CORRELATORS FOR FINITE CONFORMAL FIELD THEORIES

JF Oaxaca 27_09_18 - p. 1/??

Plan

- •
- •
- •
- •
- •
- •
- •
- - ,
- •
- •
- •

Plan

Basic goal in CFT:

determine all correlation functions

(as in any quantum field theory)

Basic goal in CFT:

- determine all correlation functions (as in any quantum field theory)
 - simultaneously for arbitrary geometries and field insertions
 - simultaneously for a large class of models
 - 🛶 in terms of basic algebraic / combinatorial data
 - specifically: as morphisms in appropriate category

Basic goal in CFT:

- determine all correlation functions (as in any quantum field theory)
 - simultaneously for arbitrary geometries and field insertions
 - simultaneously for a large class of models
 - in terms of basic algebraic / combinatorial data
 - specifically: as morphisms in appropriate category

Plan:

- In the second secon
- bulk field correlators for finite CFTs via a Lego game
- sewing constraints for open-closed CFTs
- example : boundary states and annulus amplitudes in the Cardy case

- •

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

Chiral CFT

system of spaces of **conformal blocks**

- solutions to chiral Ward identities
- Image: which is a set of a
- linear maps implementing sewing

Full local CFT

system of correlators

- solutions to Ward identities
- invariant under mapping class groups
- compatible with sewing / cutting & gluing

Chiral CFT

system of spaces of **conformal blocks**

- solutions to chiral Ward identities
- carry actions of mapping class groups
- linear maps implementing sewing

Full local CFT

system of correlators

- solutions to Ward identities
- invariant under mapping class groups
- compatible with sewing / cutting & gluing

Principle: Correlator = specific element in suitable space of conformal blocks SM

Chiral CFT

system of spaces of **conformal blocks**

- solutions to chiral Ward identities
- carry actions of mapping class groups
- Inear maps implementing sewing

Full local CFT

system of **correlators**

- solutions to Ward identities
- invariant under mapping class groups
- compatible with sewing / cutting & gluing

Principle: Correlator = specific element in suitable space of conformal blocks Set

conformal blocks as vector spaces with actions of mapping class groups ...

- ${f \ \ }$ realized as morphism spaces of some braided monoidal category ${\cal D}$
- require locality \rightsquigarrow take $\mathcal{D} \simeq \mathfrak{Z}(\mathcal{C})$ for some braided monoidal category \mathcal{C}
- \square amenability \rightsquigarrow take \mathcal{C} modular: $\mathfrak{Z}(\mathcal{C}) \simeq \mathcal{C} \boxtimes \mathcal{C}^{rev}$

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

- •

- FRÖHLICH-FELDER-JF-SCHWEIGERT 2000
 - JF-RUNKEL-SCHWEIGERT 2002
 -
- FJELSTAD-JF-RUNKEL-SCHWEIGERT 2008

Rational CFT

- semisimple modular tensor category C
 - \blacksquare can make use of chiral RCFT \longleftrightarrow R-T TFT
 - \checkmark can work with simple objects $x_i \boxtimes x_j$ in $\mathcal{C} \boxtimes \mathcal{C}^{rev}$

world sheet $X \mapsto M_X$ 3-manifold with ribbon graph

Rational CFT

- \sim semisimple modular tensor category C
 - \blacksquare can make use of chiral RCFT \longleftrightarrow R-T TFT
 - \backsim can work with simple objects $x_i \boxtimes x_j$ in $\mathcal{C} \boxtimes \mathcal{C}^{rev}$

world sheet $X \longmapsto M_X$ 3-manifold with ribbon graph

$$\emptyset \xrightarrow[M_X]{M_X} \widehat{X}$$

 $Cor(X) := \operatorname{R-T}_{\mathcal{C}}(M_X) \cdot 1 \in \operatorname{R-T}_{\mathcal{C}}(\widehat{X}) = \operatorname{blocks} \operatorname{for} X$

 $\begin{aligned} \widehat{X} &= \text{ oriented double of world sheet } X \\ \text{recall} \colon & \mathsf{R}\text{-}\mathsf{T}_{\mathcal{C}}(M_X) : \ \mathbb{C} = \mathsf{R}\text{-}\mathsf{T}_{\mathcal{C}}(\emptyset) \to \mathsf{R}\text{-}\mathsf{T}_{\mathcal{C}}(\widehat{X}) \\ \text{thus} & \mathsf{R}\text{-}\mathsf{T}_{\mathcal{C}}(M_X) \cdot 1 \quad \text{vector in conformal block space} \\ & \mathsf{R}\text{-}\mathsf{T}_{\mathcal{C}}(\widehat{X}) \end{aligned}$

Rational CFT

- semisimple modular tensor category C
 - \blacksquare can make use of chiral RCFT \longleftrightarrow R-T TFT
 - \sim can work with simple objects $x_i \boxtimes x_j$ in $\mathcal{C} \boxtimes \mathcal{C}^{rev}$

 $\emptyset \xrightarrow[M_X]{} \widehat{X}$ $Cor(X) := \mathsf{R-T}_{\mathcal{C}}(M_X) \cdot 1 \quad \in \mathsf{R-T}_{\mathcal{C}}(\widehat{X}) = \text{blocks for } X$

 \bigcirc arbitrary X — possibly w/ boundary / w/ topological defects

world sheet $X \mapsto M_X$ 3-manifold with ribbon graph

- / possibly unoriented
- / arbitrary field insertions

Main RCFT results

- •
- •
- •
- •

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

 $\longleftrightarrow Morita classes of \& \& \& Frobenius algebras in C$

Beyond rationality

- •

- •
- •
- •
- •
- •
- •

- •

- •

•				
•				
•	convenient character	erization of	modularity :	
•				
•	C modular	\iff	$\mathcal{C} oxtimes \mathcal{C}^{ ext{rev}} \simeq \mathfrak{Z}(\mathcal{C})$	
•				
•				
•				
•				
•				
•				
•				
•				
•				
•				
•				
•				
•				
•				
•				
•				

 \mathcal{C} modular \iff

$$\mathcal{C} oxtimes \mathcal{C}^{ ext{rev}} \simeq \mathfrak{Z}(\mathcal{C})$$

makes sense for any finite ribbon category

 \implies natural to waive semisimplicity while keeping finiteness: finite CFT

- Image: No associated R-T 3-d TFT
- Problem: objects for bulk fields not just direct sums of factorized objects

 $x_i \boxtimes y_i \in \mathcal{C} \boxtimes \mathcal{C}^{\mathrm{rev}}$

convenient characterization of modularity :

 \mathcal{C} modular \Leftarrow

 $\mathcal{C} oxtimes \mathcal{C}^{ ext{rev}} \simeq \mathfrak{Z}(\mathcal{C})$

makes sense for any finite ribbon category

 \Rightarrow natural to waive semisimplicity while keeping finiteness: finite CFT

Challenge: no associated R-T 3-d TFT

Problem: objects for bulk fields not just direct sums of factorized objects

 $x_i \boxtimes y_i \in \mathcal{C} \boxtimes \mathcal{C}^{\mathrm{rev}}$

🔊 but:

still spaces of conformal blocks as morphism spaces
 carrying rep's of mapping class groups and satisfying sewing relations

🛶 still can play Lego game

LYUBASHENKO 1995

Finite CFTs: Lego-Teichmüller game

CFT correlators

16Go

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

Finite CFTs: based on possibly non-semisimple modular tensor category \mathcal{D} is for now restrict attention to bulk theory / do not assume \mathcal{D} to be a center play Lego-Teichmüller game

- **Finite CFTs**: based on possibly non-semisimple modular tensor category \mathcal{D}
- is for now restrict attention to bulk theory / do not assume \mathcal{D} to be a center
- play Lego-Teichmüller game
- - pair-of-pants decomposition
 - spheres with at most three holes / pairs-of-pants as building blocks

GROTHENDIECK 1984 HATCHER-THURSTON 1980 HARER 1983 BAKALOV-KIRILLOV 2000

Finite CFTS: based on possibly non-semisimple modular tensor category \mathcal{D}

- is for now restrict attention to bulk theory / do not assume \mathcal{D} to be a center
- play Lego-Teichmüller game
- - 🖛 pair-of-pants decomposition
 - spheres with at most three holes / pairs-of-pants as building blocks
 - keep track of order of sewings by auxiliary structure :
 marking: embedded graph with a vertex on each boundary circle

Finite CFTs: based on possibly non-semisimple modular tensor category \mathcal{D}

- is for now restrict attention to bulk theory / do not assume \mathcal{D} to be a center
- play Lego-Teichmüller game
- - pair-of-pants decomposition
 - spheres with at most three holes / pairs-of-pants as building blocks
 - keep track of order of sewings by auxiliary structure :
 marking: embedded graph with a vertex on each boundary circle
 - relate markings by sequence of elementary moves
 - (Z-move, B-move, F-move, A-move, S-move)
 - smallish number of constraints among sequences of elementary moves
 - defines groupoid of marked surfaces presented by generators and relations
 - so groupoid is connected and simply connected

Lego-Teichmüller	\implies	control over	pair-of-pants	s decom	positions /	sewinas
 Lego releminanci			pan or parts		positions /	Scwings

🖙 Problem: markings as auxili	ry data – correlators	must not depend on them
-------------------------------	-----------------------	-------------------------

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• (٥.

JF-SCHWEIGERT 2017

- Image: Image: Image: Image: Image: Image: Lego-Teichmüller → control over pair-of-pants decompositions / sewings
- Image: Problem : markings as auxiliary data − correlators must not depend on them

Solution :

- \sim take whole bulk object F at each insertion
- ► interpret system of correlators as monoidal natural transformation v_F from constant functor Δ_k to block functor $Bl^{(F)}$
- 🛶 first work with marked surfaces

 \rightsquigarrow pre-correlators $\widetilde{\mathbf{v}}_F \colon \widetilde{\Delta}_{\Bbbk} \Longrightarrow \widetilde{\mathrm{Bl}}^{(F)}$
- Problem : markings as auxiliary data correlators must not depend on them

Solution :

- \rightarrow take whole *bulk object* F at each insertion
- \sim interpret system of correlators as monoidal natural transformation v_F from constant functor $\Delta_{\mathbb{k}}$ to block functor $\mathrm{Bl}^{(F)}$
- first work with marked surfaces
 - \rightsquigarrow pre-correlators $\widetilde{\mathbf{v}}_F \colon \widetilde{\Delta}_{\Bbbk} \Longrightarrow \widetilde{\mathrm{Bl}}^{(F)}$
- find pre-correlators
- to get rid of dependence on auxiliary data consider right Kan extension along forget functor

JF-SCHWEIGERT 2017

- Image: Problem : markings as auxiliary data − correlators must not depend on them

Solution :

- rightarrow take whole bulk object F at each insertion
- → interpret system of correlators as monoidal natural transformation v_F from constant functor Δ_k to block functor $Bl^{(F)}$
- first work with marked surfaces
 - \rightsquigarrow pre-correlators $\widetilde{\mathbf{v}}_F \colon \widetilde{\Delta}_{\Bbbk} \Longrightarrow \widetilde{\mathrm{Bl}}^{(F)}$
- find pre-correlators
- to get rid of dependence on auxiliary data consider right Kan extension along forget functor

 $(Bl^{(F)}$ exists and has natural symmetric monoidal structure)

/ aquinga

JF-SCHWEIGERT 2017

Chiral finite CFT: Block functors

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

Chiral finite CFT: Block functors

- - for each extended surface $X = X_{p|q}^{g}$ a functor

$$\mathrm{Bl}^g_{p|q}: \qquad \mathcal{D}^{\boxtimes (p+q)} \to \mathcal{V}\!\!ect$$

such that

- \sim mapping class group $Map(X_{p|q}^g)$ acting projectively on the spaces $\{Bl_{p|q}^g(-)\}$
- ✓ functorial linear maps $Bl_1(-;x) \otimes_{\Bbbk} Bl_2(x^{\vee};-) \longrightarrow Bl_{\#}(--)$ with suitable properties

for any sewing $(X_1, X_2) \longrightarrow X_{\#} = X_1 \# X_2$

- Chiral CFT ++++ system of vector spaces of conformal blocks :
 - for each extended surface $X = X_{p|q}^{g}$ a functor

$$\mathrm{Bl}^g_{p|q}: \qquad \mathcal{D}^{\boxtimes (p+q)} \to \mathcal{V}\!\!ect$$

such that

- ▶ mapping class group $Map(X_{p|q}^g)$ acting projectively on the spaces $\{Bl_{p|q}^g(-)\}$
- In functorial linear maps Bl₁(−; x) ⊗_k Bl₂(x[∨]; −) → Bl_#(−−) with suitable properties

for any sewing $(X_1, X_2) \longrightarrow X_{\#} = X_1 \# X_2$

analogous maps
 for self-sewings

for each extended surface $X = X_{p|q}^{g}$ a functor

 $\mathrm{Bl}^g_{p|q}: \qquad \mathcal{D}^{\boxtimes (p+q)} \to \mathrm{Vect}$

THEOREM ————

Construction of blocks

associated with any modular finite ribbon category \mathcal{D}

there is a system of conformal blocks with values in morphism spaces :

$$\mathrm{Bl}_{p|q}^{g}(u_{1},\ldots,u_{p+q}) \cong \mathrm{Hom}_{\mathcal{D}}(\mathbf{1},u_{1}^{\wedge}\otimes u_{2}^{\wedge}\otimes\cdots\otimes u_{p+q}^{\wedge}\otimes K^{\otimes g})$$

LYUBASHENKO 1995

for each extended surface $X = X_{p|q}^{g}$ a functor

 $\mathrm{Bl}^g_{p|q}: \qquad \mathcal{D}^{\boxtimes (p+q)} \to \mathrm{Vect}$

----- THEOREM ------ Construction of blocks \cdot associated with any modular finite ribbon category \mathcal{D}

there is a system of conformal blocks with values in morphism spaces :

$$\operatorname{Bl}_{p|q}^{g}(u_{1},\ldots,u_{p+q}) \cong \operatorname{Hom}_{\mathcal{D}}(\mathbf{1},u_{1}^{\wedge}\otimes u_{2}^{\wedge}\otimes\cdots\otimes u_{p+q}^{\wedge}\otimes K^{\otimes g})$$

$$K = \int_{-\infty}^{x \in \mathcal{D}} x \otimes^{\vee} x \qquad \qquad u^{\wedge} = \begin{cases} u^{\vee} \text{ if incoming} \\ u & \text{if outgoing} \end{cases}$$

 $\sim K$ has a natural structure of Hopf algebra with Hopf pairing

 $\sim \mathcal{D}$ modular \iff Hopf pairing non-degenerate

for each extended surface $X = X_{p|q}^{g}$ a functor

 $\mathrm{Bl}^g_{p|q}: \qquad \mathcal{D}^{\boxtimes (p+q)} \to \mathcal{V}\!ect$

----- THEOREM ------ Construction of blocks \cdot associated with any modular finite ribbon category \mathcal{D}

there is a system of conformal blocks with values in morphism spaces :

$$\operatorname{Bl}_{p|q}^{g}(u_{1},\ldots,u_{p+q}) \cong \operatorname{Hom}_{\mathcal{D}}(\mathbf{1},u_{1}^{\wedge}\otimes u_{2}^{\wedge}\otimes\cdots\otimes u_{p+q}^{\wedge}\otimes K^{\otimes g})$$

$$K = \int_{-\infty}^{x \in \mathcal{D}} x \otimes^{\vee} x \qquad \qquad u^{\wedge} = \begin{cases} u^{\vee} \text{ if incoming} \\ u & \text{if outgoing} \end{cases}$$

Substruction via sewing genus-0 three-point blocks using only structural data of D − including structure on K sewing is local operation but still distinguish two types of sewing :

non-handle creating:

 \checkmark amounts to coend $\int^{x \in \mathcal{D}} \operatorname{Hom}_{\mathcal{D}}(u, x) \otimes_{\Bbbk} \operatorname{Hom}_{\mathcal{D}}(x, v) = \operatorname{Hom}_{\mathcal{D}}(u, v)$

Image: ward back ward

 \blacksquare amounts to coend of $\operatorname{Hom}_{\mathcal{D}}(u, v \otimes - \otimes -^{\vee})$

sewing is *local* operation but still distinguish two types of sewing :

- non-handle creating:
 - \checkmark amounts to coend $\int^{x \in \mathcal{D}} \operatorname{Hom}_{\mathcal{D}}(u, x) \otimes_{\Bbbk} \operatorname{Hom}_{\mathcal{D}}(x, v) = \operatorname{Hom}_{\mathcal{D}}(u, v)$

- handle creating:
 - \blacksquare amounts to coend of $\operatorname{Hom}_{\mathcal{D}}(u, v \otimes \otimes -^{\vee})$
 - \sim to be regarded as coend in category of left exact functors (u, v as variables)
 - imposing universality only wrt left exact functors ensures representability
 - ▶ then $\int^{x \in \mathcal{D}} \operatorname{Hom}_{\mathcal{D}}(u, v \otimes x \otimes x^{\vee}) = \operatorname{Hom}_{\mathcal{D}}(u, v \otimes K)$

sewing is *local* operation but still distinguish two types of sewing :

non-handle creating:

 \checkmark amounts to coend $\int^{x \in \mathcal{D}} \operatorname{Hom}_{\mathcal{D}}(u, x) \otimes_{\Bbbk} \operatorname{Hom}_{\mathcal{D}}(x, v) = \operatorname{Hom}_{\mathcal{D}}(u, v)$

•• gives rise to $\operatorname{Hom}_{\mathcal{D}}(\mathbf{1}, \underbrace{u_1^{\wedge} \otimes u_2^{\wedge} \otimes \cdots \otimes u_{p+q}^{\wedge}}_{\mathcal{D}} \otimes K^{\otimes g})$

handle creating:

► amounts to coend of $\operatorname{Hom}_{\mathcal{D}}(u, v \otimes - \otimes -^{\vee})$

 \sim to be regarded as coend in category of left exact functors (u, v as variables)

imposing universality only wrt left exact functors ensures representability

• then $\int^{x \in \mathcal{D}} \operatorname{Hom}_{\mathcal{D}}(u, v \otimes x \otimes x^{\vee}) = \operatorname{Hom}_{\mathcal{D}}(u, v \otimes K)$

• gives rise to $|\operatorname{Hom}_{\mathcal{D}}(\mathbf{1}, u_1^{\wedge} \otimes u_2^{\wedge} \otimes \cdots \otimes u_{p+q}^{\wedge} \otimes K^{\otimes g})|$

Blocks for marked surfaces

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

 $\mathrm{Bl}_{p|q}^{g}(u_{1},\ldots,u_{p+q}) \cong \mathrm{Hom}_{\mathcal{D}}(\mathbf{1},u_{1}^{\wedge}\otimes u_{2}^{\wedge}\otimes\cdots\otimes u_{p+q}^{\wedge}\otimes K^{\otimes g})$

```
\operatorname{Bl}_{p|q}^{g}(u_{1},\ldots,u_{p+q}) \cong \operatorname{Hom}_{\mathcal{D}}(\mathbf{1},u_{1}^{\wedge}\otimes u_{2}^{\wedge}\otimes\cdots\otimes u_{p+q}^{\wedge}\otimes K^{\otimes g})
                              depends on
                             auxiliary data:
                          marked surfaces
```

 $\operatorname{Bl}_{p|q}^{g}(u_{1},\ldots,u_{p+q}) \cong \operatorname{Hom}_{\mathcal{D}}(\mathbf{1},u_{1}^{\wedge}\otimes u_{2}^{\wedge}\otimes\cdots\otimes u_{p+q}^{\wedge}\otimes K^{\otimes g})$

 \mathbb{R} assign abstract vector space $\mathrm{Bl}_{p|q}^g(-)$ to extended surface $X_{p|q}^g$

 $rac{}$ assign concrete vector space $\operatorname{Hom}_{\mathcal{D}}(\mathbf{1},-)$ to $X_{p|q}^{g}$ + auxiliary gluing data Γ

 $\mathrm{Bl}_{p|q}^{g}(u_{1},\ldots,u_{p+q}) \cong \mathrm{Hom}_{\mathcal{D}}(\mathbf{1},u_{1}^{\wedge}\otimes u_{2}^{\wedge}\otimes\cdots\otimes u_{p+q}^{\wedge}\otimes K^{\otimes g})$

- \mathbb{R} assign abstract vector space $\mathrm{Bl}_{p|q}^g(-)$ to extended surface $X_{p|q}^g$
- \mathbb{R} assign concrete vector space $\operatorname{Hom}_{\mathcal{D}}(\mathbf{1},-)$ to $X_{p|q}^{g}$ + auxiliary gluing data Γ
- Task: get control over isomorphisms between blocks for different auxiliary data
- 🖙 Tool: Lego-Teichmüller game
 - \implies unique isomorphism between vector spaces for any two gluing data
 - Tool: coends
 - \implies unique isomorphisms canonically specified via Fubini theorems

 $\mathrm{Bl}_{p|q}^g(u_1,\ldots,u_{p+q}) \cong \mathrm{Hom}_{\mathcal{D}}(\mathbf{1},u_1^\wedge \otimes u_2^\wedge \otimes \cdots \otimes u_{p+q}^\wedge \otimes K^{\otimes g})$

 \mathbb{R} assign abstract vector space $\mathrm{Bl}_{p|q}^g(-)$ to extended surface $X_{p|q}^g$

 \mathbb{R} assign concrete vector space $\operatorname{Hom}_{\mathcal{D}}(\mathbf{1},-)$ to $X_{p|q}^{g}$ + auxiliary gluing data Γ

Task: get control over isomorphisms between blocks for different auxiliary data

🖙 Tool: Lego-Teichmüller game

 \implies unique isomorphism between vector spaces for any two gluing data

Tool: coends

 \implies unique isomorphisms canonically specified via Fubini theorems

- represent generators by linear maps on conformal block spaces :
 - Z-isomorphism S-isomorphism
 - Result : can be done in such a way that all relations satisfied

modulo central extension of genus-1 relation $(S \circ T_c)^3 = C \circ S^2$

Full finite bulk CFT: Main results

- •
- •
- Results :
- 1

- •

- •
- •

JF-SCHWEIGERT 2017

- Pre-correlators v_F completely determined as monoidal natural transformation by values on spheres X⁰_{0|3} & X⁰_{1|0} & X⁰_{2|0} endowed with any marking without cuts
 Construction: starting with candidate bulk object *F* and any three morphisms
 - $\varepsilon_F \in \operatorname{Hom}_{\mathcal{D}}(F, \mathbf{1}) \qquad \Phi_F \in \operatorname{Hom}_{\mathcal{D}}(F, F^{\vee}) \qquad \omega_F \in \operatorname{Hom}_{\mathcal{D}}(\mathbf{1}, F^{\otimes 3})$

obtain candidate vector $\widetilde{v}_F(X,\Gamma)$ in each space $\widetilde{\mathrm{Bl}}^{(F)}(X,\Gamma)$ via sewing

Pre-correlators \tilde{v}_{F} completely determined as monoidal natural transformation by values on spheres $X_{0|3}^{0} \& X_{1|0}^{0} \& X_{2|0}^{0}$ endowed with any marking without cuts Construction: starting with candidate bulk object F and any three morphisms $\varepsilon_{F} \in \operatorname{Hom}_{\mathcal{D}}(F, \mathbf{1})$ $\Phi_{F} \in \operatorname{Hom}_{\mathcal{D}}(F, F^{\vee})$ $\omega_{F} \in \operatorname{Hom}_{\mathcal{D}}(\mathbf{1}, F^{\otimes 3})$ obtain candidate vector $\tilde{v}_{F}(\mathbf{X}, \Gamma)$ in each space $\widetilde{\operatorname{Bl}}_{F}(X, \Gamma)$ via sewing graphically: $\varepsilon_{F} = 1$ $\Phi_{F} = 1$ $\omega_{F} = 1$

response $\widetilde{\mathbf{v}}_{F}$ completely determined as monoidal natural transformation by values on spheres $X_{0|3}^0$ & $X_{1|0}^0$ & $X_{2|0}^0$ endowed with any marking without cuts Construction: starting with candidate bulk object F and any three morphisms $\varepsilon_F \in \operatorname{Hom}_{\mathcal{D}}(F, \mathbf{1}) \qquad \Phi_F \in \operatorname{Hom}_{\mathcal{D}}(F, F^{\vee}) \qquad \omega_F \in \operatorname{Hom}_{\mathcal{D}}(\mathbf{1}, F^{\otimes 3})$ obtain candidate vector $\widetilde{v}_F(X,\Gamma)$ in each space $\widetilde{Bl}^{(F)}(X,\Gamma)$ via sewing impose in addition non-degeneracy of annulus $\widetilde{v}_F(X_{1|1}^0)$ (Φ_F invertible) R C F has natural structure of Frobenius algebra $(F, m_F, \eta_F, \Delta_F, \varepsilon_F)$ $\Delta_F :=$ $m_F :=$ $\eta_F :=$ $\in \operatorname{Hom}_{\mathcal{D}}(\mathbf{1}, F)$ $\in \operatorname{Hom}_{\mathcal{D}}(F, F \otimes F) \in \operatorname{Hom}_{\mathcal{D}}(F \otimes F, F)$

response $\widetilde{\mathbf{v}}_{F}$ completely determined as monoidal natural transformation by values on spheres $X_{0|3}^0 \& X_{1|0}^0 \& X_{2|0}^0$ endowed with any marking without cuts Construction: starting with candidate bulk object F and any three morphisms $\varepsilon_F \in \operatorname{Hom}_{\mathcal{D}}(F, \mathbf{1})$ $\Phi_F \in \operatorname{Hom}_{\mathcal{D}}(F, F^{\vee})$ $\omega_F \in \operatorname{Hom}_{\mathcal{D}}(\mathbf{1}, F^{\otimes 3})$ obtain candidate vector $\widetilde{v}_F(X,\Gamma)$ in each space $\widetilde{\mathrm{Bl}}^{(F)}(X,\Gamma)$ via sewing impose in addition non-degeneracy of annulus $\tilde{v}_F(X_{1|1}^0)$ (Φ_F invertible) R C \implies F has natural structure of Frobenius algebra $(F, m_F, \eta_F, \Delta_F, \varepsilon_F)$ Definition: *modular* Frobenius algebra R : commutative symmetric and S-invariant: $S_K \circ \overline{\mathcal{T}}_F = \overline{\mathcal{T}}_F$

JF Oaxaca 27_09_18 - p. 14/??

response $\widetilde{\mathbf{v}}_{F}$ completely determined as monoidal natural transformation by values on spheres $X_{0|3}^0 \& X_{1|0}^0 \& X_{2|0}^0$ endowed with any marking without cuts Construction: starting with candidate bulk object F and any three morphisms $\varepsilon_F \in \operatorname{Hom}_{\mathcal{D}}(F, \mathbf{1})$ $\Phi_F \in \operatorname{Hom}_{\mathcal{D}}(F, F^{\vee})$ $\omega_F \in \operatorname{Hom}_{\mathcal{D}}(\mathbf{1}, F^{\otimes 3})$ obtain candidate vector $\widetilde{v}_{F}(X,\Gamma)$ in each space $\widetilde{Bl}^{(F)}(X,\Gamma)$ via sewing impose in addition non-degeneracy of annulus $\tilde{v}_F(X_{1|1}^0)$ (Φ_F invertible) R C \implies F has natural structure of Frobenius algebra $(F, m_F, \eta_F, \Delta_F, \varepsilon_F)$ —— Classification – THEOREM for \mathcal{D} modular finite ribbon category there is a bijection non-degenerate genus-0 monoidal natural transformations \widetilde{v}_F isomorphism classes of \longleftrightarrow commutative symmetric Frobenius algebras $F \in \mathcal{D}$

response $\widetilde{\mathbf{v}}_{F}$ completely determined as monoidal natural transformation by values on spheres $X_{0|3}^0 \& X_{1|0}^0 \& X_{2|0}^0$ endowed with any marking without cuts Construction: starting with candidate bulk object F and any three morphisms $\varepsilon_F \in \operatorname{Hom}_{\mathcal{D}}(F, \mathbf{1})$ $\Phi_F \in \operatorname{Hom}_{\mathcal{D}}(F, F^{\vee})$ $\omega_F \in \operatorname{Hom}_{\mathcal{D}}(\mathbf{1}, F^{\otimes 3})$ obtain candidate vector $\widetilde{v}_F(X,\Gamma)$ in each space $\widetilde{\mathrm{Bl}}^{(F)}(X,\Gamma)$ via sewing impose in addition non-degeneracy of annulus $\tilde{v}_F(X_{1|1}^0)$ (Φ_F invertible) R C \implies F has natural structure of Frobenius algebra $(F, m_F, \eta_F, \Delta_F, \varepsilon_F)$ —— Classification -THEOREM for \mathcal{D} modular finite ribbon category there is a bijection non-degenerate monoidal natural transformations $\widetilde{\mathbf{v}}_{F}$ isomorphism classes of modular Frobenius algebras $F \in \mathcal{D}$

CONJECTUREExistencefor any modular tensor category \mathcal{C} and any ribbon automorphism ω of \mathcal{C} the object $F_{\omega} := \int^{x \in \mathcal{C}} \omega(x) \boxtimes \forall x \in \mathcal{C} \boxtimes \mathcal{C}^{rev}$ carries a natural structure of modular Frobenius algebra

in particular: non-semisimple full finite CFTs exist

 $\bowtie \omega = \text{Id}$: "Cardy case"

THEOREM Existence for any modular Hopf \Bbbk -algebra H and any ribbon automorphism ω of Hthe object $F_{\omega} := \int^{x \in \mathcal{C}} \omega(x) \boxtimes {}^{\vee}x \cong H^*_{\text{co-reg}} \in H\text{-bimod}$ carries a natural structure of modular Frobenius algebra

JF-SCHWEIGERT-STIGNER 2012

THEOREMExistencefor any modular Hopf k-algebra H and any ribbon automorphism ω of Hthe object $F_{\omega} := \int_{-\infty}^{x \in \mathcal{C}} \omega(x) \boxtimes \bigvee x \cong H^*_{\text{co-reg}} \in H\text{-bimod}$ carries a natural structure of modular Frobenius algebra

THEOREM ——

Closed formula

correlator of a full finite CFT for closed surface of genus gwith p incoming and q outgoing bulk fields:

$$\widetilde{\mathrm{v}}_{\!F}(X^g_{p|q},arGamma_\circ) \;\;=\; \Delta^{(q-1)}_F \,\circ\, \mathcal{T}^{(g)}_F \,\circ\, m^{(p-1)}_F$$

THEOREMExistencefor any modular Hopf k-algebra H and any ribbon automorphism ω of Hthe object $F_{\omega} := \int_{-\infty}^{x \in \mathcal{C}} \omega(x) \boxtimes \forall x \cong H^*_{\text{co-reg}} \in H\text{-bimod}$ carries a natural structure of modular Frobenius algebra

THEOREMClosed formulacorrelator of a full finite CFT for closed surface of genus g
with p incoming and q outgoing bulk fields : $\widetilde{v}_F(X_{p|q}^g, \Gamma_0) = \Delta_F^{(q-1)} \circ \mathcal{T}_F^{(g)} \circ m_F^{(p-1)}$ fuse
incoming

THEOREMExistencefor any modular Hopf k-algebra H and any ribbon automorphism ω of Hthe object $F_{\omega} := \int_{-\infty}^{x \in \mathcal{C}} \omega(x) \boxtimes \forall x \cong H^*_{\text{co-reg}} \in H\text{-bimod}$ carries a natural structure of modular Frobenius algebra

THEOREMExistencefor any modular Hopf k-algebra H and any ribbon automorphism ω of Hthe object $F_{\omega} := \int^{x \in \mathcal{C}} \omega(x) \boxtimes \forall x \cong H^*_{\text{co-reg}} \in H\text{-bimod}$ carries a natural structure of modular Frobenius algebra

CFT correlators

Surfaces with boundary

CFT correlators

JF-GANNON-SCHAUMANN-SCHWEIGERT 2018 / IN PREP.

- •

- •
- •
- •
- •
- •

•																													
•																													
•		Ν	lex	t st	ep:	а	llow	v fo	r sı	urfa	ces	s w	ith	boı	unc	lary	/												
•											(]3	aho	اصا	l fra	bo h		nda	ario	ie i	n a	ddi	tion	n to	al	uin	ah	oun	dari	<u>(</u>
•											(10	100		inc		Jou	nuc	anc	5 1	Πa	uui	liui	1 10	gi	um	уD	oun	uan	63)
•																		bı	it si	till	orie	ente	ed	and	d v	vith	out	defe	ects
•																													
•																													
•																													
•																													
•																													
•																													
•																													
•																													
•																													
٠																													
•																													
•																													
•																													
•																													
•																													
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				

- Next step: allow for surfaces with boundary
 - (labeled free boundaries in addition to gluing boundaries)
 - Challenge: no open-closed Lego game worked out
 - Instead : Duplo game
 - 🛶 vintage CFT approach
 - 👞 2-d TFT

LEWELLEN 1992

LAUDA-PFEIFFER 2008

Ne	lext step: allow for surfaces with boundary	
	(labeled free boundaries in addition to gluing bour	ndaries)
	Challenge: no open-closed Lego game worked out	
R.	instead: Duplo game	
	vintage CFT approach	len 1992
	🔹 2-d TFT	FER 2008

- generators = fundamental correlators : R C
 - ➡ 3 or less bulk fields on a sphere
 - ➡ 3 or less boundary fields on a disk
 - 1 bulk and 1 boundary field on a disk

CFT correlators

LAUDA-PFEIFFER 2008

IF Oaxaca 27_09_18 – p. 17/??

Next step :	allow for surfaces with boundary
-------------	----------------------------------

- (labeled free boundaries in addition to gluing boundaries)
- Challenge: no open-closed Lego game worked out
 - instead : Duplo game
 - 🛶 vintage CFT approach
 - 👞 2-d TFT
 - generators = fundamental correlators:
 - S or less bulk fields on a sphere
 - S or less boundary fields on a disk
 - ➡ 1 bulk and 1 boundary field on a disk
- $\in \operatorname{Hom}_{\mathcal{Z}(\mathcal{C})}(F \otimes F \otimes F, \mathbf{1})$
- $\in \operatorname{Hom}_{\mathcal{C}}(B_{mn} \otimes B_{np} \otimes B_{pm}, \mathbf{1})$
- $\in \operatorname{Hom}_{\mathcal{C}}(\mathbf{1}, U_{\mathbb{Z}}(F) \otimes B_{mm})$

when all insertions incoming

- Is we have a space *F* and boundary state spaces B_{mn} changing boundary condition from *m* to *n*
- sewing via coends

JF Oaxaca 27_09_18 - p. 17/??

Lewellen 1992 Lauda-Pfeiffer 2008

🖙 Challenge:

```
have to deal simultaneously with C and with \mathcal{D} = \mathcal{I}(C) \simeq C \boxtimes C^{rev}
```

Image: Challenge:

have to deal simultaneously with C and with $\mathcal{D} = \mathcal{Z}(C) \simeq C \boxtimes C^{rev}$

- **Tool:** central monad Z and comonad \widetilde{Z} :
 - •• endofunctor $Z: c \mapsto \int^{x \in \mathcal{C}} x \otimes c \otimes^{\vee} x$

 \sim dinatural family for the coend endows Z(c) with half-braiding

- \checkmark indeed $\mathcal{Z}(\mathcal{C}) \simeq Z \operatorname{-mod}$
- \checkmark induction and coinduction right / left adjoint to $U_{\mathcal{Z}}: \mathcal{Z}(\mathcal{C}) \to \mathcal{C}$

Image: Challenge:

have to deal simultaneously with \mathcal{C} and with $\mathcal{D} = \mathcal{Z}(\mathcal{C}) \simeq \mathcal{C} \boxtimes \mathcal{C}^{rev}$

- **Tool:** central monad Z and comonad \widetilde{Z} :
 - •• endofunctor $Z: c \mapsto \int^{x \in \mathcal{C}} x \otimes c \otimes^{\vee} x$

 \sim dinatural family for the coend endows Z(c) with half-braiding

 \checkmark indeed $\mathcal{Z}(\mathcal{C}) \simeq Z \operatorname{-mod}$

→ induction and coinduction right/left adjoint to $U_{\mathcal{Z}}$: $\mathcal{Z}(\mathcal{C}) \rightarrow \mathcal{C}$

> can switch back and forth between C and $\mathcal{Z}(C)$

CFT correlators

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

crossing symmetry on the sphere & modular S-invariance

- \sim Duplo version of purely closed theory
- \rightarrow bulk object F modular Frobenius algebra in $\mathcal{Z}(\mathcal{C})$

crossing symmetry on the sphere & modular S-invariance

- \rightsquigarrow Duplo version of purely closed theory
- \rightarrow bulk object F modular Frobenius algebra in $\mathcal{Z}(\mathcal{C})$

crossing symmetry on the boundary of a disk

can be analyzed similarly as crossing symmetry on the sphere

- \rightarrow boundary objects $\{B_{mn}\}$ form symmetric Frobenius algebroid in C
- with m, n objects of category \mathcal{M} of boundary conditions
- \sim expect: \mathcal{M} an exact \mathcal{C} -module

crossing symmetry on the sphere & modular S-invariance

- $\rightsquigarrow\,$ Duplo version of purely closed theory
- \rightarrow bulk object F modular Frobenius algebra in $\mathcal{Z}(\mathcal{C})$

crossing symmetry on the boundary of a disk

- can be analyzed similarly as crossing symmetry on the sphere
- \rightarrow boundary objects $\{B_{mn}\}$ form symmetric Frobenius algebroid in C

genus-0 bulk-boundary compatibility:

- comparison of two boundary factorizations
 - for correlator of 1 bulk and 2 boundary fields on a disk
 - \rightarrow presence of natural Z-module structure on each B_{mn}
- comparison of a bulk and a boundary factorization
 - for correlator of 1 boundary and 2 bulk fields on a disk
 - \rightsquigarrow multiplication morphism $Z \circ Z(B_m) \rightarrow Z(B_m)$

.

genus-1 bulk-boundary compatibility = Cardy condition:

comparison of a bulk and a boundary factorization

for correlator of annulus with 1 boundary field on each boundary circle

genus-1 bulk-boundary compatibility = Cardy condition:

comparison of a bulk and a boundary factorization for correlator of annulus with 1 boundary field on each boundary circle →

- constraints can be directly (and almost are) verified in Cardy case:
 - •• $\mathcal{M} = \mathcal{C}$ regular \mathcal{C} -module

$$F = \int_{-\infty}^{x \in \mathcal{C}} x \otimes^{\vee} x \in \mathcal{Z}(\mathcal{C})$$
$$B_{mn} = m^{\vee} \otimes n = \underline{\operatorname{Hom}}_{\mathcal{C}}(m, n) \in \mathcal{C}$$

genus-1 bulk-boundary compatibility = Cardy condition:

comparison of a bulk and a boundary factorization for correlator of annulus with 1 boundary field on each boundary circle $\sim \rightarrow$

- constraints can be directly (and almost are) verified in Cardy case:
 - $\sim \mathcal{M} = \mathcal{C}$ regular \mathcal{C} -module

•
$$F = \int^{x \in \mathcal{C}} x \otimes^{\vee} x \in \mathcal{Z}(\mathcal{C})$$

• $B_{mn} = m^{\vee} \otimes n = \underline{\operatorname{Hom}}_{\mathcal{C}}(m, n) \in \mathcal{C}$

 \blacksquare also e.g.: torus partition function $\mathbf{Z} = \sum_{i,j} C_{ij} \chi_i \otimes \overline{\chi}_j \vee$

Cardy-Cartan modular invariant

- Side remark : conjectural generalization :
 - $\blacksquare B_{mn} = \underline{\operatorname{Hom}}_{\mathcal{M}}(m, n)$

• • • • • • •

 $rac{F}{ras} = F$ as $rac{co}{co}$ end over $\underline{Hom}_{\mathcal{M}}(m,n)$ (inner natural transformations of $\mathrm{Id}_{\mathcal{M}}$)

Boundary states

- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •
- •

RESULTBoundary states & annulifor any finite modular tensor category C in the Cardy case one has : \longrightarrow boundary states = (co)characters of L-moduleswith $L = \int^{x \in C} x \otimes \forall x \equiv U_{\mathcal{Z}}(F) \in C$ \implies sewing these boundary states gives annulus amplitudesthat allow for consistent interpretation as partition functionsof boundary fields / open-string states

one lesson from considering annulus amplitudes :

- ${f ar s}$ coend $\int^{x\in {\cal C}}\!\!x\,{\otimes}^{\,ee}\!x$ is
 - Hopf algebra in C with Hopf pairing and integral
 - \sim thereby also Frobenius algebra in C
 - \sim commutative Frobenius algebra in $\mathcal{Z}(\mathcal{C})$
- is both Hopf pairing ω and Frobenius form κ such that $\omega \circ \kappa^{-1} = S_L$
- \mathbf{w} to control appearance of ω vs κ make use of adjunctions for the central monad

