A Proof Complexity View of Pseudo-Boolean Solving

Marc Vinyals

Tata Institute of Fundamental Research
Mumbai, India

Joint work with Jan Elffers, Jesús Giráldez-Cru, Stephan Gocht, and Jakob Nordström
Theory and Practice of Satisfiability Solving Workshop
August 28 2018, Casa Matemática Oaxaca, Mexico

The Power of CDCL Solvers

- Current SAT solvers use CDCL algorithm
- Replace heuristics by nondeterminism \rightarrow CDCL proof system

The Power of CDCL Solvers

- Current SAT solvers use CDCL algorithm
- Replace heuristics by nondeterminism \rightarrow CDCL proof system
- All CDCL proofs are resolution proofs
- Lower bound for resolution length \Rightarrow lower bound for CDCL run time
*(Ignoring preprocessing)

The Power of CDCL Solvers

- Current SAT solvers use CDCL algorithm
- Replace heuristics by nondeterminism \rightarrow CDCL proof system
- All CDCL proofs are resolution proofs
- Lower bound for resolution length \Rightarrow lower bound for CDCL run time *(Ignoring preprocessing)

And the opposite direction?
Theorem [Pipatsrisawat, Darwiche '09; Atserias, Fichte, Thurley '09]
CDCL $\equiv_{\text {poly }}$ Resolution

- CDCL can simulate any resolution proof
- Not true for DPLL: limited to tree-like

More Powerful Solvers

Resolution is a weak proof system

- e.g. cannot count
- $x_{1}+\cdots+x_{n}=n / 2$ needs exponentially many clauses

More Powerful Solvers

Resolution is a weak proof system

- e.g. cannot count
- $x_{1}+\cdots+x_{n}=n / 2$ needs exponentially many clauses

Pseudo-Boolean constraints more expressive

$$
\begin{aligned}
& x_{1}+\cdots+x_{n} \geq n / 2 \\
& \overline{x_{1}}+\cdots+\overline{x_{n}} \geq n / 2
\end{aligned}
$$

More Powerful Solvers

Resolution is a weak proof system

- e.g. cannot count
- $x_{1}+\cdots+x_{n}=n / 2$ needs exponentially many clauses

Pseudo-Boolean constraints more expressive

$$
\begin{aligned}
& x_{1}+\cdots+x_{n} \geq n / 2 \\
& \overline{x_{1}}+\cdots+\overline{x_{n}} \geq n / 2
\end{aligned}
$$

Build solvers with native pseudo-Boolean constraints?

- Can generalize CDCL, even if tricky
- Not as successful as SAT solvers

What do we do

Question

What limits pseudo-Boolean solvers?

What do we do

Question

What limits pseudo-Boolean solvers?

Theoretical Barriers

- Study proof systems arising from pseudo-Boolean solvers

Implementation

- Evaluate solvers on theoretically easy formulas

What do we do

Question

What limits pseudo-Boolean solvers?

Theoretical Barriers

- Study proof systems arising from pseudo-Boolean solvers

Implementation

- Evaluate solvers on theoretically easy formulas

Cutting Planes

All pseudo-Boolean proofs are cutting planes proofs

Cutting Planes

All pseudo-Boolean proofs are cutting planes proofs

Work with linear pseudo-Boolean inequalities
$x \vee \bar{y} \rightarrow x+\bar{y} \geq 1 \equiv x+(1-y) \geq 1$

$$
\bar{y}=1-y \quad \text { degree }
$$

Cutting Planes

All pseudo-Boolean proofs are cutting planes proofs

Work with linear pseudo-Boolean inequalities
$x \vee \bar{y} \rightarrow x+\bar{y} \geq 1 \equiv x+(1-y) \geq 1$

$$
\bar{y}=1-y \quad \text { degree }
$$

Rules

Variable axioms
$\overline{x \geq 0} \overline{-x \geq-1}$

Addition
$\frac{\sum a_{i} x_{i} \geq a \quad \sum b_{i} x_{i} \geq b}{\sum\left(\alpha a_{i}+\beta b_{i}\right) x_{i} \geq \alpha a+\beta b}$

Division

$$
\frac{\sum a_{i} x_{i} \geq a}{\sum\left(a_{i} / k\right) x_{i} \geq\lceil a / k\rceil}
$$

Goal: derive $0 \geq 1$

Addition in Practice

Addition

$$
\frac{\sum a_{i} x_{i} \geq a \quad \sum b_{i} x_{i} \geq b}{\sum\left(\alpha a_{i}+\beta b_{i}\right) x_{i} \geq \alpha a+\beta b}
$$

- Unbounded choices
- Need a reason to add inequalities

Division in Practice

Division

$\frac{\sum a_{i} x_{i} \geq a}{\sum\left(a_{i} / k\right) x_{i} \geq\lceil a / k\rceil}$

- Too expensive

Weaker Rules

What is the bare minimum to simulate resolution?

$\frac{x \vee y \vee \bar{z} \quad \bar{x} \vee y}{y \vee \bar{z}}$

Weaker Rules

What is the bare minimum to simulate resolution?
$\frac{x \vee y \vee \bar{z} \quad \bar{x} \vee y}{y \vee \bar{z}}$

$$
\frac{x+y+\bar{z} \geq 1 \quad \bar{x}+y \geq 1}{x+\bar{x}+2 y+\bar{z} \geq 2}
$$

Weaker Rules

What is the bare minimum to simulate resolution?

$$
\frac{x+y+\bar{z} \geq 1 \quad \bar{x}+y \geq 1}{: \dot{a}+2 y+\bar{z} \geq 1}
$$

- Addition only if some variable cancels

Weaker Rules

What is the bare minimum to simulate resolution?

$$
\frac{x+y+\bar{z} \geq 1 \quad \bar{x}+y \geq 1}{\frac{2 y+\bar{z} \geq 1}{y+\bar{z} \geq 1}}
$$

- Addition only if some variable cancels
- Division brings coefficients down to degree

Addition in Practice

Addition
$\frac{\sum a_{i} x_{i} \geq a \quad \sum b_{i} x_{i} \geq b}{\sum\left(\alpha a_{i}+\beta b_{i}\right) x_{i} \geq \alpha a+\beta b}$

- Unbounded choices
- Need a reason to add inequalities

Cancelling Addition

- Some variable cancels: $\alpha a_{i}+\beta b_{i}=0$
- aka. Generalized Resolution

Division in Practice

Division

$\frac{\sum a_{i} x_{i} \geq a}{\sum\left(a_{i} / k\right) x_{i} \geq\lceil a / k\rceil}$

- Too expensive

Saturation

$$
\frac{\sum a_{i} x_{i} \geq a}{\sum \min \left(a, a_{i}\right) x_{i} \geq a}
$$

Proof Systems

CP saturation general addition

CP saturation cancelling addition

CP division general addition

CP division cancelling addition

Resolution

Proof Systems

CP saturation
general addition
CP saturation
cancelling addition

CP division general addition

\square
CP division cancelling addition

Cancelling addition is a particular case of addition

Resolution

$A \longrightarrow B: B$ simulates A (with only polynomial loss)

Proof Systems

CP saturation general addition

CP saturation cancelling addition

CP division general addition

CP division cancelling addition

Resolution
$A \longrightarrow B: B$ simulates A (with only polynomial loss)

All subsystems simulate resolution

- Trivial over CNF inputs
- Also holds over linear pseudo-Boolean inputs

Proof Systems

CP saturation general addition\rightarrowCP division general addition	Repeated divisions simulate saturation - Polynomial simulation only if polynomial coefficients		
CP saturation			
cancelling addition			CP division
:---			
cancelling addition			

$A \longrightarrow B: B$ simulates A (with only polynomial loss)
\dagger : known only for polynomial-size coefficients

Proof Systems

CP saturation general addition $\underset{\dagger}{ }$ general addition

CP saturation cancelling addition

CP division

CP division cancelling addition

Resolution

CP stronger than resolution

- Pigeonhole principle
- Subset cardinality
have proofs of size
- polynomial in CP
- exponential in resolution
$A \longrightarrow B: B$ simulates A (with only polynomial loss)
$A \rightarrow B$: B cannot simulate A (separation)
\dagger : known only for polynomial-size coefficients

Bad News

Theorem

On CNF inputs all subsystems as weak as resolution

- No subsystem is implicationally complete
- Solvers very sensitive to input encoding

Cancelling Addition \equiv Resolution

Observation [Hooker '88]

Over CNF inputs CP with cancelling addition \equiv resolution.

Cancelling Addition \equiv Resolution

Observation [Hooker '88]

Over CNF inputs CP with cancelling addition \equiv resolution.

Proof Sketch

- Start with clauses (degree 1)
- Add two clauses \rightarrow a clause

$$
\frac{x+\sum y_{i} \geq 1 \quad \bar{x}+\sum y_{i} \geq 1}{\therefore \dot{i}+1+\sum y_{i} \geq 1+1}
$$

Cancelling Addition \equiv Resolution

Observation [Hooker '88]

Over CNF inputs CP with cancelling addition \equiv resolution.

Proof Sketch

- Start with clauses (degree 1)
- Add two clauses \rightarrow a clause

$$
x+\sum y_{i} \geq 1 \quad \bar{x}+\sum y_{i} \geq 1
$$

$$
\sum y_{i} \geq 1
$$

Cancelling Addition \equiv Resolution

Observation [Hooker '88]

Over CNF inputs CP with cancelling addition \equiv resolution.

Proof Sketch

- Start with clauses (degree 1)
- Add two clauses \rightarrow a clause

$$
\frac{x+\sum y_{i} \geq 1 \quad \bar{x}+\sum y_{i} \geq 1}{\sum y_{i} \geq 1} \equiv \frac{x \vee C \quad \bar{x} \vee D}{C \vee D}
$$

Proof Systems

CP saturation
general addition

[^0]\dagger : known only for polynomial-size coefficients

Proof Systems

CP saturation cancelling addition cancelling addition

Resolution
$A \longrightarrow B: B$ simulates A (with only polynomial loss)
$A \rightarrow B: B$ cannot simulate A (separation)
\dagger : known only for polynomial-size coefficients

Cancellation \equiv Resolution

- Over CNF inputs
[Hooker '88]
- Pigeonhole principle
- Subset cardinality
have proofs of size
- polynomial in CP
- exponential in CP with cancelling addition and any rounding

Saturation: General Addition \equiv Cancelling Addition

Theorem

Over CNF inputs CP with saturation $\equiv \mathrm{CP}$ with cancelling addition.

Saturation: General Addition \equiv Cancelling Addition

Theorem

Over CNF inputs CP with saturation $\equiv \mathrm{CP}$ with cancelling addition.

Corollary

Over CNF inputs CP with saturation \equiv resolution.

Proof Systems

CP saturation

general addition \quad| CP division |
| :--- |
| general addition |

Saturation \equiv Resolution

- Over CNF inputs
- Pigeonhole principle
- Subset cardinality
have proofs of size
- polynomial in CP
- exponential in CP with cancelling addition
$A \longrightarrow B: B$ simulates A (with only polynomial loss)
$A \rightarrow B: B$ cannot simulate A (separation)
\dagger : known only for polynomial-size coefficients

Proof Systems

CP saturation CP division general addition $\stackrel{\leftrightarrows}{\leftrightarrows}$ general addition

CP saturation cancelling addition

Resolution

Saturation \equiv Resolution

- Over CNF inputs
- Pigeonhole principle
- Subset cardinality
have proofs of size
- polynomial in CP
- exponential in CP with cancelling addition or saturation

$$
A \longrightarrow B: B \text { simulates } A \text { (with only polynomial loss) }
$$

$A \rightarrow B$: B cannot simulate A (separation)
\dagger : known only for polynomial-size coefficients

Linear Programming is Easy

Lemma

If a formula defines an empty polytope over \mathbb{R} then have polynomial size proof in CP with cancelling addition.

Proof Systems

$\underset{\text { general addition }}{\mathrm{CP} \text { saturation }} \underset{\dagger}{\leftrightarrows}$
CP division general addition

CP division cancelling addition

Resolution

Pseudo-Boolean versions of

- Pigeonhole principle
- Subset cardinality have proof of size
- polynomial in all CP subsystems
- exponential in resolution
$A \longrightarrow B: B$ simulates A (with only polynomial loss)
$A \rightarrow B: B$ cannot simulate A (separation)
\dagger : known only for polynomial-size coefficients

Proof Systems

CP saturation
general addition
\dagger
CP division general addition

CP saturation cancelling addition

Resolution
$A \longrightarrow B: B$ simulates A (with only polynomial loss)
$A \rightarrow B: B$ cannot simulate A (separation)
\dagger : known only for polynomial-size coefficients

Pseudo-Boolean versions of

- Pigeonhole principle
- Subset cardinality have proof of size
- polynomial in all CP subsystems
- exponential in resolution

CNF version exponential \Rightarrow
Cannot recover encoding \Rightarrow Subsystems are incomplete

What do we do

Question

What limits pseudo-Boolean solvers?

Theoretical Barriers

- Study proof systems arising from pseudo-Boolean solvers
- Cancelling addition and saturation not enough

Implementation

- Evaluate solvers on theoretically easy formulas

What do we do

Question

What limits pseudo-Boolean solvers?

Theoretical Barriers

- Study proof systems arising from pseudo-Boolean solvers
- Cancelling addition and saturation not enough

Implementation

- Evaluate solvers on theoretically easy formulas

Easy Formulas

Craft combinatorial formulas easy for CP

- Build proofs in different subsystems
- Choice of parameters for different levels of hardness
(1) Easy for resolution

2 Hard for resolution, infeasible LP
3 Feasible LP, easy for saturation
(4) Require division?

- Easy for CP, even tree-like

Solvers

Solvers from PB evaluation 2016 with different techniques

- Open-WBO
- Translate into CNF
- \simeq Resolution

Solvers

Solvers from PB evaluation 2016 with different techniques

- Open-WBO
- Translate into CNF
- \simeq Resolution
- Sat4j
- Linear inequalities
$-\simeq$ CP saturation cancelling addition
- RoundingSat
- Linear inequalities
- \lesssim CP division cancelling addition

Experimental Results

Experimental Observation PB solvers not good at proof search.

Experimental Results

Experimental Observation

 PB solvers not good at proof search.- Sometimes exponentially faster than CDCL
- e.g. when LP close to infeasible

Experiments: SC (subset cardinality), random graphs

- No rational solutions
- Exponentially hard for resolution \Rightarrow Open-WBO times out
- Cutting planes solvers run fast

Experimental Results

Experimental Observation

PB solvers not good at proof search.

- Sometimes exponentially faster than CDCL
- e.g. when LP close to infeasible
- Often not good at "truly Boolean" reasoning
- in particular when division useful

Experiments: EC (even colouring), random graphs

RoundingSat
Open-WBO
Sat4jCP

- Provably hard for resolution \Rightarrow Open-WBO times out
- Conjecture hard for CP with saturation \Rightarrow Sat4j times out
- RoundingSat works best \Rightarrow division necessary?

Experimental Results

Experimental Observation

PB solvers not good at proof search.

- Sometimes exponentially faster than CDCL
- e.g. when LP close to infeasible
- Often not good at "truly Boolean" reasoning
- in particular when division useful
- Sometimes even not good for infeasible LPs

Experiments: VC (vertex cover), grid, no-rational

- No rational solutions
- Open-WBO runs fast
- Cutting planes solvers fairly bad

What do we do

Question

What limits pseudo-Boolean solvers?

Theoretical Barriers

- Study proof systems arising from pseudo-Boolean solvers
- Cancelling addition and saturation not enough

Implementation

- Evaluate solvers on theoretically easy formulas
- Need to improve on proof search

Take Home

Remarks

- Classified subsystems of Cutting Planes
- On CNF Subsystems \equiv Resolution \rightarrow Sensitive to encoding
- Solvers not good at proof search

Take Home

Remarks

- Classified subsystems of Cutting Planes
- On CNF Subsystems \equiv Resolution \rightarrow Sensitive to encoding
- Solvers not good at proof search

Open problems

- Is division needed? Separation on PB inputs?
- Better search heuristics

Take Home

Remarks

- Classified subsystems of Cutting Planes
- On CNF Subsystems \equiv Resolution \rightarrow Sensitive to encoding
- Solvers not good at proof search

Open problems

- Is division needed? Separation on PB inputs?
- Better search heuristics

Thanks!

[^0]: $A \longrightarrow B: B$ simulates A (with only polynomial loss)
 $A \rightarrow B$: B cannot simulate A (separation)

