Difficulties:

- lacksquare Optimize over decision policies $oldsymbol{x}_t(\cdot)$
- Polyhedral uncertainty sets $\Xi = \Xi_1 \times \cdots \times \Xi_T$
- Infinite number of variables and constraints

$$\begin{aligned} & \max_{\pmb{\xi} \in \Xi} \ \sum_{t=1}^T \pmb{q}_t^{\top} \pmb{x}_t(\pmb{\xi}^t) \\ & \text{subject to} \quad \pmb{T}_t(\pmb{\xi}_t) \, \pmb{x}_{t-1}(\pmb{\xi}^{t-1}) + \pmb{W}_t \pmb{x}_t(\pmb{\xi}^t) \geq \pmb{H}_t \pmb{\xi}_t \\ & \qquad \qquad \pmb{x}_t(\pmb{\xi}^t) \in \mathbb{R}^{n_t}, \, \pmb{\xi^t} = (\pmb{\xi}_1, \cdots, \pmb{\xi}_t) \end{aligned} \right\} \forall \pmb{\xi} \in \Xi, \ \forall t$$

Features/Difficulties:

- lacksquare Optimize over decision policies $oldsymbol{x}_t(\cdot)$
- Polyhedral uncertainty sets $\Xi = \Xi_1 \times \cdots \times \Xi_T$
- Infinite number of variables and constraints

Assumptions:

■ Relatively complete recourse

$$\begin{aligned} & \max_{\pmb{\xi} \in \Xi} \ \sum_{t=1}^T \pmb{q}_t^{\top} \pmb{x}_t(\pmb{\xi}^t) \\ & \text{subject to} \quad \pmb{T}_t(\pmb{\xi}_t) \, \pmb{x}_{t-1}(\pmb{\xi}^{t-1}) + \pmb{W}_t \pmb{x}_t(\pmb{\xi}^t) \geq \pmb{H}_t \pmb{\xi}_t \\ & \qquad \qquad \pmb{x}_t(\pmb{\xi}^t) \in \mathbb{R}^{n_t}, \, \pmb{\xi^t} = (\pmb{\xi}_1, \cdots, \pmb{\xi}_t) \end{aligned} \right\} \forall \pmb{\xi} \in \Xi, \ \forall t$$

Features/Difficulties:

- lacksquare Optimize over decision policies $oldsymbol{x}_t(\cdot)$
- Polyhedral uncertainty sets $\Xi = \Xi_1 \times \cdots \times \Xi_T$
- Infinite number of variables and constraints

Assumptions:

- Relatively complete recourse
- Fixed recourse

$$\begin{aligned} & \max_{\boldsymbol{\xi} \in \Xi} \ \sum_{t=1}^T \boldsymbol{q}_t^\top \boldsymbol{x}_t(\boldsymbol{\xi}^t) \\ & \text{subject to} & \quad \boldsymbol{T}_t(\boldsymbol{\xi}_t) \, \boldsymbol{x}_{t-1}(\boldsymbol{\xi}^{t-1}) + \boldsymbol{W}_t \boldsymbol{x}_t(\boldsymbol{\xi}^t) \geq \boldsymbol{H}_t \boldsymbol{\xi}_t \\ & \quad \boldsymbol{x}_t(\boldsymbol{\xi}^t) \in \mathbb{R}^{n_t}, \, \boldsymbol{\xi}^t = (\boldsymbol{\xi}_1, \cdots, \boldsymbol{\xi}_t) \end{aligned} \right\} \forall \boldsymbol{\xi} \in \Xi, \ \forall t$$

Features/Difficulties:

- lacksquare Optimize over decision policies $oldsymbol{x}_t(\cdot)$
- Polyhedral uncertainty sets $\Xi = \Xi_1 \times \cdots \times \Xi_T$
- Infinite number of variables and constraints

Assumptions:

- Relatively complete recourse
- Fixed recourse

Both assumption can be lifted

$$\begin{aligned} & \underset{\boldsymbol{\xi} \in \Xi}{\text{minimize}} & & \underset{\boldsymbol{\xi} \in \Xi}{\text{max}} & \sum_{t=1}^T \boldsymbol{q}_t^\top \boldsymbol{x}_t(\boldsymbol{\xi}^t) & \left(\mathbb{E}_{\mathbb{P}} \left[\sum_{t=1}^T \boldsymbol{q}_t^\top \boldsymbol{x}_t(\boldsymbol{\xi}^t) \right] \right) \\ & \text{subject to} & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

Features/Difficulties:

- lacksquare Optimize over decision policies $oldsymbol{x}_t(\cdot)$
- Polyhedral uncertainty sets $\Xi = \Xi_1 \times \cdots \times \Xi_T$
- Infinite number of variables and constraints

Assumptions:

- Relatively complete recourse
- Fixed recourse

Both assumption can be lifted

Applications

The multistage problem can be expressed through a nested formulation

$$\min_{\boldsymbol{x}_1 \in \mathcal{X}_1} \boldsymbol{q}_1^\top \boldsymbol{x}_1 + \left[\max_{\boldsymbol{\xi}_2 \in \boldsymbol{\Xi}_2 \boldsymbol{x}_2 \in \mathcal{X}_2(\boldsymbol{x}_1, \boldsymbol{\xi}_2)} \min_{\boldsymbol{q}_2^\top \boldsymbol{x}_2} \boldsymbol{q}_2^\top \boldsymbol{x}_2 + \left[\cdots + \max_{\boldsymbol{\xi}_T \in \boldsymbol{\Xi}_T \boldsymbol{x}_T \in \mathcal{X}_T(\boldsymbol{x}_{T-1}, \boldsymbol{\xi}_T)} \min_{\boldsymbol{q}_T^\top \boldsymbol{x}_T} \boldsymbol{q}_T^\top \boldsymbol{x}_T \right] \right]$$

The multistage problem can be expressed through a nested formulation

$$\min_{\boldsymbol{x}_1 \in \mathcal{X}_1} \boldsymbol{q}_1^\top \boldsymbol{x}_1 + \underbrace{\left[\max_{\boldsymbol{\xi}_2 \in \Xi_2 \boldsymbol{x}_2 \in \mathcal{X}_2(\boldsymbol{x}_1, \boldsymbol{\xi}_2)} \boldsymbol{q}_2^\top \boldsymbol{x}_2 + \left[\cdots + \max_{\boldsymbol{\xi}_T \in \Xi_T \boldsymbol{x}_T \in \mathcal{X}_T(\boldsymbol{x}_{T-1}, \boldsymbol{\xi}_T)} \boldsymbol{q}_T^\top \boldsymbol{x}_T\right]\right]}_{\mathcal{Q}_2(\boldsymbol{x}_1) \text{ (cost to-go)}}$$

First stage problem

$$egin{array}{ll} \min & oldsymbol{q}_1^ op oldsymbol{x}_1 + \mathcal{Q}_2(oldsymbol{x}_1) \ & oldsymbol{W}_1 oldsymbol{x}_1 \geq oldsymbol{h}_1 \end{array}$$

The multistage problem can be expressed through a nested formulation

$$\min_{\boldsymbol{x}_1 \in \mathcal{X}_1} \boldsymbol{q}_1^\top \boldsymbol{x}_1 + \underbrace{\left[\max_{\boldsymbol{\xi}_2 \in \Xi_2 \boldsymbol{x}_2 \in \mathcal{X}_2(\boldsymbol{x}_1, \boldsymbol{\xi}_2)} \boldsymbol{q}_2^\top \boldsymbol{x}_2 + \underbrace{\left[\cdots + \max_{\boldsymbol{\xi}_T \in \Xi_T \boldsymbol{x}_T \in \mathcal{X}_T(\boldsymbol{x}_{T-1}, \boldsymbol{\xi}_T)} \min_{\boldsymbol{Q}_3(\boldsymbol{x}_2) \text{ (cost to-go)}} \boldsymbol{q}_T^\top \boldsymbol{x}_T \right]}_{\mathcal{Q}_3(\boldsymbol{x}_2) \text{ (cost to-go)}} \right]}$$

First stage problem

$$egin{array}{ll} \min & oldsymbol{q}_1^ op oldsymbol{x}_1 + \mathcal{Q}_2(oldsymbol{x}_1) \ oldsymbol{W}_1 oldsymbol{x}_1 \geq oldsymbol{h}_1 \end{array}$$

t stage problem

$$egin{aligned} \mathcal{Q}_t(oldsymbol{x}_{t-1}) = & \max_{oldsymbol{\xi}_t \in \Xi_t oldsymbol{x}_t \in \mathbb{R}^{n_t}} & oldsymbol{q}_t^ op oldsymbol{x}_t + \mathcal{Q}_{t+1}(oldsymbol{x}_t) \ & oldsymbol{T}_t oldsymbol{x}_{t-1} + oldsymbol{W}_t oldsymbol{x}_t \geq oldsymbol{H}_t oldsymbol{\xi}_t \end{aligned}$$

Cost to-go functions $\mathcal{Q}_t(oldsymbol{x}_{t-1})$ are

- Convex
- Piecewise linear

Cost to-go functions $\mathcal{Q}_t(m{x}_{t-1})$ are

- Convex
- Piecewise linear

If only we knew these functions...

$$egin{aligned} \mathcal{Q}_t(x_{t-1}) = \max_{oldsymbol{\xi}_t \in \Xi_t} \min_{oldsymbol{x}_t \in \mathbb{R}^{n_t} } & oldsymbol{q}_t^ op oldsymbol{x}_t + \mathcal{Q}_{t+1}(oldsymbol{x}_t) \ & oldsymbol{T}_t \, x_{t-1} + oldsymbol{W}_t oldsymbol{x}_t \geq oldsymbol{H}_t oldsymbol{\xi}_t \end{aligned}$$

Cost to-go functions $\mathcal{Q}_t(m{x}_{t-1})$ are

- Convex
- Piecewise linear

If only we knew these functions...

$$egin{aligned} \mathcal{Q}_t(x_{t-1}) = \max_{oldsymbol{\xi}_t \in \Xi_t} \min_{oldsymbol{x}_t \in \mathbb{R}^{n_t} } & oldsymbol{q}_t^ op oldsymbol{x}_t + \mathcal{Q}_{t+1}(oldsymbol{x}_t) \ & oldsymbol{T}_t \, x_{t-1} + oldsymbol{W}_t oldsymbol{x}_t \geq oldsymbol{H}_t oldsymbol{\xi}_t \end{aligned}$$

This problem is still not easy (in fact is NP-hard).

Cost to-go functions $\mathcal{Q}_t(m{x}_{t-1})$ are

- Convex
- Piecewise linear

If only we knew these functions...

$$egin{aligned} \mathcal{Q}_t(x_{t-1}) = \max_{oldsymbol{\xi}_t \in \Xi_t} \min_{oldsymbol{x}_t \in \mathbb{R}^{n_t} } & oldsymbol{q}_t^ op oldsymbol{x}_t + \mathcal{Q}_{t+1}(oldsymbol{x}_t) \ & oldsymbol{T}_t \, x_{t-1} + oldsymbol{W}_t oldsymbol{x}_t \geq oldsymbol{H}_t oldsymbol{\xi}_t \end{aligned}$$

This problem is still not easy (in fact is NP-hard). However,

■ "Practable" algorithms can address problem

Cost to-go functions $\mathcal{Q}_t(m{x}_{t-1})$ are

- Convex
- Piecewise linear

If only we knew these functions...

$$egin{aligned} \mathcal{Q}_t(x_{t-1}) = \max_{oldsymbol{\xi}_t \in \Xi_t} \min_{oldsymbol{x}_t \in \mathbb{R}^{n_t} } & oldsymbol{q}_t^ op oldsymbol{x}_t + \mathcal{Q}_{t+1}(oldsymbol{x}_t) \ & oldsymbol{T}_t \, x_{t-1} + oldsymbol{W}_t oldsymbol{x}_t \geq oldsymbol{H}_t oldsymbol{\xi}_t \end{aligned}$$

This problem is still not easy (in fact is NP-hard). However,

- "Practable" algorithms can address problem
- inner problem convex in for each ξ_t

Cost to-go functions $\mathcal{Q}_t(m{x}_{t-1})$ are

- Convex
- Piecewise linear

If only we knew these functions...

$$egin{aligned} \mathcal{Q}_t(x_{t-1}) = \max_{oldsymbol{\xi}_t \in \mathsf{ext}oldsymbol{\Xi}_t} & \min_{oldsymbol{x}_t \in \mathbb{R}^{n_t}} & oldsymbol{q}_t^ op oldsymbol{x}_t + \mathcal{Q}_{t+1}(oldsymbol{x}_t) \ & T_t \, x_{t-1} + oldsymbol{W}_t oldsymbol{x}_t \geq oldsymbol{H}_t oldsymbol{\xi}_t \end{aligned}$$

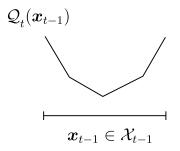
This problem is still not easy (in fact is NP-hard). However,

- "Practable" algorithms can address problem
- inner problem convex in for each ξ_t
- Polyhedral $\Xi_t \implies$ replace with ext $\Xi_t \implies$ problem decomposes

Approximate Dynamic Programming

Cost to-go functions $\mathcal{Q}_t(oldsymbol{x}_{t-1})$ are

- Convex
- Piecewise linear

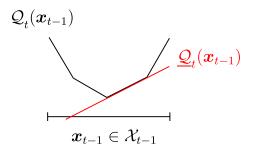


Approximate Dynamic Programming

Cost to-go functions $\mathcal{Q}_t(oldsymbol{x}_{t-1})$ are

- Convex
- Piecewise linear

Approximate using under-estimator $\mathcal{Q}_t(x_{t-1})$

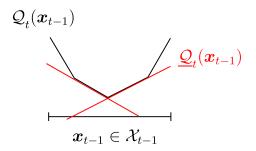


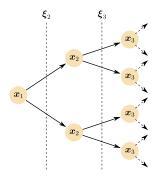
Approximate Dynamic Programming

Cost to-go functions $\mathcal{Q}_t(oldsymbol{x}_{t-1})$ are

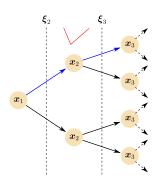
- Convex
- Piecewise linear

Approximate using under-estimator $\mathcal{Q}_t(x_{t-1})$

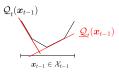




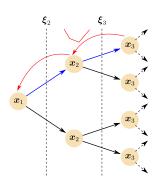
■ Maintain outer approximation $Q_t(x_{t-1})$ per node



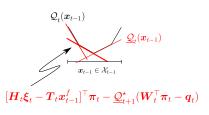
$$\begin{aligned} \boldsymbol{x}_t^f &= \arg\min_{\boldsymbol{x}_t \in \mathbb{R}^{n_t}} \quad \boldsymbol{q}_t^\top \boldsymbol{x}_t + \underline{\mathcal{Q}}_{t+1}(\boldsymbol{x}_t) \\ & \quad \boldsymbol{T}_t \, \boldsymbol{x}_{t-1}^f + \boldsymbol{W}_t \boldsymbol{x}_t \geq \boldsymbol{H}_t \boldsymbol{\xi}_t \end{aligned}$$



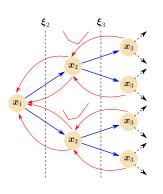
- Maintain outer approximation $Q_t(x_{t-1})$ per node
- Forward Pass: Explore one scenario at a time



$$\begin{aligned} \boldsymbol{x}_t^f &= \arg\min_{\boldsymbol{x}_t \in \mathbb{R}^{n_t}} & \quad \boldsymbol{q}_t^\top \boldsymbol{x}_t + \underline{\mathcal{Q}}_{t+1}(\boldsymbol{x}_t) \\ & \quad \boldsymbol{T}_t \, \boldsymbol{x}_{t-1}^f + \boldsymbol{W}_t \boldsymbol{x}_t \geq \boldsymbol{H}_t \boldsymbol{\xi}_t \end{aligned}$$



- lacksquare Maintain outer approximation $\underline{\mathcal{Q}}_t(oldsymbol{x}_{t-1})$ per node
- Forward Pass: Explore one scenario at a time
- Backward Pass: Introduce Benders cuts, refine outer approximations



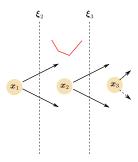
$$\begin{aligned} \boldsymbol{x}_t^f &= \arg\min_{\boldsymbol{x}_t \in \mathbb{R}^{n_t}} & \quad \boldsymbol{q}_t^\top \boldsymbol{x}_t + \underline{\mathcal{Q}}_{t+1}(\boldsymbol{x}_t) \\ & \quad \boldsymbol{T}_t \, \boldsymbol{x}_{t-1}^f + \boldsymbol{W}_t \boldsymbol{x}_t \geq \boldsymbol{H}_t \boldsymbol{\xi}_t \end{aligned}$$

$$\begin{aligned} \max_{\boldsymbol{\xi}_t \in \text{ext} \boldsymbol{\Xi}_t} \min_{\boldsymbol{x}_t \in \mathbb{R}^{n_t}} & \boldsymbol{q}_t^\top \boldsymbol{x}_t + \underline{\mathcal{Q}}_{t+1}(\boldsymbol{x}_t) \\ & \boldsymbol{T}_t \ \boldsymbol{x}_{t-1}^f + \boldsymbol{W}_t \boldsymbol{x}_t \geq \boldsymbol{H}_t \boldsymbol{\xi}_t \end{aligned}$$

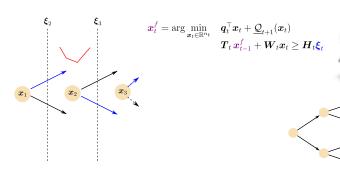
- Maintain outer approximation $\underline{\mathcal{Q}}_t(\boldsymbol{x}_{t-1})$ per node
- Forward Pass: Explore one scenario at a time
- Backward Pass: Introduce Benders cuts, refine outer approximations
- Exhaustive enumeration: we refine at all nodes (all scenarios) several times

- Maintain outer approximation $Q_t(x_{t-1})$ per node
- Forward Pass: Explore one scenario at a time
- Backward Pass: Introduce Benders cuts, refine outer approximations
- Exhaustive enumeration: we refine at all nodes (all scenarios) several times

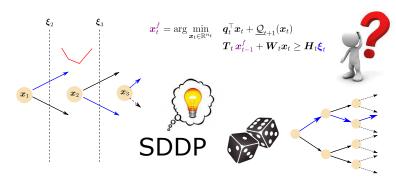
Exploit the Markov property: Maintain one approximation $\underline{\mathcal{Q}}_t(m{x}_{t-1})$ per stage



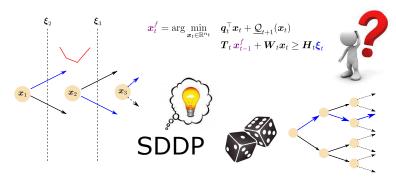
Exploit the Markov property: Maintain one approximation $\underline{\mathcal{Q}}_t(m{x}_{t-1})$ per stage



Exploit the Markov property: Maintain one approximation $\underline{\mathcal{Q}}_t(m{x}_{t-1})$ per stage



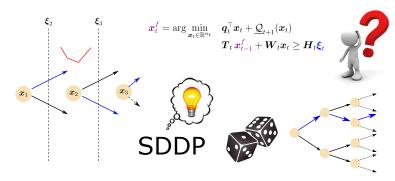
Exploit the Markov property: Maintain one approximation $\underline{\mathcal{Q}}_t(m{x}_{t-1})$ per stage



SDDP:

- Small number of refinements
- Good performance in practice

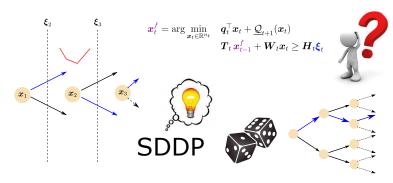
Exploit the Markov property: Maintain one approximation $\underline{\mathcal{Q}}_t(m{x}_{t-1})$ per stage



SDDP:

- Small number of refinements
- Good performance in practice
- Stochastic termination criterion
- Stochastic convergence

Exploit the Markov property: Maintain one approximation $\mathcal{Q}_t(x_{t-1})$ per stage



SDDP:

- Small number of refinements
- Good performance in practice
- Stochastic termination criterion
- Stochastic convergence
- No distributional information for robust optimization

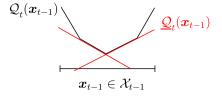
CMO BIRS 2019

Robust Dual Dynamic Programming (RDDP)

Which scenario/state do we propagate forward?

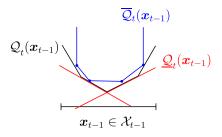
Main Idea: maintain both

an outer approximation



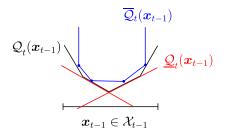
Main Idea: maintain both

- an outer approximation
- and an inner approximation



Main Idea: maintain both

- an outer approximation
- and an inner approximation

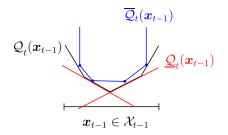


In the forward pass:

- use inner approximation to choose scenario
- use outer approximation to choose decisions (points of refinement)

Main Idea: maintain both

- an outer approximation
- and an inner approximation



In the forward pass:

- use inner approximation to choose scenario
- use outer approximation to choose decisions (points of refinement)

In the backward pass:

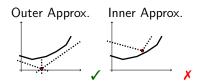
refine both inner and outer approximations

11 / 27

Why Use an Inner Approximation?

Intuitively speaking,

minimizing a convex function

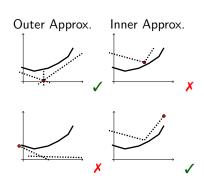


Why Use an Inner Approximation?

Intuitively speaking,

minimizing a convex function

maximizing a convex function



Forward Pass

We want "nature" to be optimistic in its choice, use inner approximation

$$oldsymbol{\xi}_t^f = rg\max_{oldsymbol{\xi}_t \in ext{ext }\Xi_t} \min_{oldsymbol{x}_t \in \mathbb{R}^{n_t}} \quad oldsymbol{q}_t^ op oldsymbol{x}_t + \overline{\mathcal{Q}}_{t+1}(oldsymbol{x}_t) \ oldsymbol{T}_t \, oldsymbol{x}_{t-1}^f + oldsymbol{W}_t oldsymbol{x}_t \geq oldsymbol{H}_t oldsymbol{\xi}_t$$

Forward Pass

We want "nature" to be optimistic in its choice, use inner approximation

$$oldsymbol{\xi}_t^f = rg\max_{oldsymbol{\xi}_t \in \mathsf{ext} \; \Xi_t } \min_{oldsymbol{x}_t \in \mathbb{R}^{n_t}} \quad oldsymbol{q}_t^ op oldsymbol{x}_t + \overline{\mathcal{Q}}_{t+1}(oldsymbol{x}_t) \ oldsymbol{T}_t \, oldsymbol{x}_{t-1}^f + oldsymbol{W}_t oldsymbol{x}_t \geq oldsymbol{H}_t oldsymbol{\xi}_t$$

Based on "optimistic nature", make optimistic decision, use outer approximation

$$egin{aligned} oldsymbol{x}_t^f &= rg \min_{oldsymbol{x}_t \in \mathbb{R}^{n_t} } & oldsymbol{q}_t^ op oldsymbol{x}_t + \underline{\mathcal{Q}}_{t+1}(oldsymbol{x}_t) \ & oldsymbol{T}_t \, oldsymbol{x}_{t-1}^f + oldsymbol{W}_t oldsymbol{x}_t \geq oldsymbol{H}_t oldsymbol{\xi}_t^f \end{aligned}$$

Forward Pass

We want "nature" to be optimistic in its choice, use inner approximation

$$oldsymbol{\xi}_t^f = rg\max_{oldsymbol{\xi}_t \in \mathsf{ext} \; \Xi_t} \min_{oldsymbol{x}_t \in \mathbb{R}^{n_t}} \quad oldsymbol{q}_t^ op oldsymbol{x}_t + \overline{\mathcal{Q}}_{t+1}(oldsymbol{x}_t) \ oldsymbol{T}_t \, oldsymbol{x}_{t-1}^f + oldsymbol{W}_t oldsymbol{x}_t \geq oldsymbol{H}_t oldsymbol{\xi}_t$$

Based on "optimistic nature", make optimistic decision, use outer approximation

$$egin{aligned} oldsymbol{x}_t^f &= rg \min_{oldsymbol{x}_t \in \mathbb{R}^{n_t}} & oldsymbol{q}_t^ op oldsymbol{x}_t + oldsymbol{Q}_{t+1}(oldsymbol{x}_t) \ & T_t \, oldsymbol{x}_{t-1}^f + oldsymbol{W}_t oldsymbol{x}_t \geq oldsymbol{H}_t oldsymbol{\xi}_t^f \end{aligned}$$

Nature

Inner approximation: Starting with $oldsymbol{x}_{t-1}^f$

$$egin{aligned} oldsymbol{\xi}_t^b &= rg\max_{oldsymbol{\xi}_t \in ext{ext} \, \Xi_t oldsymbol{x}_t \in \mathbb{R}^{n_t} } \min_{oldsymbol{q}_t^ op oldsymbol{x}_t + oldsymbol{Q}_{t+1} (oldsymbol{x}_t) \ & oldsymbol{T}_t \, x_{t-1}^f + oldsymbol{W}_t oldsymbol{x}_t \geq oldsymbol{H}_t oldsymbol{\xi}_t \end{aligned}$$

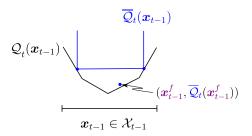
with optimal solution $\overline{\mathcal{Q}}_t(x_{t-1}^f)$

Inner approximation: Starting with $oldsymbol{x}_{t-1}^f$

$$\begin{split} \boldsymbol{\xi}_t^b &= \arg \max_{\boldsymbol{\xi}_t \in \text{ext} \, \boldsymbol{\Xi}_t \boldsymbol{x}_t \in \mathbb{R}^{n_t}} \quad \boldsymbol{q}_t^\top \boldsymbol{x}_t + \overline{\mathcal{Q}}_{t+1}(\boldsymbol{x}_t) \\ & \quad \boldsymbol{T}_t \, \boldsymbol{x}_{t-1}^f + \boldsymbol{W}_t \boldsymbol{x}_t \geq \boldsymbol{H}_t \boldsymbol{\xi}_t \end{split}$$

with optimal solution $\overline{\mathcal{Q}}_t(x_{t-1}^f)$

 \blacksquare add $(x_{t-1}^f,\overline{\mathcal{Q}}_t(x_{t-1}^f))$ to approximation $\overline{\mathcal{Q}}_t$

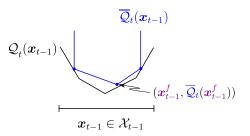


Inner approximation: Starting with $oldsymbol{x}_{t-1}^f$

$$oldsymbol{\xi}_t^b = rg\max_{oldsymbol{\xi}_t \in ext{ext} \, \Xi_t oldsymbol{x}_t \in \mathbb{R}^{n_t}} & oldsymbol{q}_t^ op oldsymbol{x}_t + \overline{\mathcal{Q}}_{t+1}(oldsymbol{x}_t) \ & oldsymbol{T}_t \, x_{t-1}^f + oldsymbol{W}_t oldsymbol{x}_t \geq oldsymbol{H}_t oldsymbol{\xi}_t$$

with optimal solution $\overline{\mathcal{Q}}_t(x_{t-1}^f)$

 \blacksquare add $(x_{t-1}^f,\overline{\mathcal{Q}}_t(x_{t-1}^f))$ to approximation $\overline{\mathcal{Q}}_t$



Outer approximation: Starting with x_{t-1}^f , use ξ_t^b from inner approximation

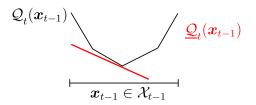
$$egin{aligned} \underline{\mathcal{Q}}_t(x_{t-1}^f) &= \min_{oldsymbol{x}_t \in \mathbb{R}^{n_t}} & oldsymbol{q}_t^ op oldsymbol{x}_t + \underline{\mathcal{Q}}_{t+1}(oldsymbol{x}_t) \ & oldsymbol{T}_t \, oldsymbol{x}_{t-1}^f + oldsymbol{W}_t oldsymbol{x}_t \geq oldsymbol{H}_t oldsymbol{\xi}_t^f \end{aligned}$$

with π_t be the optimal solution of the dual problem

Outer approximation: Starting with x_{t-1}^f , use $\pmb{\xi}_t^b$ from inner approximation

$$egin{aligned} \underline{\mathcal{Q}}_t(x_{t-1}^f) &= \min_{oldsymbol{x}_t \in \mathbb{R}^{n_t}} & oldsymbol{q}_t^ op oldsymbol{x}_t + \underline{\mathcal{Q}}_{t+1}(oldsymbol{x}_t) \ & oldsymbol{T}_t \, x_{t-1}^f + oldsymbol{W}_t oldsymbol{x}_t \geq oldsymbol{H}_t oldsymbol{\xi}_t^b \end{aligned}$$

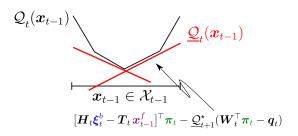
with π_t be the optimal solution of the dual problem



Outer approximation: Starting with x_{t-1}^f , use $\pmb{\xi}_t^b$ from inner approximation

$$egin{aligned} \underline{\mathcal{Q}}_t(x_{t-1}^f) &= \min_{oldsymbol{x}_t \in \mathbb{R}^{n_t}} & oldsymbol{q}_t^ op oldsymbol{x}_t + \underline{\mathcal{Q}}_{t+1}(oldsymbol{x}_t) \ & oldsymbol{T}_t \, x_{t-1}^f + oldsymbol{W}_t oldsymbol{x}_t \geq oldsymbol{H}_t oldsymbol{\xi}_t^b \end{aligned}$$

with π_t be the optimal solution of the dual problem



Stage-1 Problem:

■ using inner approximation get upper bound

$$\overline{J} = \min_{oldsymbol{x}_1 \in \mathbb{R}^{n_1}} \quad oldsymbol{q}_1^ op oldsymbol{x}_1 + \overline{\mathcal{Q}}_2(oldsymbol{x}_1) \ oldsymbol{W}_1 oldsymbol{x}_1 \geq oldsymbol{h}_1$$

Stage-1 Problem:

■ using inner approximation get upper bound

$$egin{aligned} \overline{J} = \min_{oldsymbol{x}_1 \in \mathbb{R}^{n_1}} & oldsymbol{q}_1^ op oldsymbol{x}_1 + \overline{\mathcal{Q}}_2(oldsymbol{x}_1) \ & oldsymbol{W}_1 oldsymbol{x}_1 \geq oldsymbol{h}_1 \end{aligned}$$

using outer approximation get lower bound

$$egin{aligned} \underline{m{J}} = \min_{m{x}_1 \in \mathbb{R}^{n_1}} & m{q}_1^ op m{x}_1 + \underline{m{\mathcal{Q}}}_2(m{x}_1) \ & m{W}_1m{x}_1 \geq m{h}_1 \end{aligned}$$

Stage-1 Problem:

using inner approximation get upper bound

$$egin{aligned} \overline{J} = \min_{oldsymbol{x}_1 \in \mathbb{R}^{n_1}} & oldsymbol{q}_1^ op oldsymbol{x}_1 + \overline{\mathcal{Q}}_2(oldsymbol{x}_1) \ & oldsymbol{W}_1 oldsymbol{x}_1 \geq oldsymbol{h}_1 \end{aligned}$$

using outer approximation get lower bound

$$egin{aligned} \underline{m{J}} &= \min_{m{x}_1 \in \mathbb{R}^{n_1}} & m{q}_1^ op m{x}_1 + \underline{m{\mathcal{Q}}}_2(m{x}_1) \ & m{W}_1m{x}_1 \geq m{h}_1 \end{aligned}$$

Since
$$\underline{\mathcal{Q}}_2(x_1) \leq \mathcal{Q}_2(x_1) \leq \overline{\mathcal{Q}}_2(x_1)$$
 for all $x_1 \in \mathbb{R}^{n_1}$

$$J \leq J^* \leq \overline{J}$$

Stage-1 Problem:

■ using inner approximation get upper bound

$$egin{aligned} \overline{J} = \min_{oldsymbol{x}_1 \in \mathbb{R}^{n_1}} & oldsymbol{q}_1^ op oldsymbol{x}_1 + \overline{\mathcal{Q}}_2(oldsymbol{x}_1) \ & oldsymbol{W}_1 oldsymbol{x}_1 \geq oldsymbol{h}_1 \end{aligned}$$

using outer approximation get lower bound

$$egin{aligned} oldsymbol{\underline{J}} &= \min_{oldsymbol{x}_1 \in \mathbb{R}^{n_1}} & oldsymbol{q}_1^ op oldsymbol{x}_1 + oldsymbol{\underline{Q}_2}(oldsymbol{x}_1) \ & oldsymbol{W}_1 oldsymbol{x}_1 \geq oldsymbol{h}_1 \end{aligned}$$

Since
$$\underline{\mathcal{Q}}_2(x_1) \leq \mathcal{Q}_2(x_1) \leq \overline{\mathcal{Q}}_2(x_1)$$
 for all $x_1 \in \mathbb{R}^{n_1}$

$$\underline{J} \le J^* \le \overline{J}$$

Termination Criterion: $\overline{J} = J^* = \underline{J}$

Nested Benders:

- Finite convergence
- Deterministic bounds
- No relative complete recourse

Nested Benders:

- Finite convergence
- Deterministic bounds
- No relative complete recourse
- Sexponential effort (to complete every iteration)

Nested Benders:

- Finite convergence
- Deterministic bounds
- No relative complete recourse
- Exponential effort (to complete every iteration)

SDDP:

- Lightweight iterations
- Limited memory requirements

Nested Benders:

- Finite convergence
- Deterministic bounds
- No relative complete recourse
- S Exponential effort (to complete every iteration)

SDDP:

- Lightweight iterations
- Limited memory requirements
- Relative complete recourse required
- Stochastic upper bounds
- Stochastic convergence

Nested Benders:

- Finite convergence
- Deterministic bounds
- No relative complete recourse
- S Exponential effort (to complete every iteration)

SDDP:

- Lightweight iterations
- Limited memory requirements
- Relative complete recourse required
- Stochastic upper bounds
- Stochastic convergence

RDDP: Combines best of Nested Benders & SDDP

- Finite convergence
- Deterministic bounds
- No relative complete recourse

- Lightweight iterations
- Limited memory requirements

Nested Benders:

- Finite convergence
- Deterministic bounds
- No relative complete recourse
- Exponential effort (to complete every iteration)

SDDP:

- Lightweight iterations
- S Limited memory requirements
- Relative complete recourse required
- Stochastic upper bounds
- Stochastic convergence

RDDP: Combines best of Nested Benders & SDDP

- Finite convergence
- Deterministic bounds
- No relative complete recourse

- Lightweight iterations
- Limited memory requirements

- Implementable strategy at every iteration
- Exponential number of iterations required in worst case

$$\begin{aligned} & \max_{\boldsymbol{\xi} \in \Xi} \ \sum_{t=1}^T \boldsymbol{q}_t^\top \boldsymbol{x}_t(\boldsymbol{\xi}^t) \\ & \text{subject to} & \boldsymbol{f}_1(\boldsymbol{x}_1) \leq \boldsymbol{0} & \forall \boldsymbol{\xi} \in \Xi \\ & \boldsymbol{f}_t(\boldsymbol{x}_{t-1}(\boldsymbol{\xi}^{t-1}), \boldsymbol{\xi}_t, \boldsymbol{x}_t(\boldsymbol{\xi}^t)) \leq \boldsymbol{0} & \forall \boldsymbol{\xi} \in \Xi, \ \forall t \\ & \boldsymbol{x}_t(\boldsymbol{\xi}^t) \in \mathbb{R}^{n_t}, \ \boldsymbol{\xi} \in \Xi \ \text{and} \ t = 1, \dots, T, \end{aligned}$$

Extensions:

Non-linear (convex) case: $f_t(\cdot, \boldsymbol{\xi}_t, \cdot)$ are jointly quasi-convex

$$\begin{aligned} & \max_{\boldsymbol{\xi} \in \Xi} \ \sum_{t=1}^T \boldsymbol{q}_t^\top \boldsymbol{x}_t(\boldsymbol{\xi}^t) \\ & \text{subject to} & \quad \boldsymbol{f}_1(\boldsymbol{x}_1) \leq \boldsymbol{0} & \forall \boldsymbol{\xi} \in \Xi \\ & \quad \boldsymbol{f}_t(\boldsymbol{x}_{t-1}(\boldsymbol{\xi}^{t-1}), \boldsymbol{\xi}_t, \boldsymbol{x}_t(\boldsymbol{\xi}^t)) \leq \boldsymbol{0} & \forall \boldsymbol{\xi} \in \Xi, \ \forall t \\ & \quad \boldsymbol{x}_t(\boldsymbol{\xi}^t) \in \mathbb{R}^{n_t}, \ \boldsymbol{\xi} \in \Xi \ \text{and} \ t = 1, \dots, T, \end{aligned}$$

Extensions:

- Non-linear (convex) case: $f_t(\cdot, \xi_t, \cdot)$ are jointly quasi-convex
- Random recourse

$$T_t(\boldsymbol{\xi}_t) \, \boldsymbol{x}_{t-1}(\boldsymbol{\xi}^{t-1}) + \boldsymbol{W}_t(\boldsymbol{\xi}_t) \boldsymbol{x}_t(\boldsymbol{\xi}^t) \ge \boldsymbol{H}_t \boldsymbol{\xi}_t$$

$$\begin{aligned} & \max_{\boldsymbol{\xi} \in \Xi} \ \sum_{t=1}^T \boldsymbol{q}_t^\top \boldsymbol{x}_t(\boldsymbol{\xi}^t) \\ & \text{subject to} & \boldsymbol{f}_1(\boldsymbol{x}_1) \leq \boldsymbol{0} & \forall \boldsymbol{\xi} \in \Xi \\ & & \boldsymbol{f}_t(\boldsymbol{x}_{t-1}(\boldsymbol{\xi}^{t-1}), \boldsymbol{\xi}_t, \boldsymbol{x}_t(\boldsymbol{\xi}^t)) \leq \boldsymbol{0} & \forall \boldsymbol{\xi} \in \Xi, \ \forall t \\ & & \boldsymbol{x}_t(\boldsymbol{\xi}^t) \in \mathbb{R}^{n_t}, \ \boldsymbol{\xi} \in \Xi \ \text{and} \ t = 1, \dots, T, \end{aligned}$$

Extensions:

- Non-linear (convex) case: $f_t(\cdot, \xi_t, \cdot)$ are jointly quasi-convex
- Random recourse

$$T_t(\boldsymbol{\xi}_t) \boldsymbol{x}_{t-1}(\boldsymbol{\xi}^{t-1}) + \boldsymbol{W}_t(\boldsymbol{\xi}_t) \boldsymbol{x}_t(\boldsymbol{\xi}^t) \geq \boldsymbol{H}_t \boldsymbol{\xi}_t$$

■ Random objective function

$$\begin{aligned} & \max_{\boldsymbol{\xi} \in \Xi} \ \sum_{t=1}^T \boldsymbol{q}_t^\top \boldsymbol{x}_t(\boldsymbol{\xi}^t) \\ & \text{subject to} & \quad \boldsymbol{f}_1(\boldsymbol{x}_1) \leq \boldsymbol{0} & \forall \boldsymbol{\xi} \in \Xi \\ & \quad \boldsymbol{f}_t(\boldsymbol{x}_{t-1}(\boldsymbol{\xi}^{t-1}), \boldsymbol{\xi}_t, \boldsymbol{x}_t(\boldsymbol{\xi}^t)) \leq \boldsymbol{0} & \forall \boldsymbol{\xi} \in \Xi, \ \forall t \\ & \quad \boldsymbol{x}_t(\boldsymbol{\xi}^t) \in \mathbb{R}^{n_t}, \ \boldsymbol{\xi} \in \Xi \ \text{and} \ t = 1, \dots, T, \end{aligned}$$

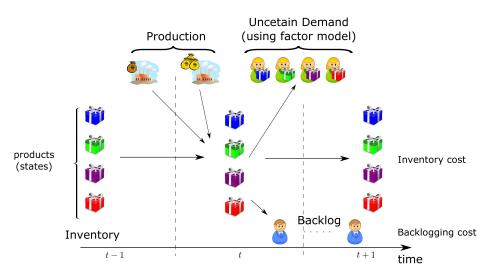
Extensions:

- lacktriangle Non-linear (convex) case: $f_t(\cdot, oldsymbol{\xi}_t, \cdot)$ are jointly quasi-convex
- Random recourse

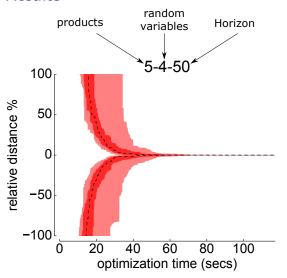
$$T_t(oldsymbol{\xi}_t) \, oldsymbol{x}_{t-1}(oldsymbol{\xi}^{t-1}) + oldsymbol{W}_t(oldsymbol{\xi}_t) oldsymbol{x}_t(oldsymbol{\xi}^t) \geq oldsymbol{H}_t oldsymbol{\xi}_t$$

- Random objective function
- Asymptotic convergence guaranties (cost to-go convex but not piecewise linear)

Numerical Results: Inventory Control



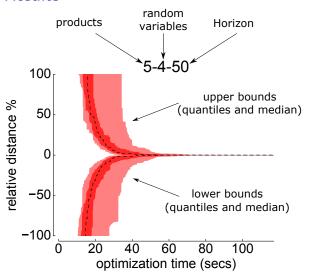
Numerical Results



Results generated using 25 random problem instances

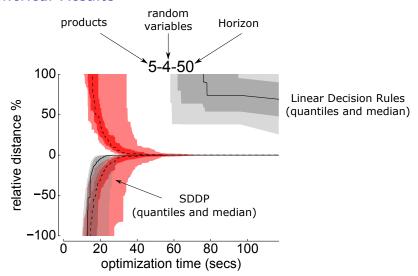
20 / 27

Numerical Results



Results generated using 25 random problem instances

Numerical Results



Results generated using 25 random problem instances

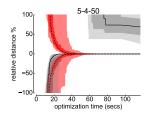
Numerical Results: Nested Benders Decomposition

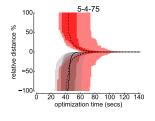
Instance	Trajectories	Runtime	Memory
5-4-3	256	1.3s	18MB
5-4-4	4,096	44.6s	260MB
5-4-5	65,536	924.23s	20.2GB
5-4-6	1,048,576		_

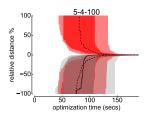
 \blacksquare Nested Benders Decomposition is completely impractical for T>5

Scalability w.r.t. horizon $T = \{50, 75, 100\}$

- 5 products (5 states)
- 4 random variables per stage ($2^4 = 16$ scenarios)

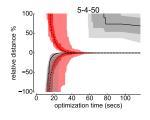


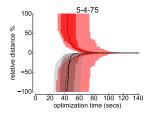


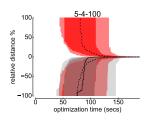


Scalability w.r.t. horizon $T = \{50, 75, 100\}$

- 5 products (5 states)
- 4 random variables per stage ($2^4 = 16$ scenarios)



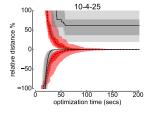


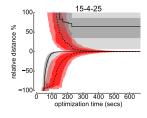


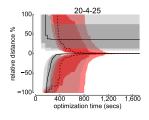
- RDDP scales better than linear decision rules w.r.t. the horizon...
- in addition to converging to the optimal solution

Scalability w.r.t. products = $\{10, 15, 20\}$

- 4 random variables per stage $(2^4 = 16 \text{ scenarios})$
- \blacksquare horizon T=25

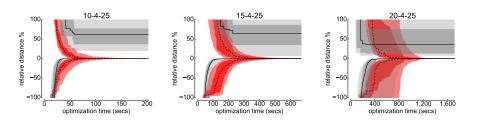






Scalability w.r.t. products = $\{10, 15, 20\}$

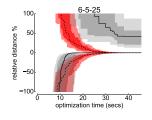
- 4 random variables per stage $(2^4 = 16 \text{ scenarios})$
- \blacksquare horizon T=25

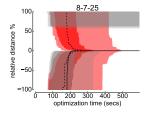


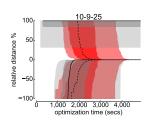
- RDDP does not solve the "curse of dimensionality"
- But, can address problem instances of practical interest ...
- while converging to the optimal solution

Scalability w.r.t. random variables = $\{5, 7, 9\}$

- i.e., scenarios per stage = $\{32, 128, 512\}$
- horizon T = 25



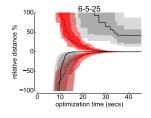


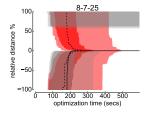


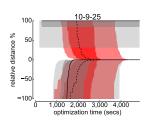
■ Complexity of two-stage problem can affect scalability

Scalability w.r.t. random variables = $\{5, 7, 9\}$

- i.e., scenarios per stage = $\{32, 128, 512\}$
- horizon T = 25







Complexity of two-stage problem can affect scalability

ĺ		Initial inventories $I_{0p}(oldsymbol{\xi}^0)$											
	Order	20%		25%		30%		35%		40%			
	frequency Δ	Solved	Gap	Solved	Gap	Solved	Gap	Solved	Gap	Solved	Gap		
	5	70%	18%	60%	20%	40%	20%	20%	72%	0%	100%		
	7									0%			
	10	0%	14%	0%	14%	20%	18%	10%	23%	10%	73%		

■ SDDP can easily miss the optimal solution!

SDDP

RDDP

Angelos Tsoukalas American University of Beirut Olayan School of Business

Wolfram Wiesemann Imperial College Business School

- [1] GEORGHIOU, A., TSOUKALAS, A. AND WIESEMANN, W. Robust Dual Dynamic Programming

 Operations Research, 67(3): 813–830, 2019.
 - angelos.georghiou@mcgill.ca
 - https://mcgill.ca/desautels/angelos-georghiou