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Part 1: Unitary VOAs



Unitary vertex operator algebras

• VOA: v ∈ V 7→ Y (v , z) ∈ End(V )[[z±1]]

• A unitary VOA is one with an invariant inner product:〈
Y (v , z)u1, u2

〉
=
〈
u1,Y (ṽ , 1z )u2

〉
for some involution v 7→ ṽ .

• This encodes covariance of the 3-point functions with respect to
orientation reversing conformal transformations.

• Examples include VOAs from affine Lie algebras at positive
integer level, Virasoro VOAs with c ∈ {1− 6

m(m+1)} ∪ [1,∞),
the Heisenberg VOA, lattice VOAs, the Moonshine VOA, etc.



Unitary modules

• V -module: v ∈ V 7→ YM(v , z) ∈ End(M)[[z±1]]

• A unitary V -module is one with an invariant inner product:〈
YM(v , z)a1, a2

〉
M

=
〈
a1,Y

M(ṽ , 1z )a2
〉
M

for the same involution v 7→ ṽ .

• Equivalently, 〈 · , · 〉M induces an isomorphism M ′ ∼= M†, where
M ′ is the contragredient (dual) module, and M† is the complex
conjugate

• For unitary VOAs from affine Lie algebras and the Virasoro
algebra, this reduces to the usual unitarity condition. E.g.

〈Lna1, a2〉 = 〈a1, L−na2〉



Unitary modules?

It is widely believed that:

Conjecture

If V is a rational unitary VOA, then every V -module admits a
unitary structure.

Even if it is easy to find an invariant Hermitian form, it is usually
hard to prove that the form is positive directly.

E.g. for unitary minimal models Virc with c < 1, this conjecture
was proven by finding all irreducible modules inside affine Lie
algebras (the GKO coset construction).

The conjecture generally fails badly for non-rational VOAs
(Heisenberg, Virc with c ≥ 1, etc.)



Intertwining operators

Intertwining operators Y ∈
( K
M N

)
:

a ∈ M 7→ Y(a, z) ∈ Hom(N,K ){z}

( K
M N

)
wants to be Hom(M � N,K ) for an as-yet-undefined tensor

product of modules M � N.



Tensor products

More precisely: fix a category C of some flavor of V -modules.

The tensor product M � N, if it exists, is the object in C
representing the functor C → Vec given by:

K 7→
(

K

M N

)
.

That is, we must have a distinguished

Y� ∈
(
M � N

M N

)
∼= End(M � N)

such that for every K ∈ C, any Y ∈
( K
M N

)
factors uniquely as

Y = f ◦ Y�

through a homomorphism f : M � N → K .



Tensor categories

Problem: For a given VOA, find a category of modules C such
that M � N always exists, and makes C into a tensor category.

You may also need to restrict to
(

K
M N

)
nice

⊂
(

K
M N

)

Theorem (Huang-Lepowsky)

If V is ‘strongly rational,’ the category of (strong) V -modules is a
modular tensor category.

The proof of associativity requires a multi-step construction of
M � N, taking the contragredient module of a certain subspace of
(M ⊗ N)∗.



Unitarity of tensor products

It is widely believed:

Conjecture

If M and N are unitary V -modules, then M � N has a natural
unitary structure.

This is an essential ingredient in obtaining a unitary tensor
category of unitary modules.

The challenge is that positivity is hard to prove after the fact
(think coset construction).

Warning: The obvious inner product on (M ⊗ N)∗ arising in the
Huang-Lepowsky construction is not invariant.

Regardless, there should be a unitary tensor category whose
modules look like direct integrals of simples.



Unitary constructions; working backwards

• Consider a unitary M � N, with its Y� ∈
(M�N
M N

)
.

When |z | < 1, we expectrequire Y�(a, z)b ∈ HM�N .

• If W is an inner product space, there is an equivalence

{ maps T : W → H} ←→ { semidefinite inner products on W } .

→ Starting with a map T , you have an inner product:

〈a, b〉T := 〈T ∗Ta, b〉W

← Starting with an inner product 〈 · , · 〉new , you have:

H = W
〈 , 〉new

, T = ‘identity’

• So we get 〈 · , · 〉�,z on M ⊗ N from a⊗ b 7→ Y�(a, z)b.



Positivity conjectures

Conjecture (Positivity conjecture)

The form on M ⊗ N given by
〈a1 ⊗ b1, a2 ⊗ b2〉�,z :=

〈
Y N(Y(ã2, z

−1 − z)a1, z)b1, b2
〉
N

is positive semidefinite.

• where M and N are unitary V -modules, 0 < |z | < 1,

• Y ∈
( V
M† M

)
, where M† is the complex conjugate module,

• and a 7→ ã is a certain explicit involution.

Conjecture (Strong positivity conjecture)

There is a canonical unitary V -module structure on a dense

subspace of M ⊗ N
〈,〉� and an intertwining operator Y� such that

Y�(a, z)b agrees with the ‘identity’ M ⊗ N → M ⊗ N
〈,〉� .

For the appropriate category of modules/choice of intertwiners,
this should be a tensor product.



Example: vacuum sector

If M = N = V :

〈a⊗ b, a⊗ b〉�,z = 〈Y (Y (ã, z−1 − z)a, z)b, b〉V
= 〈Y (ã, z−1)Y (a, z)b, b〉V
= 〈Y (a, z)b,Y (a, z)b〉V
= ‖Y (a, z)b‖2

We have V
〈,〉�,z ∼= HV , and the map corresponding to the

‘identity’ is a⊗ b 7→ Y (a, z)b.



Rational evidence

Recent work of Bin Gui shows that:

• the weak conjecture implies the strong conjecture for rational
VOAs

• if positivity holds, Mod(V) is naturally a unitary modular tensor
category

• the positivity conjecture holds for certain WZW models of type
A and D



Irrational evidence?

• This construction should produce unitary tensor categories
outside of the rational setting.

• The strongest evidence comes from conformal nets, a different
framework for studying 2d chiral CFTs.

• For conformal nets, unitary tensor categories have been
constructed.

• 〈 · , · 〉�,z is a translation of the inner product used for conformal
nets, and work in progress makes this rigorous.



Part 2: From VOAs to local
observables



Conformal nets

• A conformal net consists of a Hilbert space H0, along with a
family of von Neumann algebras A(I ) ⊂ B(H0) indexed by
intervals I ⊂ S1.

‘von Neumann algebra’ means that it is closed under adjoints
and pointwise limits

• Several axioms, including:

I ⊂ J =⇒ A(I ) ⊂ A(J)
if I and J are disjoint, then A(I ) and A(J) commute

• A representation of a conformal net is a Hilbert space Hπ along
with compatible representations πI : A(I )→ B(Hπ).



Bridging the gap

• Conformal nets and unitary VOAs are supposed to encode the
same physical ideas

• Theorems relating the mathematical structures have been hard
to come by, and difficulty of theorems can be quite different in
different settings (e.g. rigidity of ⊗-cat’s)

Three-part project to relate these structures:

• Part 1: VOAs and conformal nets

• Part 2: Modules and representations

• Part 3: Tensor products

Goal is to gain new insight into VOAs and conformal nets



Tensor product of representations

Wassermann’s approach:

The tensor product π � λ of reps π and λ is defined by:

• consider certain dense subspaces X ⊂ Hπ and Y ⊂ Hλ
• complete X ⊗ Y with respect to an inner product:

〈x1 ⊗ y1, x2 ⊗ y2〉 = 〈y∗2 y1x∗2x1Ω,Ω〉H0 .

Goal: build a dictionary between VOAs and conformal nets,
identifying this inner product with 〈 · , · 〉�.



Motivation: Geometric VOAs

The geometric description of VOAs is given by identifying:

•1•0• r

•z •
z+s

←→
(
v ⊗ u 7→ Y (sL0v , z)rL0u

)

Combined with scale invariance and Ω = , this uniquely assigns
a map to any:

in a way that is compatible with gluing/composition.



Motivation: Thin annuli

Given an inward pointing holomorphic vector field ρ on the disk
and positive number t, we obtain an annulus by flowing along ρ for
time t:

We associate to this annulus the operator etT (ρ), where

T (z) =
∑
n∈Z

Lnz
−n−2, T (ρ) =

1

2πi

∮
T (z)ρ(z)dz .

The special case ρ = −z corresponds to

•1r• ←→ rL0



Motivation: Insertion operators

Just like we had

v ←→ Y (sL0v , z)rL0

we have

vI ←→ Y (sL0v , z)etT (ρ).

• We say supp(ρ, t) ⊂ I if the complement of I is thin.

• Let int(ρ, t) be the shaded interior of the ‘annulus.’



Bounded localized vertex operators

Given a VOA V , we try to construct a conformal net AV on HV :

AV (I ) = vNA
(
{Y (a, z)etT (ρ)e−itT (ρ⊥) :

supp(ρ, t) ⊂ I , z ∈ int(ρ, t), a ∈ V }
)

We say V has bounded localized vertex operators if:

1) The generators are bounded

2) AV (I ) and AV (J) commute when I and J are disjoint

(So you get a conformal net)



Existence of BLVO

Theorem (’16, ’18)

The class of VOAs with bounded localized vertex operators...

1) ...is closed under taking tensor products and unitary subalgebras

2) ...includes WZW models and the free fermion

The proof of (2) goes via delicate calculations for the free fermion
Segal CFT.

Conjecture

Every unitary VOA has bounded localized vertex operators.



BLVO modules

If M is a V -module, the representation πM of AV is given by

πMI (Y (a, z)etT (ρ)) = YM(a, z)etT (ρ)

if such a representation exists.

Theorem (’18)

If V has bounded localized vertex operators, W ⊂ V is a unitary
subalgebra, and M is a W -submodule of V , then πM exists.

Conjecture

There is an equivalence: V -modules ←→ reps. of AV

Verified, for example, for WZW models with g simply laced,
W -algebras, and some more.



Tensor products

For V a unitary VOA, M and N unitary modules, we must guess:

Conjecture

πM � πN ∼= πM�N

Theorem (’19?)

If V has bounded localized vertex operators, W a unitary
subalgebra, M and N W -submodules of V , then

• the positivity conjecture holds for M and N:〈
Y N(Y(ã2, z

−1 − z)a1, z)b1, b2
〉
N
≥ 0

• there is a natural unitary πM � πN ∼= M ⊗ N
〈 , 〉�

Remember that when W is rational, the right-hand side is the
Hilbert space of M � N.



Applications for conformal nets

• The original goal of the project was to compute fusion rules for
conformal nets via VOAs, which is done via πM � πN ∼= HM�N .

• Fusion rules for conformal nets are much harder to compute, but
also more powerful; e.g. rigidity of representation category
follows from fusion rules (via subfactor theory).

• Ideal outcome is an equivalence Mod(V ) ∼= Rep(AV ).



Thank you!


