Characterizing cell type-specific responses to stimuli using single cell RNA sequencing

Gerald Quon @ BIRS/Oaxaca

Department of Molecular and Cellular Biology

University of California, Davis

Ideal experiment for single cell perturbation

• In the ideal experiment, we would perform scRNA-seq on the same individual cell before and after stimulus.

Alignment is the primary problem in perturbation studies

What was the state for each perturbed cell before exposure?

Cell type specific responses hinder alignment

• Problem similar to batch effect correction

Unsupervised (optionally supervised) alignment outline

HSC Inflammation study: Mann et al. (2017)

• Alignment of single cell perturbation study

Alignment of HSCs leads to mixing of control, perturbation

Unsupervised alignment matches cell types

Aligned Data (after adaptation)

Cell States (after adaptation)

t-SNE 1

LT-nostim

Alignment preserves similarity between cells

• "compression" accentuates the similarity matrix

Similar

Dissimilar

Cell-cell similarity

Domain adaptation aligns cell types with heterogeneous response

Domain adaptation aligns cell types with heterogeneous response

• Accuracy: how well cells of the same type cluster together.

Aligning hematopoietic cells from young and old mice

Aviv Regev (Broad)

Aligning hematopoietic cells from young and old mice

Paired-representation of each cell for differential expr.

Research steps:

(1) Alignment of single cell data across conditions.

(2) Decode cells from joint state space back to different conditions.

Paired differential expression reveals HSC subpopulations

Paired differential expression

Dhrs3, Prtn3

Sexual commitment in malaria

- Differential "trajectories"
- Pathogens balance transmission with persistence.
- AP2-G is a master switch of commitment.

Sequencing of conditional knockdown of AP2-G

- Data collected at 3 time points and gametocytes
- AP2-G (ON) and AP2-G (OFF) cell conditions

Cell position driven by cell cycle state

Viral cells self-organized based on time post infection

Time Point

Clustering

Alignment of malaria AP2-G+/- cells preserves AP2-G ON-specific gametocytes

Measured AP2-G expression Reconstructed AP2-G expression

No AP2-G expr High AP2-G expr

Paired-DE identifies AP2-G related changes near gametocyte formation

Subpopulations lie near reproduction commitment

Paired-DE defines substructure near commitment

Paired-Differential Expression

Species can be treated as a perturbation

- Human middle temporal gyrus (~70 cell types)
- Mouse primary visual cortex (~90 cell types)

Trygve Ed Lein Bakken

Mouse

Most cell types have predicted functional homologs

scAlign

Seurat

Open challenges

- How can you test whether alignment makes sense in the first place?
- How "close" do cells across condition have to be, to be recognizable?
- How do we measure the statistical significance of paired differential expression?
- Can we use this to detect batch effects, systematic differences in features in other types of data?

Acknowledgements

Nelson Johansen

Bjorn Kafsack (Cornell)

Trygve Bakken (Allen Institute)

Ed Lein (Allen Institute)

Training Program in Molecular and Cellular Biology