Symmetry in SAT:
an overview

August 27th, 2018
Theory and Practice of SAT solving

Oaxaca, Mexico

Jo Devriendt, KU Leuven

Intro

Everyone knows symmetry:

SYMMETRIC ASYMMETRIC

"something does not change under a set of transformations"”
- Wikipedia

In combinatorial solving

Symmetry ;=
Permutation of variable assignments that preserves satisfaction

In combinatorial solving

Symmetry ;=
Permutation of variable assignments that preserves satisfaction

In combinatorial solving

Symmetry induces symmetry classes:

In combinatorial solving

Symmetry induces symmetry classes:

Symmetry classes tend to get huge -> search problem

In combinatorial solving

Goal: investigate only asymmetrical cases

Nouvswn -

Contents

Intro

SAT Prelims

"Classic" symmetry breaking
The pigeonhole problem
"Recent" symmetry breaking

. Non-breaking approaches

Bonus: symmetry, local search & maxSAT

Nouvswn -

Contents

Intro

SAT Prelims

"Classic" symmetry breaking
The pigeonhole problem
"Recent" symmetry breaking

. Non-breaking approaches

Bonus: symmetry, local search & maxSAT

"Interesting research question"

In SAT:

Syntactic symmetry ;=
literal permutation that preserves the CNF

a— b
fl— ‘ —a — —b
aV b
| b— c
L bV e —
| —b — ¢

L&, /74 c— a

—C = Q

In SAT:

Syntactic symmetry ;=
literal permutation that preserves the CNF

ar—b
O M
f— | —a — —b
aV —b
b— c
L bV e — — (0 b C)
: | —b +— ¢
Icvﬂa@
J c— a

—C = Q

other < breaking

In SAT literature:

Shatter
BreakID CDCLsym

Adaptive prefix-assignment

? SymChaff

Symmetric learning

static «» dynamic

Terminology

e variable x

m set of all variables X

e |iteral]

e clausec

e (propositional) formula ¢
e (variable) assignment a

m l) is the truth value of in a
e symmetry o

m o(...) is the symmetrical image of ...
e symmetry group 2

m >(...)is the orbit of ... under X
m generator set gen(2)

3. "Classic" symmetry breaking

10

Symmetry breaking formulas:
Crawford [1]

Given: @, 2

Find: symmetry breaking formula sbf
that invalidates symmetrical assignments

Symmetry breaking formulas:
Crawford [1]

Core idea: sbf encodes
"a is lexicographically smaller than o(a)"
foroeZ

12

Symmetry breaking formulas:

Crawford [1]

Core idea: sbf encodes
"a is lexicographically smaller than o(a)"
foroeZ

L1 S O'($1)
r1 =o0(x1) = x2 < o(x9)
(ml — O'($1) N\ L9 = U(xg)) = I3 < O'($3)

12

Symmetry breaking formulas:

Crawford [1]

Core idea: sbf encodes
"a is lexicographically smaller than o(a)"
foroeZ

L1 S O'($1)
r1 =o0(x1) = x2 < o(x9)
(ml — O'($1) N\ L9 = U(xg)) = I3 < O'($3)

parameter: total order on X

12

Symmetry breaking formulas:
Crawford [1]

Core idea: sbf encodes
"a is lexicographically smaller than o(a)"
foralloe X

13

Symmetry breaking formulas:
Crawford [1]

Core idea: sbf encodes
"a is lexicographically smaller than o(a)"
foralloe X

¢ Sound
€ Complete

€ Huge: O(|X]?|Z])

13

Symmetry breaking:
Shatter [2]

e construct sbf for -much smaller- gen(%)
e "chain encoding"
e improved clausal encoding

Symmetry breaking:
Shatter [2]

e construct sbf for -much smaller- gen(%)
e "chain encoding"
e improved clausal encoding

¢ Sound
€ Incomplete
€ Feasible: O(|X| |gen(®)|)

Detecting symmetry:
Saucy [3]

Sparse graph automorphism detection

%

15

Detecting symmetry:
Saucy [3]

Sparse graph automorphism detection

e Graph construction from CNF:

= node for each literal and clause
= edge between literals occurring in clause
= edge between literal and negation

e No polynomial algorithm known
e Qutput: generators to automorphism group

15

Static symmetry breaking:

Shatter+Saucy
; ol Graph
Crlopos.ltlf)na # automorphism * Add symmetry
escription detection breaking formulas
O (CL b C) —a Vb
aV —b
bV —c

eV a

p SAT/UNSAT <@mmmm off-the-shelf
o SAT solver

16

4. The pigeonhole problem

17

Pigeonhole!

Do n pigeons fit in n-1 holes?

Vp: V; Zpn
Vh:Vp #£7p': Tph V Ty

Pigeonhole!

Do n pigeons fit in n-1 holes?

Vp: V; Zpn
Vh:Vp #£7p': Tph V Ty

e Proof-theoretic problem
e Simple but large symmetry group

= composition of "pigeon interchangeability"

and "hole interchangeability" { 1 { 1
=] symmetry class T11 T19 T13
E: I L9 £23

I:: I: L31 L32 L33

Pigeonhole!

Original Shatter experiment:

. “g" S | e Time to solve instances and SBPs (sec)
5| S | 2E E 2 Generators
Bench- = 8¢ |¥Eg | z2= Generators only & their com-
mark | Instance E g E‘ S2 o § positions
: L
Family o | 8 S | E g | 2 = All Bits Irredundant Bits
* | O8 |FE | g8 . : , .
* 2 . o Quadratic construction Lineggmgonstruction
hole07 13 102 0.00f 0.03 0.03 0.01 0.01
hole08 15 133 0.00f 0.15 0.17 0.01 0.01
E hole09 17 168, 0.01 0.97 0.30 0.01 0.01
E hole10 19 207, 0.02f 144 2.87 0.01 0.01
holell 21 250 0.02 133 9.04 0.01 0.02
hole12 23] 297 0.02| >1000 6.90 0.01 0.03

19

Pigeonhole!

Original Shatter experiment:

. “g" S | e Time to solve instances and SBPs (sec)
5| S | 2E E 2 Generators
Bench- = 8¢ |¥Eg | z2= Generators only & their com-
mark | Instance E g E‘ S2 o § positions
: L
Family o | 8 S | E = *E = All Bits Irredundant Bits
|95 |HE | g8
* 2 . o Quadratic construction Lineggmgonstruction
hole07 13 102 0.00f 0.03 0.03 0.01 0.01
hole08 15 133 0.00f 0.15 0.17 0.01 0.01
E hole09 17 168, 0.01 0.97 0.30 0.01 0.01
E‘ hole10 19 207, 0.02f 144 2.87 0.01 0.01
holell 21 250 0.02 133 9.04 0.01 0.02
hole12 23] 297 0.02| >1000 6.90 0.01 0.03

Seems ok?

19

Pigeonhole!

Own Shatter experiment:

== glucose ==$== glucose+shatter

1000
100
10

1

solve time (s)

O
H

0.01
1 23456 7 8 9101112131415
holes

20

Pigeonhole!

Own Shatter experiment:

== glucose ==$== glucose+shatter

1000
100
10

1

solve time (s)

o
Y

0.0
1 23456 7 8 9101112131415
holes

Modest gains...
Better results in original paper?

20

Pigeonhole!

e Propositional encoding reduces "pigeon interchangeability"

to "row interchangeability"
e Shatter's sbf's are complete [4] with correct choice of
= gen(2)
= variable order

L11 £L12 L13
L21 L22 £23
L31 L32 L33
L41 L42 L43

e |full sbf| = O(n?)

21

Pigeonhole!

e Propositional encoding reduces "pigeon interchangeability"

to "row interchangeability"
e Shatter's sbf's are complete [4] with correct choice of
= gen(2)
= variable order

M
HE=S S

e |full sbf| = O(n?)

22

5. "Recent" symmetry breaking

23

Symmetry breaking:
BreakID [5]

Core idea: detect "row swap" symmetries

*Approximative algorithm

24

Symmetry breaking:
BreakID [5]

Core idea: detect "row swap" symmetries

*Approximative algorithm

1. Search o,, 0, egen(Z) that form 2 subsequent row swaps
e forms initial 3-rowed variable matrix M

24

Symmetry breaking:
BreakID [5]

Core idea: detect "row swap" symmetries

*Approximative algorithm

1. Search o,, 0, egen(Z) that form 2 subsequent row swaps
e forms initial 3-rowed variable matrix M
2. Apply every o € gen(2) to all detected rows r € M so far

e images o(r) disjoint of M are candidates to extend M
e testif swap r < o(r) is a symmetry by syntactical check on ¢
e if success, extend M with o(r)

24

Symmetry breaking:
BreakID [5]

Core idea: detect "row swap" symmetries

*Approximative algorithm

1. Search o,, 0, egen(Z) that form 2 subsequent row swaps

e forms initial 3-rowed variable matrix M
2. Apply every o € gen(2) to all detected rows r € M so far

e images o(r) disjoint of M are candidates to extend M
e testif swap r < o(r) is a symmetry by syntactical check on ¢
e if success, extend M with o(r)

3. Use Saucy to extend gen(Z) with new symmetry generators by
fixing all variable nodes with variable in M, first row excepted

24

Symmetry breaking:
BreakID [5]

Core idea: detect "row swap" symmetries

== glucose === glucose+shatter glucose+breakid

1000
100
10

1

solve time (s)

7 8 9 101112131415
holes

Caveat!

25

Symmetry breaking:
BreakID [5]

Core idea: detect "row swap" symmetries

== glucose === glucose+shatter glucose+breakid

1000
100
10

solve time (s)

o
o ©
G SN

2 3456 7 8 9101112131415
holes

Caveat!

Detect row interchangeability subgroups?

25

Symmetry breaking:
BreakID [5]

Core idea: maximize number of binary sbhf clauses

26

Symmetry breaking:
BreakID [5]

Core idea: maximize number of binary sbhf clauses

e First clause in sbf for ois binary:

L1 V U(wl)

e x is stabilized by X iff Z(x)={x}
e Given X with smallest non-stabilized x, for each x' € (x):

-z V x'

is clause of sbf under some oce X

26

Symmetry breaking:
BreakID [5]

Core idea: exploit binary sbf clauses

27

Symmetry breaking:
BreakID [5]

Core idea: exploit binary sbf clauses
e Create stabilizer chain of :

XX DXYX9D...D1

e > is the stabilizer subgroup of = . stabilizing the next non-
stabilized variable in ordering

= > have different smallest non-stabilized variables x.
e For each x' e Z(x):
—xz; V'

is a clause of some sbf

27

Symmetry breaking:
BreakID [5]

Core idea: exploit binary sbf clauses

28

Symmetry breaking:
BreakID [5]

Core idea: exploit binary sbf clauses

e Approximative implementation
= which adapts the variable order!

28

Symmetry breaking:
BreakID [5]

Core idea: exploit binary sbf clauses

e Approximative implementation
= which adapts the variable order!

e Works well for polarity symmetry c where for all x:
o(x) = —x
as sbf is equivalent to unit clause
—lajl
and their number is maximized through adopted variable order.

28

Symmetry breaking:
BreakID [5]

Core idea: exploit binary sbf clauses

e Approximative implementation
= which adapts the variable order!

e Works well for polarity symmetry c where for all x:
o(x) = —x
as sbf is equivalent to unit clause
—lajl
and their number is maximized through adopted variable order.

Complete algorithm? 28

Symmetry breaking:
CDCLSym [6]

Core idea: generate sbf dynamically

Symmetry breaking:
CDCLSym [6]

Core idea: generate sbf dynamically

e Keep track of reducer symmetries where o(a)<a
= py watching smallest variable s.t. o(v)#v
e Generate clause from sbf forcing a<o(a)

Additionally: try Bliss instead of Saucy

29

Symmetry breaking:
CDCLSym [6]

Core idea: generate sbf dynamically

e Keep track of reducer symmetries where o(a)<a
= py watching smallest variable s.t. o(v)#v
e Generate clause from sbf forcing a<o(a)

Additionally: try Bliss instead of Saucy

Use clauses for propagation?
Not only generator symmetries?

29

Symmetry breaking:
On completeness

e Pigeon interchangeability can be completely broken with
polynomial sbf

30

Symmetry breaking:
On completeness

e Pigeon interchangeability can be completely broken with
polynomial sbf
e How about edge interchangeability?

= E g, find coloring of complete graph (Ramsey numbers)
m Recentintrest [11] [14]

30

Symmetry breaking:
On completeness

e Pigeon interchangeability can be completely broken with
polynomial sbf
e How about edge interchangeability?

= E g, find coloring of complete graph (Ramsey numbers)
m Recentintrest [11] [14]

e How about general interchangeability over arbitrary high
dimensional relations?

30

Symmetry breaking:
On completeness

e Pigeon interchangeability can be completely broken with
polynomial sbf
e How about edge interchangeability?

= E g, find coloring of complete graph (Ramsey numbers)
m Recentintrest [11] [14]

e How about general interchangeability over arbitrary high
dimensional relations?

Tractable sbf for edge interchangeability?

30

Symmetry breaking:
Prefix breaking [7]

Core idea: enumerate asymmetrical assignments to variable prefix

High-level ' Graph
constraints representation representative

(5" enumeration
Ve: dy: '

| Varlable

- o(z,y) prefix

Y

-

Symmetry class

31

Symmetry breaking:
Prefix breaking [7]

Core idea: enumerate asymmetrical assignments to variable prefix
High-level ' Graph ' Symmetry class
constraints representation representative
enumeration

O—a
| va: Jy; Variable
| go(:z:,y) prefix
S

\ Clausal encoding s Incremental /

parallel SAT solver

6. Non-breaking approaches

32

Symmetry handling:

SymChaff [8]

Core idea: search decisions consider row interchangeability

L11 £L12 L13
l: L21 L22 L23
I: L31 L32 L33
L41 L42 L43 33

Symmetry handling:
SymChaff [8]

Core idea: search decisions consider row interchangeability

e Only for row interchangeability symmetry
e Keep track of row-interchangeable variables

= interchangeability reduces under previous choices
e Use cardinality decision points over row-interchangeable

variables J_‘ ﬁ

l: L11 L1292 L13
L21 L29 L23

I:: I: L31 L32 L33

Symmetry handling:
SymChaff [8]

Core idea: search decisions consider row interchangeability

e Only for row interchangeability symmetry
e Keep track of row-interchangeable variables

= interchangeability reduces under previous choices
e Use cardinality decision points over row-interchangeable

variables J_‘ J_‘

L11 L12 L13
Cardinality decision of 1 E: I:: T2 L99 I3

over first column: I:: T3] I39 I33

Symmetry handling:
SymChaff [8]

Core idea: search decisions consider row interchangeability

e Only for row interchangeability symmetry
e Keep track of row-interchangeable variables

= interchangeability reduces under previous choices
e Use cardinality decision points over row-interchangeable

variables |

0 12 13
Cardinality decision of 1 I:: 0 L99 I3
over first column: I:: 0 39 L33

1 T 42 L43 o

Symmetry handling:
SymChaff [8]

Strong performance on pigeonhole

SymChaff

Problem
009-008 0.01
o 013-012 0.01
=) 051-050 0.24
091-090 0.84
101-100 1.20

Symmetry handling:
Symmetric learning [9]

Core idea: consider symmetrical learned clauses

36

Symmetry handling:
Symmetric learning [9]

Core idea: consider symmetrical learned clauses

e |earnt clauses are logical consequences of ¢
e Whenever c is a consequence of ¢, so is o(c)
e Problem: 2(c) is huge

= | earn only o(c) for o € gen()

36

Symmetry handling:
Symmetric learning [9]

Core idea: consider symmetrical learned clauses

e |earnt clauses are logical consequences of ¢
e Whenever c is a consequence of ¢, so is o(c)
e Problem: 2(c) is huge

= | earn only o(c) for o € gen()
=== Symmetric leaming

1000
100

o
=

0.0

2 3 45 6 7 8 9101112131415
holes 36

solve time (s)
=
= O

Symmetry handling:
Symmetric explanation learning [10]

Core idea: consider useful symmetrical explanation clauses

37

Symmetry handling:
Symmetric explanation learning [10]

Core idea: consider useful symmetrical explanation clauses

e Learn o(c) that propagate at least once

= symmetries typically permute only a fraction of the literals
= if Cis unit, o(c) has a good chance of being unit as well
= explanation clauses are unit ;-)

37

Symmetry handling:
Symmetric explanation learning [10]

Core idea: consider useful symmetrical explanation clauses

38

Symmetry handling:
Symmetric explanation learning [10]

Core idea: consider useful symmetrical explanation clauses

e For each o e gen(Z), whenever c propagates, store o(c) in a
separate clause store 6
= Propagation on 6 happens only if standard unit propagation is
at a fixpoint
= Whenever a o(c) € O propagates, upgrade it to a "normal”

learned clause
= After backjump over c's propagation level, clear o(c) from 6

38

Symmetry handling:
Symmetric explanation learning [10]

Core idea: consider useful symmetrical explanation clauses

e For each o e gen(Z), whenever c propagates, store o(c) in a
separate clause store 6

= Propagation on 6 happens only if standard unit propagation is
at a fixpoint
= Whenever a o(c) € O propagates, upgrade it to a "normal”

learned clause
= After backjump over c's propagation level, clear o(c) from 6

e Everylearned o(c) is useful & original
e Transitive effect: track o'(o(c)) when o(c) propagates

38

Symmetry handling:
Symmetric explanation learning [10]

== Symmetric learning _
== Symmetric explanation learning

1000
100
10
1
0.1
0.01
2 3 45 6 7 8 91011121314 15
holes

solve time (s)

39

Symmetry handling:
Symmetric explanation learning [10]

== Symmetric learning _
== Symmetric explanation learning

1000
100
10

1

0.1
0.01

2 3 45 6 7 8 9 101112131415
holes

solve time (s)

Caveat: performance on larger instances

39

Symmetry handling:
Symmetric explanation learning [10]

== Symmetric learning _
== Symmetric explanation learning

1000
100
10

1

0.1
0.01

solve time (s)

2 3 45 6 7 8 9 101112131415
holes

Caveat: performance on larger instances

@ What is "complete" symmetrical learning?

Can it be done efficiently? 39

Research trends:

e Symmetry detection on propositional level is hard

= not a solved problem, cfr. pigeonhole
= papers often assume high-level symmetry input [7] [8]

e Sbf construction based on canonical labeling [7] [11]

e Dynamical approaches often perform lazy clause generation [6]
[10]1[12]

e Use computational group algebra to detect symmetry group
structure [5] [13]

@ Proof checking and symmetrical learning?

The influence of the variable order on an sbf? 40

Thanks for listening!
Questions?

[1] Symmetry-Breaking Predicates for Search Problems (1996) Crawford et al.

[2] Efficient Symmetry-Breaking for Boolean Satisfiability (2003) Aloul et al.

[3] Symmetry and Satisfiability: An Update (2010) Katebi et al.

[4] Breaking row and column symmetries in matrix models (2002) Flener et al.

[5] Improved Static Symmetry Breaking for SAT (2016) Devriendt et al.

[6] CDCLSym: Introducing Effective Symmetry Breaking in SAT Solving (2018) Metin et al.

[7] An Adaptive Prefix-Assignment Technique for Symmetry Reduction (2017) Juntilla et al.
[8] Symchaff: exploiting symmetry in a structure-aware satisfiability solver (2009) Sabharwal
[9] Enhancing clause learning by symmetry in SAT solvers (2010) Benhamou

[10] Symmetric explanation learning: Effective dynamic symmetry handling for SAT (2017)
Devriendt et al.

[11] Breaking Symmetries in Graphs: The Nauty Way (2016) Codish et al.

[12] Symmetries, almost symmetries, and lazy clause generation (2014) Chu et al.

[13] Breaking symmetries in all-different problems (2005) Puget

[14] The quest for perfect and compact symmetry breaking for graph problems (2016) 4

7. Bonus: symmetry, local search
& MmaxSAT

42

Bonus: symmetry, local search &
MaxSAT

e (Satisfying) assignments now have an associated score

Bonus: symmetry, local search &
MaxSAT

e (Satisfying) assignments now have an associated score
e Local search "moves" from one to the other based on structure-
preserving transformations

43

Bonus: symmetry, local search &
MaxSAT

e (Satisfying) assignments now have an associated score

e Local search "moves" from one to the other based on structure-
preserving transformations

e Designing local moves is typically done by hand...

44

Bonus: symmetry, local search &
MaxSAT

e (Satisfying) assignments now have an associated score

e Local search "moves" from one to the other based on structure-
preserving transformations

e Designing local moves is typically done by hand...

Symmetries form moves!
Can be automatically detected!

45

Bonus: symmetry, local search &
MaxSAT

Scatter plot of objective value of knapsack instances (higher is better)

2300 | | | | |

E’S

- og?

2 o

g 2

S 200 @ 2
o0

=

= 100} .
=

ﬁ

E

ol

O 0 | | | | |

= 0 50 100 150 200 250 300

IDP - objective value

46

Bonus: symmetry, local search &
MaxSAT

Scatter plot of objective value of knapsack instances (higher is better)

2300 | | | | |

E’E

- g2

= 5 9

3 2

S 200 @ :
o

=

E

= 100} .
=

5

E

ol

- 0 | | | | |

— 0 50 100 150 200 250 300

IDP - objective value

Symmetry-based local search in weighted maxSAT? 4

