## Hodge elliptic genera in geometry and in CFT

Geometric and Categorical Aspects of CFTs, Banff International Research Station, Oaxaca, Mexico, September 24-28, 2018

Katrin Wendland

Albert-Ludwigs-Universität Freiburg

## Plan: (1) Refining the Euler characteristic <br> (2) More algebra and mathematical physics (3) Interpretation in CFT

[W17] Hodge-elliptic genera and how they govern K3 theories; arXiv:1705.09904 [hep-th]
[Taormina/W15] A twist in the M24 moonshine story, Confluentes Mathematici 7, 1 (2015), 83-113; arXiv:1303.3221 [hep-th]
[Taormina/W13] Symmetry-surfing the moduli space of Kummer K3s, Proceedings of Symposia in Pure Mathematics 90 (2015), 129-153; arXiv:1303.2931 [hep-th]
[Taormina/W11] The overarching finite symmetry group of Kummer surfaces in the Mathieu group $M_{24}$, JHEP 1308:152 (2013); arXiv:1107.3834 [hep-th]

## 1. Refining the Euler characteristic: Complex elliptic genus

## Euler characteristic:

$\chi(M):=\sum_{j, k}(-1)^{j+k} h^{k, j}(M)=\sum_{k}(-1)^{k} \chi\left(\Lambda^{k} T^{*}\right)=\chi\left(\bigoplus_{k}(-1)^{k} \Lambda^{k} T^{*}\right)$

## 1. Refining the Euler characteristic: Complex elliptic genus

Euler characteristic:
$\chi(M):=\sum_{j, k}(-1)^{j+k} h^{k, j}(M)=\sum_{k}(-1)^{k} \chi\left(\Lambda^{k} T^{*}\right)=\chi(\underbrace{\bigoplus_{k}(-1)^{k} \Lambda^{k} T^{*}}_{\Lambda_{-1} T^{*}})$
for any bundle $E \rightarrow M, \Lambda_{x} E:=\bigoplus_{k=0}^{\infty} x^{k} \Lambda^{k} E, \quad S_{x} E:=\bigoplus_{k=0}^{\infty} x^{k} S^{k} E$
Hirzebruch $\chi_{y}$-genus:

$$
\chi_{y}(M):=\chi\left(\Lambda_{y} T^{*}\right) \stackrel{[H R R]}{=} \int_{M} T d(M) \operatorname{ch}\left(\Lambda_{y} T^{*}\right)
$$

## 1. Refining the Euler characteristic: Complex elliptic genus

Euler characteristic:
$\chi(M):=\sum_{j, k}(-1)^{j+k} h^{k, j}(M)=\sum_{k}(-1)^{k} \chi\left(\Lambda^{k} T^{*}\right)=\chi(\underbrace{\bigoplus_{k}(-1)^{k} \Lambda^{k} T^{*}}_{\Lambda_{-1} T^{*}})$ for any bundle $E \rightarrow M, \Lambda_{x} E:=\bigoplus_{k=0}^{\infty} x^{k} \Lambda^{k} E, S_{x} E:=\bigoplus_{k=0}^{\infty} x^{k} S^{k} E$
Hirzebruch $\chi_{y}$-genus:

$$
\begin{aligned}
& \chi_{y}(M):=\chi\left(\Lambda_{y} T^{*}\right) \stackrel{[H R R]}{=} \int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\Lambda_{y} T^{*}\right) \\
& \quad \chi_{-1}(M)=\chi(M), \quad \chi_{0}(M)=\chi\left(\mathcal{O}_{M}\right), \quad \chi_{1}(M)=\sigma(M)
\end{aligned}
$$

## 1. Refining the Euler characteristic: Complex elliptic genus

Euler characteristic:
$\chi(M):=\sum_{j, k}(-1)^{j+k} h^{k, j}(M)=\sum_{k}(-1)^{k} \chi\left(\Lambda^{k} T^{*}\right)=\chi \underbrace{\bigoplus_{k}(-1)^{k} \Lambda^{k} T^{*}}_{\Lambda_{-1} T^{*}})$

$$
\begin{aligned}
& \text { for any bundle } E \rightarrow M, \Lambda_{x} E:=\bigoplus_{k=0}^{\infty} x^{k} \Lambda^{k} E, \quad S_{x} E:=\bigoplus_{k=0}^{\infty} x^{k} S^{k} E \\
& \text { conuc. }
\end{aligned}
$$

Hirzebruch $\chi_{y}$-genus:

$$
\begin{aligned}
& \chi_{y}(M):=\chi\left(\Lambda_{y} T^{*}\right) \stackrel{[H R R]}{=} \int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\Lambda_{y} T^{*}\right) \\
& \quad \chi_{-1}(M)=\chi(M), \quad \chi_{0}(M)=\chi\left(\mathcal{O}_{M}\right), \quad \chi_{1}(M)=\sigma(M)
\end{aligned}
$$

## Definition [Hirzebruch88, Witten88]

With $q:=e^{2 \pi i \tau}, y:=e^{2 \pi i z}$ for $\tau, z \in \mathbb{C}, \quad \operatorname{Im}(\tau)>0$,

$$
\begin{aligned}
\mathbb{E}_{q,-y}:= & y^{-\frac{D}{2}} \Lambda_{-y} T^{*} \otimes \bigotimes_{n=1}^{\infty}\left[\Lambda_{-y q^{n}} T^{*} \otimes \Lambda_{-y^{-1} q^{n}} T \otimes S_{q^{n}} T^{*} \otimes S_{q^{n}} T\right] \\
& \mathcal{E}(M ; \tau, z):=\chi\left(\mathbb{E}_{q,-y}\right)=\int_{M} \operatorname{Td}(M) \operatorname{ch}\left(\mathbb{E}_{q,-y}\right)
\end{aligned}
$$

$$
\text { is the COMPLEX ELLIPTIC GENUS of } M \text {. }
$$

## 1. Properties of the complex elliptic genus

## Properties:

- $\mathcal{E}(M ; \tau, z)$ arises from a regularized $U(1)$-equivariant index of a Dirac operator on the loop space of $M$


## 1. Properties of the complex elliptic genus

## Properties:

- $\mathcal{E}(M ; \tau, z)$ arises from a regularized $U(1)$-equivariant index of a Dirac operator on the loop space of $M$
- using the splitting principle, $c(T)=\prod_{j=1}^{D}\left(1+x_{j}\right)$,

$$
\begin{aligned}
\mathcal{E}(M ; \tau, z)=y^{-D / 2} \int_{M} \prod_{j=1}^{D} & {[\underbrace{\frac{x_{j}}{1-e^{-x_{j}}}}_{\mathrm{Td}}(\underbrace{1-y e^{-x_{j}}}_{\operatorname{ch}\left(\Lambda_{-y} T^{*}\right)})} \\
\cdot & \left.\prod_{n=1}^{\infty} \frac{\left(1-y e^{-x_{j}} q^{n}\right)\left(1-y^{-1} e^{x_{j}} q^{n}\right)}{\left(1-e^{-x_{j}} q^{n}\right)\left(1-e^{x_{j}} q^{n}\right)}\right]
\end{aligned}
$$

## 1. Properties of the complex elliptic genus

## Properties:

- $\mathcal{E}(M ; \tau, z)$ arises from a regularized $U(1)$-equivariant index of a Dirac operator on the loop space of $M$
- using the splitting principle, $c(T)=\prod_{j=1}^{D}\left(1+x_{j}\right)$,

$$
\begin{aligned}
& \mathcal{E}(M ; \tau, z)=y^{-D / 2} \int{ }^{D}\left[x_{j}{ }^{j=1}\left(1-e^{-x_{j}}\right)\right.
\end{aligned}
$$

## 1. Properties of the complex elliptic genus

## Properties:

- $\mathcal{E}(M ; \tau, z)$ arises from a regularized $U(1)$-equivariant index of a Dirac operator on the loop space of $M$
- using the splitting principle, $c(T)=\prod_{j=1}^{D}\left(1+x_{j}\right)$,

$$
\begin{aligned}
& \mathcal{E}(M ; \tau, z)= y^{-D / 2} \int_{M} \prod_{j=1}^{D}\left[\frac{x_{j}}{1-e^{-x_{j}}}\left(1-y e^{-x_{j}}\right) \cdot\right. \\
&\left.=\prod_{n=1}^{\infty} \frac{\left(1-y e^{-x_{j}} q^{n}\right)\left(1-y^{-1} e^{x_{j}} q^{n}\right)}{\left(1-e^{-x_{j}} q^{n}\right)\left(1-e^{x_{j}} q^{n}\right)}\right] \\
&=\int_{M=1}^{D}\left[x_{j} \frac{\vartheta_{1}\left(\tau, z-x_{j}\right)}{\vartheta_{1}\left(\tau,-x_{j}\right)}\right]
\end{aligned}
$$

a weak Jacobi form (weight 0 , index $\frac{D}{2}$ ) with respect to $S L_{2}(\mathbb{Z})$

## 1. Properties of the complex elliptic genus

## Properties:

- $\mathcal{E}(M ; \tau, z)$ arises from a regularized $U(1)$-equivariant index of a Dirac operator on the loop space of $M$
- using the splitting principle, $c(T)=\prod_{j=1}^{D}\left(1+x_{j}\right)$,

$$
\begin{aligned}
& \mathcal{E}(M ; \tau, z)= y^{-D / 2} \int_{M} \prod_{j=1}^{D}\left[\frac{x_{j}}{1-e^{-x_{j}}}\left(1-y e^{-x_{j}}\right) .\right. \\
&\left.\quad \cdot \prod_{n=1}^{\infty} \frac{\left(1-y e^{-x_{j}} q^{n}\right)\left(1-y^{-1} e^{x_{j}} q^{n}\right)}{\left(1-e^{-x_{j}} q^{n}\right)\left(1-e^{x_{j}} q^{n}\right)}\right] \\
&= \int_{M} \prod_{j=1}^{D}\left[x_{j} \frac{\vartheta_{1}\left(\tau, z-x_{j}\right)}{\vartheta_{1}\left(\tau,-x_{j}\right)}\right]
\end{aligned}
$$

a weak Jacobi form (weight 0 , index $\frac{D}{2}$ ) with respect to $S L_{2}(\mathbb{Z})$

- it's a genus with values in the ring of weak Jacobi forms of weight 0


## 1. Refining $\chi(M)$ : The (geometric) Hodge elliptic genus

## Definition

$\mathbb{E}_{q,-y}$ as before, $\mathbb{E}_{q,-y}=y^{-\frac{D}{2}} \bigoplus_{\ell, m} q^{\ell}(-y)^{m} \mathcal{T}_{\ell, m}$,
COMPLEX ELLIPTIC GENUS of $M$ :

$$
\mathcal{E}(M ; \tau, z)=\quad y^{-\frac{D}{2}} \sum_{\ell, m} q^{\ell}(-y)^{m} \sum_{j}(-1)^{j} \operatorname{dim} H^{j}\left(M, \mathcal{T}_{\ell, m}\right)
$$

## 1. Refining $\chi(M)$ : The (geometric) Hodge elliptic genus

## Definition [Kachru/Tripathy16]

$\mathbb{E}_{q,-y}$ as before, $\mathbb{E}_{q,-y}=y^{-\frac{D}{2}} \bigoplus_{\ell, m} q^{\ell}(-y)^{m} \mathcal{T}_{\ell, m}$,

$$
\nu \in \mathbb{C}, u:=\exp (2 \pi i \nu),
$$

Hodge elliptic genus of $M$ :
$\mathcal{E}^{\mathrm{HEG}}(M ; \tau, z, \nu):=(u y)^{-\frac{D}{2}} \sum_{\ell, m} q^{\ell}(-y)^{m} \sum_{j}(-u)^{j} \operatorname{dim} H^{j}\left(M, \mathcal{T}_{\ell, m}\right)$.

## 1. Refining $\chi(M)$ : The (geometric) Hodge elliptic genus

## Definition [Kachru/Tripathy16]

$\mathbb{E}_{q,-y}$ as before, $\mathbb{E}_{q,-y}=y^{-\frac{D}{2}} \bigoplus_{\ell, m} q^{\ell}(-y)^{m} \mathcal{T}_{\ell, m}$,

$$
\nu \in \mathbb{C}, u:=\exp (2 \pi i \nu)
$$

Hodge elliptic genus of $M$ :

$$
\mathcal{E}^{\mathrm{HEG}}(M ; \tau, z, \nu):=(u y)^{-\frac{D}{2}} \sum_{\ell, m} q^{\ell}(-y)^{m} \sum_{j}(-u)^{j} \operatorname{dim} H^{j}\left(M, \mathcal{T}_{\ell, m}\right)
$$

## Theorem [Kachru/Tripathy16]

If $M$ is a complex torus or a K 3 surface, then $\mathcal{E}^{\mathrm{HEG}}(M ; \tau, z, \nu)$ is an invariant (that is, independent of the complex structure).

## 2. Attaching vertex operator algebras to $M$

## The basic building block: $\quad b c-\beta \gamma$ system $E$

$\mathfrak{a}$ : (complex) Heisenberg algebra with basis $\left(\beta_{n}, \gamma_{m}, 1\right)_{n, m \in \mathbb{Z}}$,

$$
\forall n, m \in \mathbb{Z}:\left[\beta_{n}, \gamma_{m}\right]=\delta_{n+m, 0} \cdot 1, \text { and all other }\left[x_{n}, y_{m}\right]=0
$$

$\mathfrak{a}_{-}$: sub Lie algebra with basis $\left(\beta_{n}, \gamma_{m}, 1\right)_{n \leq 0, m<0}$
$\mathbb{C}:=\operatorname{span}_{\mathbb{C}}(\Omega), \quad \forall n \leq 0: \beta_{n} . \Omega=0, \forall m<0: \gamma_{m} \cdot \Omega=0,1 . \Omega=\Omega$

$$
F:=\operatorname{ind}_{\mathfrak{a}_{-}}^{\mathfrak{a}}(\underline{\mathbb{C}}) \cong \mathbb{C}\left[\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \gamma_{0}, \gamma_{1}, \gamma_{2}, \ldots\right]
$$

$F$ carries the structure of a vertex operator algebra (VOA), generated by two free bosonic fields $\beta(x), \gamma(x) \in \operatorname{End}_{\mathbb{C}}(F)\left[\left[x^{ \pm 1}\right]\right]$;

## 2. Attaching vertex operator algebras to $M$

## The basic building block: $\quad b c-\beta \gamma$ system $E$

$\mathfrak{a}$ : (complex) Heisenberg algebra with basis $\left(\beta_{n}, \gamma_{m}, 1\right)_{n, m \in \mathbb{Z}}$,

$$
\forall n, m \in \mathbb{Z}:\left[\beta_{n}, \gamma_{m}\right]=\delta_{n+m, 0} \cdot 1, \text { and all other }\left[x_{n}, y_{m}\right]=0
$$

$\mathfrak{a}_{-}$: sub Lie algebra with basis $\left(\beta_{n}, \gamma_{m}, 1\right)_{n \leq 0, m<0}$
$\mathbb{C}:=\operatorname{span}_{\mathbb{C}}(\Omega), \quad \forall n \leq 0: \beta_{n} . \Omega=0, \forall m<0: \gamma_{m} \cdot \Omega=0,1 . \Omega=\Omega$

$$
F:=\operatorname{ind}_{\mathfrak{a}_{-}}^{\mathfrak{a}}(\underline{\mathbb{C}}) \cong \mathbb{C}\left[\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \gamma_{0}, \gamma_{1}, \gamma_{2}, \ldots\right]
$$

$F$ carries the structure of a vertex operator algebra (VOA), generated by two free bosonic fields $\beta(x), \gamma(x) \in \operatorname{End}_{\mathbb{C}}(F) \llbracket\left[x^{ \pm 1}\right]$; introducing free fermions along the same lines, get a Fock space $E \supset F$, $b(x), c(x) \in \operatorname{End}_{\mathbb{C}}(E) \llbracket x^{ \pm 1} \rrbracket \quad$ - altogether, a $b c-\beta \gamma$ system $E$.

## 2. Attaching vertex operator algebras to $M$

## The basic building block: $\quad b c-\beta \gamma$ system $E$

$\mathfrak{a}$ : (complex) Heisenberg algebra with basis $\left(\beta_{n}, \gamma_{m}, 1\right)_{n, m \in \mathbb{Z}}$,

$$
\forall n, m \in \mathbb{Z}:\left[\beta_{n}, \gamma_{m}\right]=\delta_{n+m, 0} \cdot 1, \text { and all other }\left[x_{n}, y_{m}\right]=0
$$

$\mathfrak{a}_{-}$: sub Lie algebra with basis $\left(\beta_{n}, \gamma_{m}, 1\right)_{n \leq 0, m<0}$
$\mathbb{C}:=\operatorname{span}_{\mathbb{C}}(\Omega), \quad \forall n \leq 0: \beta_{n} . \Omega=0, \forall m<0: \gamma_{m} . \Omega=0,1 . \Omega=\Omega$

$$
F:=\operatorname{ind}_{\mathfrak{a}_{-}}^{\mathfrak{a}}(\underline{\mathbb{C}}) \cong \mathbb{C}\left[\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \gamma_{0}, \gamma_{1}, \gamma_{2}, \ldots\right]
$$

$F$ carries the structure of a vertex operator algebra (VOA), generated by two free bosonic fields $\beta(x), \gamma(x) \in \operatorname{End}_{\mathbb{C}}(F) \llbracket\left[x^{ \pm 1}\right]$; introducing free fermions along the same lines, get a Fock space $E \supset F$, $b(x), c(x) \in \operatorname{End}_{\mathbb{C}}(E) \llbracket x^{ \pm 1} \rrbracket \quad$ - altogether, a $b c-\beta \gamma$ system $E$.
For $U \subset M$ : holomorphic coordinate chart with $\mathbb{E}_{q,-y \mid U} \cong U \times \mathbb{E}$, $\mathbb{E}$ a super-module of the super-VOA $E^{\otimes D}$.
[Dong/Liu/Ma02], using the $\operatorname{SU}(D)$-holonomy of $M$, obtain an $\operatorname{SU}(D)$-principal bundle of $E^{\otimes D}$-modules associated to $\mathbb{E}_{q,-y}$.

## 2. Attaching vertex operator algebras to $M$

## The basic building block: $\quad b c-\beta \gamma$ system $E$

$\mathfrak{a}$ : (complex) Heisenberg algebra with basis $\left(\beta_{n}, \gamma_{m}, 1\right)_{n, m \in \mathbb{Z}}$,

$$
\forall n, m \in \mathbb{Z}:\left[\beta_{n}, \gamma_{m}\right]=\delta_{n+m, 0} \cdot 1, \text { and all other }\left[x_{n}, y_{m}\right]=0
$$

$\mathfrak{a}_{-}$: sub Lie algebra with basis $\left(\beta_{n}, \gamma_{m}, 1\right)_{n \leq 0, m<0}$
$\mathbb{C}:=\operatorname{span}_{\mathbb{C}}(\Omega), \quad \forall n \leq 0: \beta_{n} \cdot \Omega=0, \forall m<0: \gamma_{m} \cdot \Omega=0,1 . \Omega=\Omega$

$$
F:=\operatorname{ind}_{\mathfrak{a}_{-}}^{\mathfrak{a}}(\underline{\mathbb{C}}) \cong \mathbb{C}\left[\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \gamma_{0}, \gamma_{1}, \gamma_{2}, \ldots\right]
$$

$F$ carries the structure of a vertex operator algebra (VOA), generated by two free bosonic fields $\beta(x), \gamma(x) \in \operatorname{End}_{\mathbb{C}}(F) \llbracket\left[x^{ \pm 1}\right]$; introducing free fermions along the same lines, get a Fock space $E \supset F$, $b(x), c(x) \in \operatorname{End}_{\mathbb{C}}(E) \llbracket x^{ \pm 1} \rrbracket$ - altogether, a $b c-\beta \gamma$ system $E$.
For $U \subset M$ : holomorphic coordinate chart with $\mathbb{E}_{q,-y \mid U} \cong U \times \mathbb{E}$, $\mathbb{E}$ a super-module of the super-VOA $E^{\otimes D}$.
[Dong/Liu/Ma02], using the $\operatorname{SU}(D)$-holonomy of $M$, obtain

But: In TQFT, we need to include the zero modes $\gamma_{0}^{(j)}$.

## 2. The chiral de Rham complex

## Definition [Malikov/Schechtman/Vaintrob99]

CHIRAL DE RHAM COMPLEX $\Omega_{M}^{c h}$ : sheaf of super-VOAs over $M$, for any holomorphic coordinate chart $U \subset M: \Omega_{M}^{\mathrm{ch}}(U):=E^{\otimes D}$.

Theorem [Malikov/Schechtman/Vaintrob99; Borisov/Libgober00] $H^{*}\left(M, \Omega_{M}^{\text {ch }}\right)$ (sheaf cohomology) is a topological $N=2$ superconformal VOA. $\Omega_{M}^{\text {ch }}$ is filtered with associated graded $\mathbb{E}_{q,-y}\left(q \leftrightarrow L_{0}^{\mathrm{top}}, y \leftrightarrow J_{0}\right)$.

## 2. The chiral de Rham complex

## Definition [Malikov/Schechtman/Vaintrob99]

CHIRAL DE RHAM COMPLEX $\Omega_{M}^{\mathrm{ch}}$ : sheaf of super-VOAs over $M$, for any holomorphic coordinate chart $U \subset M: \Omega_{M}^{c h}(U):=E^{\otimes D}$.

## Theorem [Malikov/Schechtman/Vaintrob99; Borisov/Libgober00]

 $H^{*}\left(M, \Omega_{M}^{\text {ch }}\right)$ (sheaf cohomology) is a topological $N=2$ superconformal VOA. $\Omega_{M}^{c h}$ is filtered with associated graded $\mathbb{E}_{q,-y}\left(q \leftrightarrow L_{0}^{\text {top }}, y \leftrightarrow J_{0}\right)$.Consequence: $\mathcal{E}(M ; \tau, z)=y^{-\frac{D}{2}} \sum_{j}(-1)^{j} \underbrace{\operatorname{tr}_{H j\left(M, \Omega_{M}^{\text {ch }}\right)}\left((-y)^{J_{0}} q^{\text {Lop }_{0}^{\text {top }}}\right)}$, $\neq \operatorname{gr-dim}\left(H^{j}\left(M, \mathbb{E}_{q,-y}\right)\right)$, in general

## 2. The chiral de Rham complex

## Definition [Malikov/Schechtman/Vaintrob99]

chiral de Rham complex $\Omega_{M}^{\text {ch }}$ : sheaf of super-VOAs over $M$, for any holomorphic coordinate chart $U \subset M: \Omega_{M}^{\text {ch }}(U):=E^{\otimes D}$.

## Theorem [Malikov/Schechtman/Vaintrob99; Borisov/Libgober00]

 $H^{*}\left(M, \Omega_{M}^{\text {ch }}\right)$ (sheaf cohomology) is a topological $N=2$ superconformal VOA. $\Omega_{M}^{\text {ch }}$ is filtered with associated graded $\mathbb{E}_{q,-y}\left(q \leftrightarrow L_{0}^{\text {top }}, y \leftrightarrow J_{0}\right)$.Consequence: $\mathcal{E}(M ; \tau, z)=y^{-\frac{D}{2}} \sum_{j}(-1)^{j} \underbrace{\operatorname{tr}_{H j\left(M, \Omega_{M}^{\text {ch }}\right)}\left((-y)^{J_{0}} q^{\text {Lop }_{0}^{\text {top }}}\right)}$,

$$
\neq \operatorname{gr-dim}\left(H^{j}\left(M, \mathbb{E}_{q,-y}\right)\right) \text {, in general }
$$

## Definition [W17] <br> Chiral Hodge elliptic genus:

$$
\mathcal{E}^{\text {HEG, ch }}(M ; \tau, z, \nu):=(u y)^{-\frac{D}{2}} \sum_{j}(-u)^{j} \operatorname{tr}_{H^{j}\left(M, \Omega_{M}^{\text {ch }}\right)}\left((-y)^{J_{0}} q^{L_{0}^{\text {top }}}\right) .
$$

## 2. The chiral de Rham complex

## Definition [Malikov/Schechtman/Vaintrob99]

chiral de Rham complex $\Omega_{M}^{\text {ch }}$ : sheaf of super-VOAs over $M$, for any holomorphic coordinate chart $U \subset M: \Omega_{M}^{\text {ch }}(U):=E^{\otimes D}$.

## Theorem [Malikov/Schechtman/Vaintrob99; Borisov/Libgober00]

$H^{*}\left(M, \Omega_{M}^{\text {ch }}\right)$ (sheaf cohomology) is a topological $N=2$ superconformal VOA.
$\Omega_{M}^{\text {ch }}$ is filtered with associated graded $\mathbb{E}_{q,-y}\left(q \leftrightarrow L_{0}^{\text {top }}, y \leftrightarrow J_{0}\right)$.
Consequence: $\mathcal{E}(M ; \tau, z)=y^{-\frac{D}{2}} \sum_{j}(-1)^{j} \underbrace{\operatorname{tr}_{H^{j}\left(M, \Omega_{M}^{\text {ch }}\right)}\left((-y)^{J_{0}} q^{L_{0}^{\text {top }}}\right)}$,

$$
\neq \operatorname{gr-dim}\left(H^{j}\left(M, \mathbb{E}_{q,-y}\right)\right) \text {, in general }
$$

## Definition [W17] <br> Chiral Hodge elliptic genus:

$$
\mathcal{E}^{\mathrm{HEG}, \mathrm{ch}}(M ; \tau, z, \nu):=(u y)^{-\frac{D}{2}} \sum_{j}(-u)^{j} \operatorname{tr}_{H^{j}\left(M, \Omega_{M}^{\text {ch }}\right)}\left((-y)^{J_{0}} q^{L_{0}^{\text {top }}}\right) .
$$

## Results [W17] on $\mathcal{E}^{\text {HEG, ch }}(M ; \tau, z, \nu)$ (using [Creutzig/Höhn14, Song16]):

If $M$ is a complex torus, then $\mathcal{E}^{\mathrm{HEG}, \text { ch }}(M ; \tau, z, \nu)$ agrees with $\mathcal{E}^{\mathrm{HEG}}(M ; \tau, z, \nu)$;
if $M$ is a K 3 surface, then it is an invariant, different from $\mathcal{E}^{\mathrm{HEG}}(M ; \tau, z, \nu)$.

## 3. Interpretation in (2d unitary, Euclidean) SCFT

## Fact:

$\mathcal{C}$ : a superconformal field theory (SCFT) at central charge $c=3 D, D \in \mathbb{N}$ (assuming $N=(2,2)$ worldsheet SUSY and spacetime SUSY) $\Longrightarrow$ commuting $J_{0}, \underbrace{L_{0}^{\text {top }}}, \widetilde{J}_{0}, \underbrace{\widetilde{L}_{0}^{\text {top }}}$ act on the space of states, $L_{0}-\frac{1}{2} J_{0} \quad \tilde{L}_{0}-\frac{1}{2} \tilde{J}_{0}$
as well as $\mathcal{A}$, an extended $N=2$ SCA with $c=3 D, J_{0}, L_{0} \in \mathcal{A}$.

## 3. Interpretation in (2d unitary, Euclidean) SCFT

## Fact:

$\mathcal{C}$ : a superconformal field theory (SCFT) at central charge $c=3 D, D \in \mathbb{N}$ (assuming $N=(2,2)$ worldsheet SUSY and spacetime SUSY) $\Longrightarrow$ commuting $J_{0}, \underbrace{L_{0}^{\text {top }}}, \widetilde{J}_{0}, \underbrace{\widetilde{L}_{0}^{\text {top }}}$ act on the space of states, $L_{0}-\frac{1}{2} J_{0} \quad \tilde{L}_{0}-\frac{1}{2} \tilde{J}_{0}$
as well as $\mathcal{A}$, an extended $N=2$ SCA with $c=3 D, J_{0}, L_{0} \in \mathcal{A}$. Then $\mathbb{H}:=\operatorname{ker}\left(\widetilde{L}_{0}^{\text {top }}\right)$ is an sVOA, and

$$
\left.\mathcal{E}_{\text {CFT }}(\mathcal{C} ; \tau, z):=\operatorname{tr}_{\mathbb{H}}\left((-1)^{J_{0}-\tilde{J}_{0}} y^{J_{0}-c / 6} q^{\text {Lop }_{0}}\right) \quad \in y^{-D / 2} \cdot \mathbb{Z} \llbracket q, y^{ \pm 1}\right]
$$

is a weak Jacobi form of weight 0 and index $\frac{D}{2}$, the CFT ELLiptic genus.

## 3. Interpretation in (2d unitary, Euclidean) SCFT

## Fact:

$\mathcal{C}$ : a superconformal field theory (SCFT) at central charge $c=3 D, D \in \mathbb{N}$ (assuming $N=(2,2)$ worldsheet SUSY and spacetime SUSY) $\Longrightarrow$ commuting $J_{0}, \underbrace{L_{0}^{\text {top }}}, \widetilde{J}_{0}, \underbrace{\widetilde{L}_{0}^{\text {top }}}$ act on the space of states,

$$
L_{0}-\frac{1}{2} J_{0} \quad \tilde{L}_{0}-\frac{1}{2} \widetilde{J}_{0}
$$

as well as $\mathcal{A}$, an extended $N=2$ SCA with $c=3 D, J_{0}, L_{0} \in \mathcal{A}$. Then $\mathbb{H}:=\operatorname{ker}\left(\widetilde{L}_{0}^{\text {top }}\right)$ is an sVOA, and

$$
\left.\mathcal{E}_{\mathrm{CFT}}(\mathcal{C} ; \tau, z):=\operatorname{tr}_{\mathbb{H}}\left((-1)^{J_{0}-\tilde{J}_{0}} y^{J_{0}-c / 6} q^{\mathrm{Lop}_{0}^{\mathrm{top}}}\right) \quad \in y^{-D / 2} \cdot \mathbb{Z} \llbracket q, y^{ \pm 1}\right]
$$

is a weak Jacobi form of weight 0 and index $\frac{D}{2}$, the CFT ELLiptic genus.

## Expectation:

Such an SCFT $\mathcal{C}$ exists "for every $M$ " as above, $\mathcal{E}_{\text {CFT }}(\mathcal{C} ; \tau, z)=\mathcal{E}(M ; \tau, z)$. This expectation holds true if $M$ is a complex torus or a K 3 surface.

## 3. Interpretation in (2d unitary, Euclidean) SCFT

## Fact:

$\mathcal{C}$ : a superconformal field theory (SCFT) at central charge $c=3 D, D \in \mathbb{N}$ (assuming $N=(2,2)$ worldsheet SUSY and spacetime SUSY)
$\Longrightarrow$ commuting $J_{0}, \underbrace{L_{0}^{\text {top }}}, \widetilde{J}_{0}, \underbrace{\widetilde{L}_{0}^{\text {top }}}$ act on the space of states,

$$
L_{0}-\frac{1}{2} J_{0} \quad \tilde{L}_{0}-\frac{1}{2} \widetilde{J}_{0}
$$

as well as $\mathcal{A}$, an extended $N=2$ SCA with $c=3 D, J_{0}, L_{0} \in \mathcal{A}$.
Then $\mathbb{H}:=\operatorname{ker}\left(\widetilde{L}_{0}^{\text {top }}\right)$ is an sVOA, and

$$
\mathcal{E}_{\text {CFT }}(\mathcal{C} ; \tau, z):=\operatorname{tr}_{\mathbb{H}}\left((-1)^{J_{0}-\tilde{J}_{0}} y^{J_{0}-c / 6} q^{L_{0}^{\text {top }}}\right) \quad \in y^{-D / 2} \cdot \mathbb{Z} \llbracket q, y^{ \pm 1} \rrbracket
$$

is a weak Jacobi form of weight 0 and index $\frac{D}{2}$, the CFT ELLiptic GEnus.

## Expectation:

Such an SCFT $\mathcal{C}$ exists "for every $M$ " as above, $\mathcal{E}_{\text {CFT }}(\mathcal{C} ; \tau, z)=\mathcal{E}(M ; \tau, z)$.
This expectation holds true if $M$ is a complex torus or a K3 surface.

## Definition [Kachru/Tripathy16]

Conformal field theoretic Hodge elliptic genus:

$$
\mathcal{E}_{\mathrm{CFT}}^{\mathrm{HEG}}(\mathcal{C} ; \tau, z, \nu):=\operatorname{tr}_{\mathbb{H}}\left((-1)^{J_{0}-\widetilde{J}_{0}} y^{J_{0}-c / 6} u^{\widetilde{J_{0}}-c / 6} q^{L_{0}^{\text {top }}}\right) .
$$

## 3. Interpretation in CFT

## Results

- [Kapustin05]: For theories $\mathcal{C}$ associated to $M, \mathbb{H} \xrightarrow{ } H^{*}\left(M, \Omega_{M}^{\text {ch }}\right)$.


## 3. Interpretation in CFT

## Results

large volume

- [Kapustin05]: For theories $\mathcal{C}$ associated to $M, \mathbb{H} \xrightarrow{ } H^{*}\left(M, \Omega_{M}^{\text {ch }}\right)$.
- For K3 theories $\mathcal{C}(c=6)$ :

Let $\mathbb{H}_{0}:=$ the Generic space of states, i.e. maximal such that at every point of the moduli space, $\mathbb{H}_{0} \hookrightarrow \mathbb{H}$ as a representation of $\left\langle\mathcal{A}, \widetilde{J}_{0}\right\rangle$,

$$
\mathcal{E}_{\mathrm{CFT}}(\mathcal{C} ; \tau, z)=\operatorname{tr}_{\mathbb{H}_{0}}\left((-1)^{J_{0}-\tilde{J}_{0}} y^{J_{0}-c / 6} q^{L_{0}^{\mathrm{top}}}\right) .
$$

## 3. Interpretation in CFT

## Results

large volume

- [Kapustin05]: For theories $\mathcal{C}$ associated to $M, \mathbb{H} \xrightarrow{ } H^{*}\left(M, \Omega_{M}^{\text {ch }}\right)$.
- For K 3 theories $\mathcal{C}(c=6)$ :

Let $\mathbb{H}_{0}:=$ the Generic space of states, i.e. maximal such that at every point of the moduli space, $\mathbb{H}_{0} \hookrightarrow \mathbb{H}$ as a representation of $\left\langle\mathcal{A}, \widetilde{J}_{0}\right\rangle$,

$$
\mathcal{E}_{\mathrm{CFT}}(\mathcal{C} ; \tau, z)=\operatorname{tr}_{\mathbb{H}_{0}}\left((-1)^{J_{0}-\tilde{J}_{0}} y^{J_{0}-c / 6} q^{L_{0}^{\mathrm{top}}}\right) .
$$

[W17] (using [W00, Song16, Song17]):
Then $\mathbb{H}_{0} \cong H^{*}\left(M, \Omega_{M}^{\text {ch }}\right) \stackrel{[\text { Song17] }}{\cong}$ Mathieu Moonshine module predicted by [Eguchi/Ooguri/Tachikawa10] and proved to exist by [Gannon12].

## 3. Interpretation in CFT

## Results

large volume

- [Kapustin05]: For theories $\mathcal{C}$ associated to $M, \mathbb{H} \xrightarrow{ } H^{*}\left(M, \Omega_{M}^{\text {ch }}\right)$.
- For K 3 theories $\mathcal{C}(c=6)$ :

Let $\mathbb{H}_{0}:=$ the Generic space of states, i.e. maximal such that at every point of the moduli space, $\mathbb{H}_{0} \hookrightarrow \mathbb{H}$ as a representation of $\left\langle\mathcal{A}, \widetilde{J}_{0}\right\rangle$,

$$
\mathcal{E}_{\mathrm{CFT}}(\mathcal{C} ; \tau, z)=\operatorname{tr}_{\mathbb{H}_{0}}\left((-1)^{J_{0}-\tilde{J}_{0}} y^{J_{0}-c / 6} q^{L_{0}^{\operatorname{top}}}\right) .
$$

[W17] (using [W00, Song16, Song17]):
Then $\mathbb{H}_{0} \cong H^{*}\left(M, \Omega_{M}^{\text {ch }}\right) \stackrel{[\text { Song17] }}{\cong}$ Mathieu Moonshine module predicted by [Eguchi/Ooguri/Tachikawa10] and proved to exist by [Gannon12].

## Open:

- Is any VOA structure of $\mathbb{H}_{0}$ compatible with the $M_{24}$-action?
- Is $M_{24}$ generated by symmetry surfing, as suggested in [Taormina/W11 $+\cdots$ ]?


## THANK YOU FOR YOUR ATTENTION!

