
Symmetry in SAT:Symmetry in SAT:
an overviewan overview

August 27th, 2018
Theory and Practice of SAT solving

Oaxaca, Mexico

Jo Devriendt, KU Leuven

1

IntroIntro

Everyone knows symmetry:

SYMMETRIC ASYMMETRIC

"something does not change under a set of transformations"
- Wikipedia

2

Symmetry :=
Permutation of variable assignments that preserves satisfaction

+ ­
+

+
++
­

­
­

­
­

­

­

+

In combinatorial solvingIn combinatorial solving

3

Symmetry :=
Permutation of variable assignments that preserves satisfaction

+ ­
+

+
++
­

­
­

­
­

­

­

++ ­
+

+
++
­

­
­

­
­

­

­

+

In combinatorial solvingIn combinatorial solving

3

Symmetry induces symmetry classes:

+ ­
+

+
++
­

­
­

­
­

­

­

+

In combinatorial solvingIn combinatorial solving

4

Symmetry induces symmetry classes:

+ ­
+

+
++
­

­
­

­
­

­

­

+

Symmetry classes tend to get huge -> search problem

"......calculating......"

In combinatorial solvingIn combinatorial solving

4

In combinatorial solvingIn combinatorial solving

Goal: investigate only asymmetrical cases

 !!+

+
­

­
­

+

5

ContentsContents

1. Intro
2. SAT Prelims
3. "Classic" symmetry breaking
4. The pigeonhole problem
5. "Recent" symmetry breaking
6. Non-breaking approaches
7. Bonus: symmetry, local search & maxSAT

6

ContentsContents

1. Intro
2. SAT Prelims
3. "Classic" symmetry breaking
4. The pigeonhole problem
5. "Recent" symmetry breaking
6. Non-breaking approaches
7. Bonus: symmetry, local search & maxSAT

"Interesting research question" 6

In SAT:In SAT:

Syntactic symmetry :=
literal permutation that preserves the CNF

a ∨ ¬b

b ∨ ¬c

c ∨ ¬a

a ↦ b

¬a ↦ ¬b

b ↦ c

¬b ↦ ¬c

c ↦ a

¬c ↦ ¬a

7

In SAT:In SAT:

Syntactic symmetry :=
literal permutation that preserves the CNF

a ∨ ¬b

b ∨ ¬c

c ∨ ¬a

a ↦ b

¬a ↦ ¬b

b ↦ c

¬b ↦ ¬c

c ↦ a

¬c ↦ ¬a

(a b c)

7

static ↔ dynamic

ot
he

r
↔

 b
re

ak
in

g Shatter
BreakID CDCLSym

SymChaff
Symmetric learning

?

In SAT literature:In SAT literature:

Adaptive prefix-assignment

8

TerminologyTerminology
variable x

set of all variables X
literal l
clause c
(propositional) formula φ
(variable) assignment α

α(l) is the truth value of l in α
symmetry σ

σ(...) is the symmetrical image of ...
symmetry group Σ

Σ(...) is the orbit of ... under Σ
generator set gen(Σ)

9

3. "Classic" symmetry breaking3. "Classic" symmetry breaking

10

Symmetry breaking formulas:Symmetry breaking formulas:
Crawford [1]Crawford [1]

Given: φ, Σ
Find: symmetry breaking formula sbf

that invalidates symmetrical assignments

+ ­
+

+
++
­

­
­

­
­

­

­

+ +

+
­

­
­

+

φ φ ∪ sbf 11

Symmetry breaking formulas:Symmetry breaking formulas:
Crawford [1]Crawford [1]

Core idea: sbf encodes
"α is lexicographically smaller than σ(α)"

for σ ϵ Σ

12

Symmetry breaking formulas:Symmetry breaking formulas:
Crawford [1]Crawford [1]

Core idea: sbf encodes
"α is lexicographically smaller than σ(α)"

for σ ϵ Σ

x ≤1 σ(x)1

x =1 σ(x) ⇒1 x ≤2 σ(x)2

(x =1 σ(x) ∧1 x =2 σ(x)) ⇒2 x ≤3 σ(x)3

…

12

Symmetry breaking formulas:Symmetry breaking formulas:
Crawford [1]Crawford [1]

Core idea: sbf encodes
"α is lexicographically smaller than σ(α)"

for σ ϵ Σ

x ≤1 σ(x)1

x =1 σ(x) ⇒1 x ≤2 σ(x)2

(x =1 σ(x) ∧1 x =2 σ(x)) ⇒2 x ≤3 σ(x)3

…

parameter: total order on X
12

Symmetry breaking formulas:Symmetry breaking formulas:
Crawford [1]Crawford [1]

Core idea: sbf encodes
"α is lexicographically smaller than σ(α)"

for all σ ϵ Σ

+

+
­

­
­

+

φ ∪ sbf
13

Symmetry breaking formulas:Symmetry breaking formulas:
Crawford [1]Crawford [1]

Sound
Complete
Huge: O(|X|²|Σ|)

Core idea: sbf encodes
"α is lexicographically smaller than σ(α)"

for all σ ϵ Σ

+

+
­

­
­

+

φ ∪ sbf
13

Symmetry breaking:Symmetry breaking:
Shatter [2]Shatter [2]

construct sbf for -much smaller- gen(Σ)
"chain encoding"
improved clausal encoding

+ ­
+

+
++
­

­
­

­
­

­

­

+

φ ∪ sbf
14

Symmetry breaking:Symmetry breaking:
Shatter [2]Shatter [2]

construct sbf for -much smaller- gen(Σ)
"chain encoding"
improved clausal encoding

Sound
Incomplete
Feasible: O(|X||gen(Σ)|)

+ ­
+

+
++
­

­
­

­
­

­

­

+

φ ∪ sbf
14

Detecting symmetry:Detecting symmetry:
Saucy [3]Saucy [3]

Sparse graph automorphism detection

15

Detecting symmetry:Detecting symmetry:
Saucy [3]Saucy [3]

Sparse graph automorphism detection

Graph construction from CNF:
node for each literal and clause
edge between literals occurring in clause
edge between literal and negation

No polynomial algorithm known
Output: generators to automorphism group

15

Static symmetry breaking:Static symmetry breaking:
Shatter+SaucyShatter+Saucy

Propositional
description

off-the-shelf
SAT solver

SAT/UNSAT

Graph
automorphism

detection
¬a ∨ b

Add symmetry
breaking formulas

a ∨ ¬b

b ∨ ¬c

c ∨ ¬a

(a b c)

16

4. The pigeonhole problem4. The pigeonhole problem

17

Pigeonhole!Pigeonhole!
Do n pigeons fit in n-1 holes?

∀p : x ⋁h ph

∀h : ∀p ≠ p : ¬x ∨′
ph ¬x p h′

x 11
x 21
x 31
x 41

x 12
x 22
x 32
x 42

x 13
x 23
x 33
x 43 18

Pigeonhole!Pigeonhole!
Do n pigeons fit in n-1 holes?

Proof-theoretic problem
Simple but large symmetry group

composition of "pigeon interchangeability"
and "hole interchangeability"
1 symmetry class

∀p : x ⋁h ph

∀h : ∀p ≠ p : ¬x ∨′
ph ¬x p h′

x 11
x 21
x 31
x 41

x 12
x 22
x 32
x 42

x 13
x 23
x 33
x 43 18

Pigeonhole!Pigeonhole!

Original Shatter experiment:

19

Pigeonhole!Pigeonhole!

Seems ok?

Original Shatter experiment:

19

Pigeonhole!Pigeonhole!

Own Shatter experiment:

20

Pigeonhole!Pigeonhole!

Modest gains...
Better results in original paper?

Own Shatter experiment:

20

Pigeonhole!Pigeonhole!

Propositional encoding reduces "pigeon interchangeability"
to "row interchangeability"
Shatter's sbf's are complete [4] with correct choice of

gen(Σ)
variable order

|full sbf| = O(n²)

x 11
x 21
x 31
x 41

x 12
x 22
x 32
x 42

x 13
x 23
x 33
x 43

21

Propositional encoding reduces "pigeon interchangeability"
to "row interchangeability"
Shatter's sbf's are complete [4] with correct choice of

gen(Σ)
variable order

|full sbf| = O(n²)

Pigeonhole!Pigeonhole!

x 11
x 21
x 31
x 41

x 12
x 22
x 32
x 42

x 13
x 23
x 33
x 43

22

5. "Recent" symmetry breaking5. "Recent" symmetry breaking

23

Symmetry breaking:Symmetry breaking:
BreakID [5]BreakID [5]

Core idea: detect "row swap" symmetries

*Approximative algorithm

24

Symmetry breaking:Symmetry breaking:
BreakID [5]BreakID [5]

Core idea: detect "row swap" symmetries

1. Search σ , σ ϵgen(Σ) that form 2 subsequent row swaps
forms initial 3-rowed variable matrix M

1 2

*Approximative algorithm

24

Symmetry breaking:Symmetry breaking:
BreakID [5]BreakID [5]

Core idea: detect "row swap" symmetries

1. Search σ , σ ϵgen(Σ) that form 2 subsequent row swaps
forms initial 3-rowed variable matrix M

2. Apply every σ ϵ gen(Σ) to all detected rows r ϵ M so far
images σ(r) disjoint of M are candidates to extend M
test if swap r ↔ σ(r) is a symmetry by syntactical check on φ
if success, extend M with σ(r)

1 2

*Approximative algorithm

24

Symmetry breaking:Symmetry breaking:
BreakID [5]BreakID [5]

Core idea: detect "row swap" symmetries

1. Search σ , σ ϵgen(Σ) that form 2 subsequent row swaps
forms initial 3-rowed variable matrix M

2. Apply every σ ϵ gen(Σ) to all detected rows r ϵ M so far
images σ(r) disjoint of M are candidates to extend M
test if swap r ↔ σ(r) is a symmetry by syntactical check on φ
if success, extend M with σ(r)

3. Use Saucy to extend gen(Σ) with new symmetry generators by
fixing all variable nodes with variable in M, first row excepted

1 2

*Approximative algorithm

24

Symmetry breaking:Symmetry breaking:
BreakID [5]BreakID [5]

Core idea: detect "row swap" symmetries

Caveat!

25

Detect row interchangeability subgroups?

Symmetry breaking:Symmetry breaking:
BreakID [5]BreakID [5]

Core idea: detect "row swap" symmetries

Caveat!

25

Symmetry breaking:Symmetry breaking:
BreakID [5]BreakID [5]

Core idea: maximize number of binary sbf clauses

26

First clause in sbf for σ is binary:

x is stabilized by Σ iff Σ(x)={x}
Given Σ with smallest non-stabilized x, for each x' ϵ Σ(x):

is clause of sbf under some σ ϵ Σ

¬x ∨1 σ(x)1

¬x ∨ x′

Symmetry breaking:Symmetry breaking:
BreakID [5]BreakID [5]

Core idea: maximize number of binary sbf clauses

26

Symmetry breaking:Symmetry breaking:
BreakID [5]BreakID [5]

Core idea: exploit binary sbf clauses

27

Create stabilizer chain of Σ:

Σ is the stabilizer subgroup of Σ stabilizing the next non-
stabilized variable in ordering

Σ have different smallest non-stabilized variables x
For each x' ϵ Σ (x):

is a clause of some sbf

i i-1

i i

i i

Σ ⊃ Σ ⊃1 Σ ⊃2 … ⊃ 1

¬x ∨i x′

Symmetry breaking:Symmetry breaking:
BreakID [5]BreakID [5]

Core idea: exploit binary sbf clauses

27

Symmetry breaking:Symmetry breaking:
BreakID [5]BreakID [5]

Core idea: exploit binary sbf clauses

28

Approximative implementation
which adapts the variable order!

Symmetry breaking:Symmetry breaking:
BreakID [5]BreakID [5]

Core idea: exploit binary sbf clauses

28

Approximative implementation
which adapts the variable order!

Works well for polarity symmetry σ where for all x:

as sbf is equivalent to unit clause

and their number is maximized through adopted variable order.

σ(x) = ¬x

Symmetry breaking:Symmetry breaking:
BreakID [5]BreakID [5]

Core idea: exploit binary sbf clauses

¬x 1

28

Approximative implementation
which adapts the variable order!

Works well for polarity symmetry σ where for all x:

as sbf is equivalent to unit clause

and their number is maximized through adopted variable order.

σ(x) = ¬x

Symmetry breaking:Symmetry breaking:
BreakID [5]BreakID [5]

Core idea: exploit binary sbf clauses

¬x 1

Complete algorithm? 28

Symmetry breaking:Symmetry breaking:
CDCLSym [6]CDCLSym [6]

Core idea: generate sbf dynamically

29

Keep track of reducer symmetries where σ(α)<α
by watching smallest variable s.t. σ(v)≠v

Generate clause from sbf forcing α≤σ(α)

Additionally: try Bliss instead of Saucy

Symmetry breaking:Symmetry breaking:
CDCLSym [6]CDCLSym [6]

Core idea: generate sbf dynamically

29

Keep track of reducer symmetries where σ(α)<α
by watching smallest variable s.t. σ(v)≠v

Generate clause from sbf forcing α≤σ(α)

Additionally: try Bliss instead of Saucy

Symmetry breaking:Symmetry breaking:
CDCLSym [6]CDCLSym [6]

Core idea: generate sbf dynamically

Use clauses for propagation?
Not only generator symmetries? 29

Pigeon interchangeability can be completely broken with
polynomial sbf

Symmetry breaking:Symmetry breaking:
On completenessOn completeness

30

Pigeon interchangeability can be completely broken with
polynomial sbf
How about edge interchangeability?

E.g., find coloring of complete graph (Ramsey numbers)
Recent intrest [11] [14]

Symmetry breaking:Symmetry breaking:
On completenessOn completeness

30

Pigeon interchangeability can be completely broken with
polynomial sbf
How about edge interchangeability?

E.g., find coloring of complete graph (Ramsey numbers)
Recent intrest [11] [14]

How about general interchangeability over arbitrary high
dimensional relations?

Symmetry breaking:Symmetry breaking:
On completenessOn completeness

30

Pigeon interchangeability can be completely broken with
polynomial sbf
How about edge interchangeability?

E.g., find coloring of complete graph (Ramsey numbers)
Recent intrest [11] [14]

How about general interchangeability over arbitrary high
dimensional relations?

Symmetry breaking:Symmetry breaking:
On completenessOn completeness

Tractable sbf for edge interchangeability? 30

Symmetry breaking:Symmetry breaking:
Prefix breaking [7]Prefix breaking [7]

Core idea: enumerate asymmetrical assignments to variable prefix

High-level
constraints

Graph
representation

∀x : ∃y :
φ(x, y)

+

+
­

­
­

+

Symmetry class
representative
enumeration

Variable
prefix

31

Symmetry breaking:Symmetry breaking:
Prefix breaking [7]Prefix breaking [7]

Core idea: enumerate asymmetrical assignments to variable prefix

High-level
constraints

Incremental /
parallel SAT solver

Graph
representation

∀x : ∃y :
φ(x, y)

+

+
­

­
­

+

Symmetry class
representative
enumeration

Variable
prefix

Clausal encoding
31

6. Non-breaking approaches6. Non-breaking approaches

32

Symmetry handling:Symmetry handling:
SymChaff [8]SymChaff [8]

Core idea: search decisions consider row interchangeability

x 11
x 21
x 31
x 41

x 12
x 22
x 32
x 42

x 13
x 23
x 33
x 43 33

Symmetry handling:Symmetry handling:
SymChaff [8]SymChaff [8]

Core idea: search decisions consider row interchangeability

x 11
x 21
x 31
x 41

x 12
x 22
x 32
x 42

x 13
x 23
x 33
x 43 33

Only for row interchangeability symmetry
Keep track of row-interchangeable variables

interchangeability reduces under previous choices
Use cardinality decision points over row-interchangeable
variables

Symmetry handling:Symmetry handling:
SymChaff [8]SymChaff [8]

Core idea: search decisions consider row interchangeability

x 11
x 21
x 31
x 41

x 12
x 22
x 32
x 42

x 13
x 23
x 33
x 43 33

Only for row interchangeability symmetry
Keep track of row-interchangeable variables

interchangeability reduces under previous choices
Use cardinality decision points over row-interchangeable
variables

Cardinality decision of 1
over first column:

Only for row interchangeability symmetry
Keep track of row-interchangeable variables

interchangeability reduces under previous choices
Use cardinality decision points over row-interchangeable
variables

Symmetry handling:Symmetry handling:
SymChaff [8]SymChaff [8]

Core idea: search decisions consider row interchangeability

0
0
0
1

x 12
x 22
x 32
x 42

x 13
x 23
x 33
x 43 34

Cardinality decision of 1
over first column:

Symmetry handling:Symmetry handling:
SymChaff [8]SymChaff [8]

Strong performance on pigeonhole

35

Symmetry handling:Symmetry handling:
Symmetric learning [9]Symmetric learning [9]

Core idea: consider symmetrical learned clauses

36

Learnt clauses are logical consequences of φ
Whenever c is a consequence of φ, so is σ(c)
Problem: Σ(c) is huge

Learn only σ(c) for σ ϵ gen(Σ)

Symmetry handling:Symmetry handling:
Symmetric learning [9]Symmetric learning [9]

Core idea: consider symmetrical learned clauses

36

Learnt clauses are logical consequences of φ
Whenever c is a consequence of φ, so is σ(c)
Problem: Σ(c) is huge

Learn only σ(c) for σ ϵ gen(Σ)

Symmetry handling:Symmetry handling:
Symmetric learning [9]Symmetric learning [9]

Core idea: consider symmetrical learned clauses

36

Symmetry handling:Symmetry handling:
Symmetric explanation learning [10]Symmetric explanation learning [10]

Core idea: consider useful symmetrical explanation clauses

37

Learn σ(c) that propagate at least once
symmetries typically permute only a fraction of the literals
if c is unit, σ(c) has a good chance of being unit as well
explanation clauses are unit ;-)

Symmetry handling:Symmetry handling:
Symmetric explanation learning [10]Symmetric explanation learning [10]

Core idea: consider useful symmetrical explanation clauses

37

Symmetry handling:Symmetry handling:
Symmetric explanation learning [10]Symmetric explanation learning [10]

Core idea: consider useful symmetrical explanation clauses

38

For each σ ϵ gen(Σ), whenever c propagates, store σ(c) in a
separate clause store θ

Propagation on θ happens only if standard unit propagation is
at a fixpoint
Whenever a σ(c) ϵ θ propagates, upgrade it to a "normal"
learned clause
After backjump over c's propagation level, clear σ(c) from θ

Symmetry handling:Symmetry handling:
Symmetric explanation learning [10]Symmetric explanation learning [10]

Core idea: consider useful symmetrical explanation clauses

38

For each σ ϵ gen(Σ), whenever c propagates, store σ(c) in a
separate clause store θ

Propagation on θ happens only if standard unit propagation is
at a fixpoint
Whenever a σ(c) ϵ θ propagates, upgrade it to a "normal"
learned clause
After backjump over c's propagation level, clear σ(c) from θ

Every learned σ(c) is useful & original
Transitive effect: track σ'(σ(c)) when σ(c) propagates

Symmetry handling:Symmetry handling:
Symmetric explanation learning [10]Symmetric explanation learning [10]

Core idea: consider useful symmetrical explanation clauses

38

Symmetry handling:Symmetry handling:
Symmetric explanation learning [10]Symmetric explanation learning [10]

39

Symmetry handling:Symmetry handling:
Symmetric explanation learning [10]Symmetric explanation learning [10]

Caveat: performance on larger instances

39

Symmetry handling:Symmetry handling:
Symmetric explanation learning [10]Symmetric explanation learning [10]

What is "complete" symmetrical learning?
Can it be done efficiently?

Caveat: performance on larger instances

39

Research trends:Research trends:

Symmetry detection on propositional level is hard
not a solved problem, cfr. pigeonhole
papers often assume high-level symmetry input [7] [8]

Sbf construction based on canonical labeling [7] [11]
Dynamical approaches often perform lazy clause generation [6]
[10] [12]
Use computational group algebra to detect symmetry group
structure [5] [13]

Proof checking and symmetrical learning?
The influence of the variable order on an sbf? 40

Thanks for listening!Thanks for listening!
Questions?Questions?

[1] Symmetry-Breaking Predicates for Search Problems (1996) Crawford et al.
[2] Efficient Symmetry-Breaking for Boolean Satisfiability (2003) Aloul et al.
[3] Symmetry and Satisfiability: An Update (2010) Katebi et al.
[4] Breaking row and column symmetries in matrix models (2002) Flener et al.
[5] Improved Static Symmetry Breaking for SAT (2016) Devriendt et al.
[6] CDCLSym: Introducing Effective Symmetry Breaking in SAT Solving (2018) Metin et al.
[7] An Adaptive Prefix-Assignment Technique for Symmetry Reduction (2017) Juntilla et al.
[8] Symchaff: exploiting symmetry in a structure-aware satisfiability solver (2009) Sabharwal
[9] Enhancing clause learning by symmetry in SAT solvers (2010) Benhamou
[10] Symmetric explanation learning: Effective dynamic symmetry handling for SAT (2017)
Devriendt et al.
[11] Breaking Symmetries in Graphs: The Nauty Way (2016) Codish et al.
[12] Symmetries, almost symmetries, and lazy clause generation (2014) Chu et al.
[13] Breaking symmetries in all-different problems (2005) Puget
[14] The quest for perfect and compact symmetry breaking for graph problems (2016) 41

7. Bonus: symmetry, local search7. Bonus: symmetry, local search
& maxSAT& maxSAT

42

Bonus: symmetry, local search &Bonus: symmetry, local search &
maxSATmaxSAT

1 ­
2

5
21
­

­
­

­
­

­

­

3

(Satisfying) assignments now have an associated score

43

Bonus: symmetry, local search &Bonus: symmetry, local search &
maxSATmaxSAT

1 ­
2

5
21
­

­
­

­
­

­

­

31 ­
2

5
21
­

­
­

­
­

­

­

3

(Satisfying) assignments now have an associated score
Local search "moves" from one to the other based on structure-
preserving transformations

43

Bonus: symmetry, local search &Bonus: symmetry, local search &
maxSATmaxSAT

(Satisfying) assignments now have an associated score
Local search "moves" from one to the other based on structure-
preserving transformations
Designing local moves is typically done by hand...

44

Bonus: symmetry, local search &Bonus: symmetry, local search &
maxSATmaxSAT

(Satisfying) assignments now have an associated score
Local search "moves" from one to the other based on structure-
preserving transformations
Designing local moves is typically done by hand...

Symmetries form moves!
Can be automatically detected!

45

Bonus: symmetry, local search &Bonus: symmetry, local search &
maxSATmaxSAT

46

Bonus: symmetry, local search &Bonus: symmetry, local search &
maxSATmaxSAT

Symmetry-based local search in weighted maxSAT? 46

