UNIVERSITY OF WISCONSIN-MADISON
Probabilistic generative modeling of multimapping reads with $\mathrm{mHi}-\mathrm{C}$ advances analysis of Hi-C studies

Sündüz Keleş
Department of Biostatistics and Medical Informatics

Department of Statistics
University of Wisconsin, Madison

Google atsnp search

http://atsnp.biostat.wisc.edu/

CPCP

Search for effects of SNPs on transcription factor binding
Select a search type:

SNPid List	SNPid Window	Genomic Location	Gene	Transcription Factor
Please type SNPids of interest in the box or upload a text file containing a list of SNPids. SNPids can be separated with commas, spaces, or newlines. If more than 1,000 SNPids are specified, only the first 1,000 will be included in the search. SNPids				
File of SNPids Choose File No file chosen				
Refine your search to identify GAIN and/or LOSS of function, and to narrow down PWMs based on their degeneracy.				
P-value SNP impact ${ }^{\text {? }}$	0.05			
SNP impact type	CAIN of function	Specify sort order?		mpac \downarrow rdinat \downarrow E䧚
P-value Reference ?	\leq	Filter by motif degeneracy?		\checkmark Low \downarrow Moderate \downarrow High \downarrow Very High
P-value SNP?	\leq			
Search				
Use an example search				

High throughput chromatin conformation

 capture (Hi-C) for studying long-range interactions

ENCODE project generated catalogs of enhancers.

Hi-C for studying long-range interactions

Looping of DNA

ENCODE project generated catalogs of enhancers.

Hi-C experimental protocol

Cut with restriction enzyme

Fill ends and mark with biotin

Ligate

Purify and shear DNA; Sequence using pull down biotin

Rao et al., Cell, 2014

Hi-C experimental protocol

Data gets summarized as a contact count matrix.

Just like any sequencing dataset, Hi-C analysis start with read alignment

Signals from repetitive regions are under-represented

Signals from repetitive regions are under-represented

Evaluation: 6 independent studies, with 8

 datasets, and multiple replicates per datasetTable 1. Hi-C Data Summary

Cell line	Replicate	Read length (bp)	Restriction Enzyme	HiC Protocol	Source	Resolution (kb)
IMR90	rep1-6	36	HindIII	dilution	Jin et al. (2013)	40
GM12878	rep2-9	101	Mbol	in situ	Rao et al. (2014)	5, 10*, 40*
GM12878	rep32, rep33	101	DpnII	in situ	Rao et al. (2014)	5
A549	rep1-4	151	Mbol	in situ	Dixon et al. (2018)	10,40
ESC(2012)	rep1, rep2	36	HindIII	dilution	Dixon et al. (2012)	40
ESC(2017)	rep1-4	50	DpnII	in situ	Bonev et al. (2017)	10,40
Cortex	rep1-4	50	DpnII	in situ	Bonev et al. (2017)	10,40
P.falciparum	3 stages	40	Mbol	dilution	Ay et al. (2014b)	10,40
* Replical						

* Replicates 2, 3, 4, and 6 of the GM12878 cell line datasets were process at 10kb and 40kb resolutions.

Criteria for selection

- Genome size (large, small)
- Sequencing depth, coverage
- Cis-to-Trans ratio
- Proportion of mappable and valid reads

Multi-reads are abundant

Multi-reads are abundant

Results across eight studies

Uni-reads \square Multi-reads (High Quality) \square Multi-reads (Low Quality) \square Singleton

| IMR90 | GM12878 | A549 |
| :---: | :---: | :---: | :---: |
| $(36 \mathrm{bp})$ | $(101 \mathrm{bp})$ | E |

ESC-2012	ESC-2107
$(36 \mathrm{bp})$	$(50 \mathrm{bp})$

IMR90
$(36 b p)$

A549	ESC-2012
(151bp)	$(36 \mathrm{bp})$

3

Sometimes, there is free lunch

mHi-C Pre-processing Rescues Multi-reads

Validation Checking Genome Binning

Valid read pair

Sometimes, there is free lunch

[^0]
Sometimes, there is free lunch

No-cost multi-reads: add $\sim 5 \%$

Sometimes, there is free lunch

No-cost multi-reads: add $\sim 5 \%$
Multi-reads need rescuing: add ~ 23\%

mHi-C: multi-read allocation for $\mathrm{Hi}-\mathrm{C}$

Local Bin-pair Contact Counts

$\mathrm{mHi}-\mathrm{C}$ model

Observed: $\quad Y_{i,(j, k)}=1$.

Valid read pair i aligned to contact unit (j, k).

$\mathrm{mHi}-\mathrm{C}$ model

Observed: $\quad Y_{i,(j, k)}=1$.
Valid read pair i aligned to contact unit (j, k).

Uni

$\mathrm{mHi}-\mathrm{C}$ model

Observed: $\quad Y_{i,(j, k)}=1$.
 Valid read pair i aligned to contact unit (j, k).
 Uni

$$
\sum_{j, k}^{\mathrm{e} . \mathrm{g} .} Y_{i,(j, k)}=4
$$

$\mathrm{mHi}-\mathrm{C}$ model

Observed: $\quad Y_{i,(j, k)}=1$.
Uni
Valid read pair i aligned to contact unit (j, k).

Hidden: $\quad Z_{i,(j, k)}=1$,

Valid read pair i originated from contact unit (j, k).

$\mathrm{mHi}-\mathrm{C}$ model

Observed: $\quad Y_{i,(j, k)}=1$.

Uni

Valid read pair i aligned to contact unit (j, k).

Hidden: $\quad Z_{i,(j, k)}=1$,

Multi

Valid read pair i originated from contact unit (j, k).

mHi-C model

$Z_{i} \sim \operatorname{Multinomial}\left(\pi_{(1,2)}, \pi_{(j, k)}, \cdots, \pi_{(M, M-1)}\right)$ $\pi \sim \operatorname{Dirichlet}\left(\gamma_{(1,2)}, \cdots, \gamma_{(j, k)}, \cdots, \gamma_{(M, M-1)}\right)$ $\gamma_{(j, k)}$ is modeled as a function of the distance between contact units j and k
$\gamma_{(j, k)}$ play the role of pseudo-counts in the DirichletMultinomial framework.
 Genome research (2014)

$\mathrm{mHi}-\mathrm{C}$

$$
P\left(Z_{i,(j, k)}=1 \mid Y_{i,\left(j^{\prime}, k^{\prime}\right)}, \forall j^{\prime}, k^{\prime}\right)
$$

Threshold posterior probabilities to use resulting alignments with existing significant contact identification methods (e.g., fit-HiC).

$\mathrm{mHi}-\mathrm{C}$: from read-pairs to significant contacts

Process reads to get valid read pairs
Partition genome into non-overlapping intervals (5-300Kb or 10 RE sized units)

Generate raw contact map
mHiC makes these steps multi-read aware

Normalize contact map
Identify significant contacts

Evaluation

A. Sequencing depth	\boldsymbol{v}
B. Accuracy of multi-read assignment by trimming experiments	
C. Impact on coverage	
D. Reproducibility across replicates: both raw contact count matrix and also identified contacts	
E. Biological impact: Novel promoter-enhancer interactions	
F. Biological impact: TAD inference	

B. Alternative read rescue

Trimming experiments:

Start with long read datasets (e.g., $\geq 100 \mathrm{bp}$).

Align and get uni-reads (long uni-reads).

Trim the long uni-reads to generate short reads.

Align trimmed reads, some of which are now multi-reads.

Evaluate them against their true alignment positions from the longer uni-read set.

B. Accuracy

B. Accuracy

■Correctly Assigned

- Falsely Assigned

Not Assigned

B. Accuracy

B. Recovering the full length contact matrix

$-36-50+75-100-125$-TrimUni - - TrimUni\&Multi

C. Major improvement in coverage

D. Reproducibility of the contact matrix

D. Reproducibility of the significant interactions

Uni-\&Multi-reads

D. ROC- and PR-based on replicate gold standard

High depth replicates are used to define "true" positives and negatives.

E. Impact on TAD inference

\# of TADs detected do not change significantly.

TAD: Topologically associated domain

97.55 MB


```
30
```

Chromosome 10

E. Impact on TAD inference

\# of TADs detected do not change significantly.

■Uni-setting Uni\&Multi-setting

\# of reproducible TADs increases by 2.01%.
\# of irreproducible TADs decreases by 2.36%.

E. Impact on TAD inference

Uni-setting
Uni\&Multi-setting

E. Impact on TAD inference

Uni-setting
Uni\&Multi-setting

F. Repetitive elements at the boundaries of reproducible TADs

F. Disease-Associated short tandem repeats co-localize with domain boundaries

Cell

Disease-Associated Short Tandem Repeats Colocalize with Chromatin Domain Boundaries Authors James H. Sun, Linda Zhou, Daniel J. Emerson, ..., Beverly L. Davidson, Flora Tassone, Jennifer E. Phillips-Cremins

C

F. Novel promoter-enhancer interactions

15.8\% more promoter-enhancer interactions that are reproducible in at least 2 replicates.

F. Novel promoter-enhancer interactions

15.8\% more promoter-enhancer interactions that are reproducible in at least 2 replicates.

Summary

- Software https://github.com/keleslab/mhic
- Paper
https://www.biorxiv.org/content/early/2018/10/03/301705
- More results on chimeric reads, impact on differential $\mathrm{Hi}-\mathrm{C}$ analysis are available in the manuscript.

Acknowledgements

Keleș Group
Ye Zheng

Collaborators

Ferhat Ay (La Jolla Institute for Allergy \& Immunology)

Center for Predictive Computational Phenotyping U54 AI117924

U01 HG007019

Thanks to NIH: RO1 HG003747, R21 HG009744

http://atsnp.biostat.wisc.edu/

 YouTubeENCODER-NGS \square GWAS

W Wikipedia-

Q Search
$\square \mathrm{He}$
(2) FAQ
(i) About

СРСР

Search for effects of SNPs on transcription factor binding
Select a search type:

SNPid List	SNPid Window	Genomic Location	Gene	Transcription Factor
Please type SNPids of interest in the box or upload a text file containing a list of SNPids. SNPids can be separated with commas, spaces, or newlines. If more than 1,000 SNPids are specified, only the first 1,000 will be included in the search.				
File of SNPids Choose File No file chosen				
Refine your search to identify GAIN and/or LOSS of function, and to narrow down PWMs based on their degeneracy.				
P-value SNP impact?	0.05			
SNP impact type	GAIN of function LOSS of function	Specify sort order?		mpac \ddagger rdinat \downarrow !
P-value Reference?	\leq	Filter by motif degeneracy?		\checkmark Low \checkmark Moderate \checkmark High \downarrow Very High
P-value SNP?	\leq			
Search				
Use an example search				

Available positions

1-2 postdoctoral researcher positions in statistical genomics.
If interested. send CV to keles@stat.wisc.edu

F. Genomic characteristics

C. Count matrices

Uni-setting (Raw Counts)

Uni-setting (Normalized Counts)

Uni\&Multi-setting (Raw Counts)

Uni\&Multi-setting (Normalized Counts)

POSTER
 SNPs in high LD: a formidable challenge

Full loci

Labeling by Massively parallel reporter assays (MPRA)

Zoomed

peak \%
$\begin{array}{llll}0.04 & 0.08 & 0.12 & 0.16\end{array}$

[^0]: rep1 rep2 rep3 rep4 rep5 rep6

