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The SAT Problem

I Literal a: Boolean variable x or its negation x (or ¬x)

I Clause C = a1 ∨ · · · ∨ ak : disjunction of literals
(Consider as sets, so no repetitions and order irrelevant)

I CNF formula F = C1 ∧ · · · ∧ Cm: conjunction of clauses

Does F have satisfying assignment?
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About SAT

I NP-complete [Coo71]
⇒ believed to be very hard

I conflict driven clause learning (CDCL) solvers
[MS99, BS97, MMZ+01, . . . ]

very efficient ⇒ makes practical problems tractable

I based on many sophisticated heuristics
I not very well understood:

I Which heuristics are important and why?
I How do heuristics interact?
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Problems with SAT competition benchmarks

I very heterogeneous benchmarks

I poorly understood properties
⇒ isolated data points
⇒ inconclusive results

I limited selection of benchmarks
⇒ solvers might already be over-fitted

Stephan Gocht CDCL on Theory Benchmarks 4/ 28



Alternative: Proof Complexity

I method of reasoning used by CDCL: resolution

I resolution is extremely well studied in theory

Pros:

I lots of theoretically well understood SAT problems

I scalable ⇒ “same problem” in different sizes

I sometimes multiple versions of same size

Cons:

I only considers existence of proofs

I results are asymptotic
(Required parameters reasonably small?)

I crafted benchmarks are... crafted
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Our Approach

I choose / tune theory benchmarks, such that:
I cover different extremal properties
⇒ “stress test” heuristics

I easy in theory (should be tractable)
⇒ measure quality of proof search

I scalable
⇒ measure asymptotic performance

I instrument solver to switch between heuristics

I essentially run full cross product of heuristics

Related Work:

I comparing heuristics (not to the extend we do)
[BF15, Hua07, LM02, KSM11]

I crafted benchmarks (just one family of benchmarks)
[PJ09, CA96, SLM92, MN14, JMNŽ12]
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The CDCL Algorithm [MS99, BS97, MMZ+01, . . . ]

Instrumented Solver: Glucose [AS09] / MiniSat [ES04]

1: procedure solve(F )
2: while v ← next variable decision do
3: decide on v with chosen phase
4: do unit (fact) propagation
5: if conflict (there is falsified clause) then
6: if no decided variable then return UNSAT
7: learn clause from conflict
8: backjump (undo bad decisions)

9: if time to prune clause database then
10: k ← difference to new database size
11: remove k clauses with worst clause assessment
12: if time for restart then
13: undo all decisions
14: return SAT
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Restart Policy
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The Experiments

I 27 (sub)families of formulas

I 1127 instances

I 672 solver configurations

I over 500’000 hours (67 years)

I measure running time, #decisions, #conflicts, . . .

I huge amount of data . . .
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Mining Data

Research Question:

I Which heuristics are most important for specific family?

I Improvement due to one heuristics independent from others?

Challenge:

I How to even get an overview of data?

I How to avoid invalid conclusions?

I solvers deterministic — essentially no random noise

I no standard tool to compare deterministic algorithms
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Heatmaps

I row: setting

I column: scaled instances

I colour: running time

Available online:
https://www.csc.kth.se/~jakobn/CDCL-insights
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Analysing PAR-Score

PAR-X -score: running time if solved, otherwise X · timelimit
(X = 2 used)

Analysing:

I use resampling approach
(compare x to y randomly drawn from same data as x)

I used to mine the data

I no concrete claims about significance (p-value)
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The CDCL Algorithm

1: procedure solve(F )
2: while v ← next variable decision do
3: decide on v with chosen phase
4: do unit (fact) propagation
5: if conflict (there is falsified clause) then
6: if no decided variable then return UNSAT
7: learn clause from conflict
8: backjump (undo bad decisions)

9: if time to prune clause database then
10: k ← difference to new database size
11: remove k clauses with worst clause assessment
12: if time for restart then
13: undo all decisions
14: return SAT
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Theory: Clause Learning and Tree-Like Resolution

I search in CDCL solvers crucially guided by conflicts
I clause learning influences:

I variable decisions
I restart policy
I memory management
I and more...

I is storing learned clauses also crucial?

Theory

I no learning ⇒ tree-like resolution (DPLL)

How to check in practice?

I instances that separate tree-like and general resolution

I instances where tree-like is “optimal”
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Empirical: Clause Learning and Tree-Like Resolution
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The CDCL Algorithm

1: procedure solve(F )
2: while v ← next variable decision do
3: decide on v with chosen phase
4: do unit (fact) propagation
5: if conflict (there is falsified clause) then
6: if no decided variable then return UNSAT
7: learn clause from conflict
8: backjump (undo bad decisions)

9: if time to prune clause database then
10: k ← difference to new database size
11: remove k clauses with worst clause assessment
12: if time for restart then
13: undo all decisions
14: return SAT

Stephan Gocht CDCL on Theory Benchmarks 16/ 28



Memory Management and
Theoretical Time-Space Trade-Offs

Tseitin formulas on grid graphs (5 rows)
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The CDCL Algorithm

1: procedure solve(F )
2: while v ← next variable decision do
3: decide on v with chosen phase
4: do unit (fact) propagation
5: if conflict (there is falsified clause) then
6: if no decided variable then return UNSAT
7: learn clause from conflict
8: backjump (undo bad decisions)

9: if time to prune clause database then
10: k ← difference to new database size
11: remove k clauses with worst clause assessment
12: if time for restart then
13: undo all decisions
14: return SAT
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Clause Assessment

−40

−20

0

20

random − LBD random − activity−based

D
iff

er
en

ce
 in

 n
um

be
r 

of
 ti

m
eo

ut
s

All formula families

Stephan Gocht CDCL on Theory Benchmarks 19/ 28



The CDCL Algorithm

1: procedure solve(F )
2: while v ← next variable decision do
3: decide on v with chosen phase
4: do unit (fact) propagation
5: if conflict (there is falsified clause) then
6: if no decided variable then return UNSAT
7: learn clause from conflict
8: backjump (undo bad decisions)

9: if time to prune clause database then
10: k ← difference to new database size
11: remove k clauses with worst clause assessment
12: if time for restart then
13: undo all decisions
14: return SAT

Stephan Gocht CDCL on Theory Benchmarks 20/ 28



Variable Decision
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Variable Decision
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The CDCL Algorithm
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Restarts for Unrestricted Resolution
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The CDCL Algorithm
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Phase Saving
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Overview of Results

I storing learned clauses is important
(if you need to go beyond treelike resolution)

I size of database can be critical
(trade-off between propagation speed and proof quality (?))

I frequent restarts ⇒ stronger proof search (?)
(for formulas where full power of resolution needed)

I assessing quality of learned clauses challenging
(LBD mostly works well; activity-based ∼ random)

I variable decisions absolutely crucial
(random terrible, VSIDS good but can go badly wrong)
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Conclusion

Can get practical CDCL insights from theoretical SAT benchmarks!

I confirmation of conventional wisdom
(nice to see evidence)

I used benchmarks highlight strengths and
weaknesses of heuristics

I sometimes raises intriguing open questions:
I Restarts: only frequency important or timing as well?
I More learned clauses always better for proof search?
I VSIDS decay factor sometimes crucial — how to choose?
I . . .

Thank you for your attention!
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