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|: THE PROBLEM



e Wish to sample from target pdf o exp(—V'(q)).

e Computational effort in HMC mostly spent when numerically integra-
ting the Hamiltonian dynamics associated with the Hamiltonian function
H(q,p) = (1/2)p? + V(q), i.e. the differential system

(d/dt)q = p, (d/dt)p = —VV(q).

e Which integrator shall we use?

[ N. Bou-Rabee & JMSS, Geometric integrators and the Hamiltonian Monte
Carlo method, Acta Numerica, 2018.]



e Verlet is the algorithm of choice. For velocity form, one time-step is

h :
Pi+1/2 = Pi— 5 VqVi(g), (kick)
g +hpiy1/0, (drift)

h :
Pit1 = Pit1/2~ 5 VeV (@i1)- (Kick)

di+1

e This is obviously a splitting integrator. Over one time step numerical
solution is advanced by map

— B A B
Yy, = Ph/2° Ph ©Ph/2s

where ¢4, o8 are exact solution maps (flows) of the (Hamiltonian) split
systems:

(A)  (d/dt)g=p, (d/dt)p=0,
(B) (d/dt)g=0, (d/dt)p=—-VV(q).



e /;, volume preserving as composition of volume-preserving flows.
e 1)}, reversible due to palindromic structure of composition.

e These properties allow for simple accept-reject rule. Proposal (¢*, p*)
accepted with probability

a(™ = min (Lexp (H(g™,p(M) — H(q*,p*)))-

((¢(™), p{™)) current state of Markov chain).

[For useful dynamics that do not preserve volume see Y. Fang, JMSS &
RD Skeel, Compressible generalized HMC, J. Chem. Phys. 2014.]



e Points to remember when choosing an integrator:

1. Interested in energy errors A(q, p) after I time-steps:

A = H(Wy, 1(g,p)) — H(pPh(q,p)) = H(WVy, 1(q,p)) — H(q,p),
as only these determine the acceptance probability.

2. High accuracy may not be required, unless number of degrees of fre-
edom is very high. With an energy error A (¢, p(")) = 1 the pro-
posal ¢* will be accepted with probability exp(—1) > 36%. And for
A (g, p(M)) = 2 the probability of acceptance is still larger than

13%.

3. The sign of the energy error matters: A(¢(™,p(™M)) < 0 leads to
acceptance of the proposal.



e Conservation of volume and reversibility have an impact on energy errors:




e Expected energy error at stationarity of chain:

E(A) = /deA(q’p) exp ( — H(q,p)) dq dp;
from figure we see E(A) may also be written
— /deA(q’p) exp (— H(W(q,p))) dqdp,
or, averaging both expressions,
% [p2a A(q,p) {exp (— H(q,p)) —exp (- H(W(q,p)))} dq dp
=1 [22a A(g, ) {1 —exp (- A(q,p))} exp (— H(q,p)) dqdp.

From here one may prove

0 <ECA) < /RQdA(q,p)QeXD (— H(q,p)) dqdp.



Conclusions:

For a volume-preserving, reversible integrator, energy errors are, on ave-
rage, much smaller than one would think.

Asymptotic properties in the limit o — O (i.e. order, leading coefficients of
local error expansion) of limited interest as in practice A will not be ‘small’.

Hence: analyze integrators without assuming smallness of h.

But this is only possible for model problems ...



II: A MODEL PROBLEM
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e Harmonic oscillator:

1
H=§(p2+q2), q,p € R,

d d
1= P P =4
e From sampling point of view, target is the standard univariate Gaussian

distribution. In matrix form, the solution flow is given by

[q(t)] — [q(O)] | M, — [ cost sin t] |

p(t) p(0) —sint cost
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e Then, assuming stability, the one-step numerical matrix is:

cos 6y, X1 SiN Hh]

Mj, = BEI
h [—Xhlsmeh COS 0,

and, over i steps:

Mi _ [ cos(i6y,) Xh sin(z'@h)] |

—Xgl sin(i0;,) cos(ify)

numerical solution stays on an ellipse.
e 03, governs phase errors (here irrelevant).

e x;, governs shape of numerical orbits/energy errors. x; = 1 would be
ideal (then numerical solution stay on circles, no energy error).
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The expectation of the random variable A (qg, pg) is given by:

[S. Blanes, F. Casas, JMSS, SIAM J. Sci. Comput. 2014]

where

E(A) = sin*(160y,) p(h),

2
1, 1 1 1
sy =12+ L o =—(xh——) > 0.
2<h X3 2 Xh

Accordingly

h

0 <E(A) < p(h).
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[llustration:
Velocity Verlet is stable for 0 < A < 2, which is optimal.

For stable values of h:

h4
E(A) < —.
32(1 - 1)

For h < 1 the expected energy erroris < 1/24.

Halving h to h < 1/2, leads to an expected energy error < 1/480!
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Extension: For a d-variate Gaussian target distribution (d coupled linear
oscillators), assuming stability,

d

E(A) <Y plhw)),

J=1
where w; are the angular frequencies of the oscillators (inverses of the
standard deviations).

Note hw; is @ nondimensional combination and stability requires hw; < 2
for each j.
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I1l: IMPROVING ON VERLET
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e Split-step methods suggest themselves. Very easy implementation (se-
quence of drifts/kicks just as Verlet). They are symplectic, and, if palindro-
mic, reversible.

e Many antecedents in literature: free parameters have been used to boost
order and/or reduce error constants.

e Here we minimize

= max_ p(h
||P||(h) O<hoT p(h),

where h is suitable nondimensional maximum step-length (A < length of
stability interval).

e |If method uses r evaluations of V'V per step, we choose h = r, since
Verlet works well with A ~ 1 for relevant numbers of degrees of freedom.

17



Two evaluations of VV per step:

e One-parameter family of palindromic formulae (three kicks, two drifts):

__ B A B A B
Yh = Pph © P(1/2)h © P(1—2b)h © P(1/2)h © Poh-
e When b = 1/4 method is concatenation of two-steps (of step-length
h/2) of (position) Verlet method.

e All methods are second order accurate. Minimal error constant b ~
0.1932. As b increases from 0.19 to 0.25 integrator may operate with
larger values of h but is less accurate.

e Here a chosen to minimize maxp(h), O < h < 2. This leads to the
optimal choice b ~ 0.2118.
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Three evaluations of V'V per step:

e Two-parameter family of palindromic formulae (three kicks, two drifts):

B A B A B A B
Poh © Pah © P(1/2-b)h ° P(1—2a)h © P(1/2-b)n © Pah © °Pbh-
e When ¢« = 1/3 b = 1/6 method is concatenation of three-steps (of
step-length ~ /3) of velocity Verlet method.

e Order four is possible and has been considered in this context.
e Here minimize max p(h), 0 < h < 3. This is tricky: generically methods

have stability intervals shorter than O < A < 3. (The fourth-order method
has stability interval 0 < h < 1.573.)

20



10®

10710

10712

4~ 03,b~012
—a=1/3,b=1/6
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Numerical comparison of three-stage algorithms:

e Canonical distribution for an alkane molecule with 27 degrees of freedom.
(Not too many degrees of freedom and away from Gaussian model.)

e One force evaluation every 8 fs (good for Verlet).

e Average and standard deviation of acceptance rate:

Integrator L o
Verlet 77.7% | 2.11%
Fourth order | 0% 0%
Minimum p | 96.7% | 0.41%
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AlA (adaptive integrator approach) [M Fernandez-Pendas, E Akhmatskaya,
JMSS, J. Comput. Phys. 2016]

Go back to two stage family. Above, free parameter b chosen once and for
all to minimize p over 0 < h < 2.

In AIA steplength chosen according to computational budget. Then esti-
mate shortest interval (0, ~*) that contains all products hw; and minimize
pover0 < h < h*.

Incorporated to molecular dynamics popular software GROMACS.
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Sampling for a large biomolecule. If At is large, AIA chooses Verlet. If user
may operate smaller values of At, AIA automatically picks an integrator
with a shorter stability interval and enhanced accuracy.
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