
Seeking Practical CDCL Insights from
Theoretical SAT Benchmarks

to appear at IJCAI 2018

Jan Elffers, Jesús Giráldez Cru, Stephan Gocht,
Jakob Nordström and Laurent Simon

27.08.2018



The SAT Problem

I Literal a: Boolean variable x or its negation x (or ¬x)

I Clause C = a1 ∨ · · · ∨ ak : disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

I CNF formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

Does F have satisfying assignment?

Stephan Gocht CDCL on Theory Benchmarks 2/ 28



About SAT

I NP-complete [Coo71]
⇒ believed to be very hard

I conflict driven clause learning (CDCL) solvers
[MS99, BS97, MMZ+01, . . . ]

very efficient ⇒ makes practical problems tractable

I based on many sophisticated heuristics
I not very well understood:

I Which heuristics are important and why?
I How do heuristics interact?

Stephan Gocht CDCL on Theory Benchmarks 3/ 28



Problems with SAT competition benchmarks

I very heterogeneous benchmarks

I poorly understood properties
⇒ isolated data points
⇒ inconclusive results

I limited selection of benchmarks
⇒ solvers might already be over-fitted

Stephan Gocht CDCL on Theory Benchmarks 4/ 28



Alternative: Proof Complexity

I method of reasoning used by CDCL: resolution

I resolution is extremely well studied in theory

Pros:

I lots of theoretically well understood SAT problems

I scalable ⇒ “same problem” in different sizes

I sometimes multiple versions of same size

Cons:

I only considers existence of proofs

I results are asymptotic
(Required parameters reasonably small?)

I crafted benchmarks are... crafted

Stephan Gocht CDCL on Theory Benchmarks 5/ 28



Our Approach

I choose / tune theory benchmarks, such that:
I cover different extremal properties
⇒ “stress test” heuristics

I easy in theory (should be tractable)
⇒ measure quality of proof search

I scalable
⇒ measure asymptotic performance

I instrument solver to switch between heuristics

I essentially run full cross product of heuristics

Related Work:

I comparing heuristics (not to the extend we do)
[BF15, Hua07, LM02, KSM11]

I crafted benchmarks (just one family of benchmarks)
[PJ09, CA96, SLM92, MN14, JMNŽ12]

Stephan Gocht CDCL on Theory Benchmarks 6/ 28



Our Approach

I choose / tune theory benchmarks, such that:
I cover different extremal properties
⇒ “stress test” heuristics

I easy in theory (should be tractable)
⇒ measure quality of proof search

I scalable
⇒ measure asymptotic performance

I instrument solver to switch between heuristics

I essentially run full cross product of heuristics

Related Work:

I comparing heuristics (not to the extend we do)
[BF15, Hua07, LM02, KSM11]

I crafted benchmarks (just one family of benchmarks)
[PJ09, CA96, SLM92, MN14, JMNŽ12]

Stephan Gocht CDCL on Theory Benchmarks 6/ 28



The CDCL Algorithm [MS99, BS97, MMZ+01, . . . ]

Instrumented Solver: Glucose [AS09] / MiniSat [ES04]

1: procedure solve(F )
2: while v ← next variable decision do
3: decide on v with chosen phase
4: do unit (fact) propagation
5: if conflict (there is falsified clause) then
6: if no decided variable then return UNSAT
7: learn clause from conflict
8: backjump (undo bad decisions)

9: if time to prune clause database then
10: k ← difference to new database size
11: remove k clauses with worst clause assessment
12: if time for restart then
13: undo all decisions
14: return SAT

Stephan Gocht CDCL on Theory Benchmarks 7/ 28



Restart Policy

Variable Decisions

Phase Saving Clause Erasure

Clause Assessment

no LBD

luby 100luby 1000

VSIDS .99
VSIDS .95

VSIDS .80

VSIDS . 65random

fixed

lrb

dynamic

fixed zero

counter

standard

none

random VSIDS

LBD

none

linear glucose

minisat

problem.cnf

... 67 years later

Runtime:

Number of Conflicts:
SOLVE!

11
27 11

26 ..
.

running 672 configurations

(757344 combinations)...

...

fixed
random

random

Stephan Gocht CDCL on Theory Benchmarks 8/ 28



The Experiments

I 27 (sub)families of formulas

I 1127 instances

I 672 solver configurations

I over 500’000 hours (67 years)

I measure running time, #decisions, #conflicts, . . .

I huge amount of data . . .

Stephan Gocht CDCL on Theory Benchmarks 9/ 28



Mining Data

Research Question:

I Which heuristics are most important for specific family?

I Improvement due to one heuristics independent from others?

Challenge:

I How to even get an overview of data?

I How to avoid invalid conclusions?

I solvers deterministic — essentially no random noise

I no standard tool to compare deterministic algorithms

Stephan Gocht CDCL on Theory Benchmarks 10/ 28



Heatmaps

I row: setting

I column: scaled instances

I colour: running time

Available online:
https://www.csc.kth.se/~jakobn/CDCL-insights

Stephan Gocht CDCL on Theory Benchmarks 11/ 28

https://www.csc.kth.se/~jakobn/CDCL-insights


Analysing PAR-Score

PAR-X -score: running time if solved, otherwise X · timelimit
(X = 2 used)

Analysing:

I use resampling approach
(compare x to y randomly drawn from same data as x)

I used to mine the data

I no concrete claims about significance (p-value)

Stephan Gocht CDCL on Theory Benchmarks 12/ 28



The CDCL Algorithm

1: procedure solve(F )
2: while v ← next variable decision do
3: decide on v with chosen phase
4: do unit (fact) propagation
5: if conflict (there is falsified clause) then
6: if no decided variable then return UNSAT
7: learn clause from conflict
8: backjump (undo bad decisions)

9: if time to prune clause database then
10: k ← difference to new database size
11: remove k clauses with worst clause assessment
12: if time for restart then
13: undo all decisions
14: return SAT

Stephan Gocht CDCL on Theory Benchmarks 13/ 28



Theory: Clause Learning and Tree-Like Resolution

I search in CDCL solvers crucially guided by conflicts
I clause learning influences:

I variable decisions
I restart policy
I memory management
I and more...

I is storing learned clauses also crucial?

Theory

I no learning ⇒ tree-like resolution (DPLL)

How to check in practice?

I instances that separate tree-like and general resolution

I instances where tree-like is “optimal”

Stephan Gocht CDCL on Theory Benchmarks 14/ 28



Empirical: Clause Learning and Tree-Like Resolution

"optimal" polynomial harder exponential

0

50

100

150

200
do

m
se

t

rp
hp sc ec

ts
ei

tin

pa
rti

te
cl

iq
ue op pe

b

Family

So
lv

ed
 in

st
an

ce
s

C
lause learning:

on
off

Stephan Gocht CDCL on Theory Benchmarks 15/ 28



The CDCL Algorithm

1: procedure solve(F )
2: while v ← next variable decision do
3: decide on v with chosen phase
4: do unit (fact) propagation
5: if conflict (there is falsified clause) then
6: if no decided variable then return UNSAT
7: learn clause from conflict
8: backjump (undo bad decisions)

9: if time to prune clause database then
10: k ← difference to new database size
11: remove k clauses with worst clause assessment
12: if time for restart then
13: undo all decisions
14: return SAT

Stephan Gocht CDCL on Theory Benchmarks 16/ 28



Memory Management and
Theoretical Time-Space Trade-Offs

Tseitin formulas on grid graphs (5 rows)

0

1000

2000

3000

4000

5000

0 500 1000 1500 2000

Number of variables

C
P

U
 ti

m
e

0

10

20

30

0 500 1000 1500 2000

Number of variables
M

ill
io

n 
co

nf
lic

ts

Clause erasure: glucose linear minisat

database size: minisat (∼ N0.25) < glucose (∼ N0.5) < linear (∼ N)
(N = number of conflicts)

Stephan Gocht CDCL on Theory Benchmarks 17/ 28



The CDCL Algorithm

1: procedure solve(F )
2: while v ← next variable decision do
3: decide on v with chosen phase
4: do unit (fact) propagation
5: if conflict (there is falsified clause) then
6: if no decided variable then return UNSAT
7: learn clause from conflict
8: backjump (undo bad decisions)

9: if time to prune clause database then
10: k ← difference to new database size
11: remove k clauses with worst clause assessment
12: if time for restart then
13: undo all decisions
14: return SAT

Stephan Gocht CDCL on Theory Benchmarks 18/ 28



Clause Assessment

−40

−20

0

20

random − LBD random − activity−based

D
iff

er
en

ce
 in

 n
um

be
r 

of
 ti

m
eo

ut
s

All formula families

Stephan Gocht CDCL on Theory Benchmarks 19/ 28



The CDCL Algorithm

1: procedure solve(F )
2: while v ← next variable decision do
3: decide on v with chosen phase
4: do unit (fact) propagation
5: if conflict (there is falsified clause) then
6: if no decided variable then return UNSAT
7: learn clause from conflict
8: backjump (undo bad decisions)

9: if time to prune clause database then
10: k ← difference to new database size
11: remove k clauses with worst clause assessment
12: if time for restart then
13: undo all decisions
14: return SAT

Stephan Gocht CDCL on Theory Benchmarks 20/ 28



Variable Decision

−40

−20

0

20

VSIDS .99 − random VSIDS .99 − .65

D
iff

er
en

ce
 in

 n
um

be
r 

of
 ti

m
eo

ut
s

All formula families

Stephan Gocht CDCL on Theory Benchmarks 21/ 28



Variable Decision

0

1000

2000

3000

4000

5000

0 2000 4000 6000

Number of variables

C
P

U
 ti

m
e

VSIDS decay factor
0.65

0.80

0.95

0.99

Partial ordering principle formulas

Stephan Gocht CDCL on Theory Benchmarks 22/ 28



The CDCL Algorithm

1: procedure solve(F )
2: while v ← next variable decision do
3: decide on v with chosen phase
4: do unit (fact) propagation
5: if conflict (there is falsified clause) then
6: if no decided variable then return UNSAT
7: learn clause from conflict
8: backjump (undo bad decisions)

9: if time to prune clause database then
10: k ← difference to new database size
11: remove k clauses with worst clause assessment
12: if time for restart then
13: undo all decisions
14: return SAT

Stephan Gocht CDCL on Theory Benchmarks 23/ 28



Restarts for Unrestricted Resolution

0

1000

2000

3000

4000

5000

0 1000 2000 3000

Number of variables

C
P

U
 ti

m
e

Restarts
LBD

Luby 100

Luby 1000

no restarts

on width 3 chain, #stones = #nodes / 2
Stone formulas

Stephan Gocht CDCL on Theory Benchmarks 24/ 28



The CDCL Algorithm

1: procedure solve(F )
2: while v ← next variable decision do
3: decide on v with chosen phase
4: do unit (fact) propagation
5: if conflict (there is falsified clause) then
6: if no decided variable then return UNSAT
7: learn clause from conflict
8: backjump (undo bad decisions)

9: if time to prune clause database then
10: k ← difference to new database size
11: remove k clauses with worst clause assessment
12: if time for restart then
13: undo all decisions
14: return SAT

Stephan Gocht CDCL on Theory Benchmarks 25/ 28



Phase Saving

0

1000

2000

3000

4000

5000

0 1000 2000 3000

Number of variables

C
P

U
 ti

m
e

Phase:

counter

dynamic
random

fixed zero

fixed random

standard

on width 3 chain, #stones = #nodes / 2
Stone formulas

Stephan Gocht CDCL on Theory Benchmarks 26/ 28



Overview of Results

I storing learned clauses is important
(if you need to go beyond treelike resolution)

I size of database can be critical
(trade-off between propagation speed and proof quality (?))

I frequent restarts ⇒ stronger proof search (?)
(for formulas where full power of resolution needed)

I assessing quality of learned clauses challenging
(LBD mostly works well; activity-based ∼ random)

I variable decisions absolutely crucial
(random terrible, VSIDS good but can go badly wrong)

Stephan Gocht CDCL on Theory Benchmarks 27/ 28



Conclusion

Can get practical CDCL insights from theoretical SAT benchmarks!

I confirmation of conventional wisdom
(nice to see evidence)

I used benchmarks highlight strengths and
weaknesses of heuristics

I sometimes raises intriguing open questions:
I Restarts: only frequency important or timing as well?
I More learned clauses always better for proof search?
I VSIDS decay factor sometimes crucial — how to choose?
I . . .

Thank you for your attention!

Stephan Gocht CDCL on Theory Benchmarks 28/ 28



Conclusion

Can get practical CDCL insights from theoretical SAT benchmarks!

I confirmation of conventional wisdom
(nice to see evidence)

I used benchmarks highlight strengths and
weaknesses of heuristics

I sometimes raises intriguing open questions:
I Restarts: only frequency important or timing as well?
I More learned clauses always better for proof search?
I VSIDS decay factor sometimes crucial — how to choose?
I . . .

Thank you for your attention!
Stephan Gocht CDCL on Theory Benchmarks 28/ 28



References I

[AS09] Gilles Audemard and Laurent Simon.
Predicting learnt clauses quality in modern SAT solvers.
In Proceedings of the 21st International Joint Conference on Artificial
Intelligence (IJCAI ’09), pages 399–404, July 2009.

[BF15] Armin Biere and Andreas Fröhlich.
Evaluating CDCL variable scoring schemes.
In Proceedings of the 18th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’15), volume 9340 of Lecture
Notes in Computer Science, pages 405–422. Springer, September 2015.

[BS97] Roberto J. Bayardo Jr. and Robert Schrag.
Using CSP look-back techniques to solve real-world SAT instances.
In Proceedings of the 14th National Conference on Artificial Intelligence
(AAAI ’97), pages 203–208, July 1997.

[CA96] James M. Crawford and Larry D. Auton.
Experimental results on the crossover point in random 3-SAT.
Artificial Intelligence, 81(1-2):31–57, March 1996.
Preliminary version in AAAI ’93.

Stephan Gocht CDCL on Theory Benchmarks 1/ 4



References II

[Coo71] Stephen A. Cook.
The complexity of theorem-proving procedures.
In Proceedings of the 3rd Annual ACM Symposium on Theory of
Computing (STOC ’71), pages 151–158, 1971.

[ES04] Niklas Eén and Niklas Sörensson.
An extensible SAT-solver.
In 6th International Conference on Theory and Applications of
Satisfiability Testing (SAT ’03), Selected Revised Papers, volume 2919 of
Lecture Notes in Computer Science, pages 502–518. Springer, 2004.

[Hua07] Jinbo Huang.
The effect of restarts on the efficiency of clause learning.
In Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI ’07), pages 2318–2323, January 2007.

[JMNŽ12] Matti Järvisalo, Arie Matsliah, Jakob Nordström, and Stanislav Živný.
Relating proof complexity measures and practical hardness of SAT.
In Proceedings of the 18th International Conference on Principles and
Practice of Constraint Programming (CP ’12), volume 7514 of Lecture
Notes in Computer Science, pages 316–331. Springer, October 2012.

Stephan Gocht CDCL on Theory Benchmarks 2/ 4



References III

[KSM11] Hadi Katebi, Karem A. Sakallah, and João P. Marques-Silva.
Empirical study of the anatomy of modern SAT solvers.
In Proceedings of the 14th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’11), volume 6695 of Lecture
Notes in Computer Science, pages 343–356. Springer, June 2011.

[LM02] Inês Lynce and João P. Marques-Silva.
Building state-of-the-art SAT solvers.
In Proceedings of the 15th European Conference on Artificial Intelligence
(ECAI ’02), pages 166–170. IOS Press, May 2002.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik.
Chaff: Engineering an efficient SAT solver.
In Proceedings of the 38th Design Automation Conference (DAC ’01),
pages 530–535, June 2001.

[MN14] Mladen Mikša and Jakob Nordström.
Long proofs of (seemingly) simple formulas.
In Proceedings of the 17th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’14), volume 8561 of Lecture
Notes in Computer Science, pages 121–137. Springer, July 2014.

Stephan Gocht CDCL on Theory Benchmarks 3/ 4



References IV

[MS99] João P. Marques-Silva and Karem A. Sakallah.
GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, May 1999.
Preliminary version in ICCAD ’96.

[PJ09] Justyna Petke and Peter Jeavons.
Tractable benchmarks for constraint programming.
Technical Report RR-09-07, Oxford University Computing Laboratory,
2009.
Available at https://www.cs.ox.ac.uk/files/2366/RR-09-07.pdf.

[SLM92] Bart Selman, Hector J. Levesque, and David G. Mitchell.
A new method for solving hard satisfiability problems.
In Proceedings of the 10th National Conference on Artificial Intelligence
(AAAI ’92), pages 440–446, July 1992.

Stephan Gocht CDCL on Theory Benchmarks 4/ 4

https://www.cs.ox.ac.uk/files/2366/RR-09-07.pdf

	Appendix

