Cosistency of Hill Estimators in a Linear Preferential Attachment Model

Tiandong Wang Joint Work with S.I. Resnick

School of Operations Research and Information Engineering,
Cornell University

June 21st, 2018

Flickr Links Data:
(cf. KONECT: http://konect.uni-koblenz.de/networks/flickr-links) Undirected network of Flickr users and their connections.

Flickr Links Data:

(cf. KONECT: http://konect.uni-koblenz.de/networks/flickr-links) Undirected network of Flickr users and their connections.

- Nodes: Users.
- Edges: Connections.

For a node v, $\mathbb{P}($ Degree $(v)=k) \sim$ $k^{-1-\alpha}$, for k large.

Flickr Links Data:

(cf. KONECT: http://konect.uni-koblenz.de/networks/flickr-links) Undirected network of Flickr users and their connections.

- Nodes: Users.
- Edges: Connections.

For a node v, $\mathbb{P}($ Degree $(v)=k) \sim$ $k^{-1-\alpha}$, for k large.

Goal:

Estimate the power-law index α.

Square count	$428,143,604,855$
4-tour count	$3,483,825,597,342$
Power law exponent (estimated) with $d_{\min }$	$1.7310\left(d_{\min }=8\right)$
Gini coefficient	88.2%
Relative edge distribution entropy	82.2%
Assortativity	-0.015282

Undirected Preferential Attachment Model

Notations:

- $G(n):=$ the random graph after n-steps.
- $[n]:=\{1,2, \ldots, n\}$, set of nodes in $G(n)$.
- $D_{i}(n):=$ Degree of node $i \in[n]$.
- $\delta>-1$, parameter.

Initialize with a single node having a self loop.

This node is considered as having degree 2, i.e.

$$
D_{1}(1)=2 .
$$

From $G(n)$ to $G(n+1)$, assuming linear preferential attachment function: $f(i)=i+\delta$:

The new node $n+1$ attaches to node $i \in[n]$ with probability

$$
\frac{D_{i}(n)+\delta}{(2+\delta) n}
$$

and $D_{n+1}(n+1)=1$.

Define $N_{k}(n):=\sum_{j=1}^{n} \mathbf{1}_{\left\{D_{j}(n)=k\right\}}$, then as $n \rightarrow \infty$,

$$
N_{k}(n) / n \xrightarrow{\text { a.s. }} p_{k} \sim C(\delta) k^{-3-\delta}=: C(\delta) k^{-1-\alpha} \quad \text { for } k \rightarrow \infty .
$$

Define $N_{k}(n):=\sum_{j=1}^{n} \mathbf{1}_{\left\{D_{j}(n)=k\right\}}$, then as $n \rightarrow \infty$,

$$
N_{k}(n) / n \xrightarrow{\text { a.s. }} p_{k} \sim C(\delta) k^{-3-\delta}=: C(\delta) k^{-1-\alpha} \quad \text { for } k \rightarrow \infty .
$$

How to estimate the power-law index α ?

Option 1:

- Find MLE of $\delta, \hat{\delta}^{M L E}$ (cf. Gao and van der Vaart (2017)).
- Plugging $\hat{\delta}^{M L E}$ into the theoretical value of α gives

$$
\hat{\alpha}^{M L E}=2+\hat{\delta}^{M L E} .
$$

Define $N_{k}(n):=\sum_{j=1}^{n} \mathbf{1}_{\left\{D_{j}(n)=k\right\}}$, then as $n \rightarrow \infty$,

$$
N_{k}(n) / n \xrightarrow{\text { a.s. }} p_{k} \sim C(\delta) k^{-3-\delta}=: C(\delta) k^{-1-\alpha} \quad \text { for } k \rightarrow \infty .
$$

How to estimate the power-law index α ?

Option 1:

- Find MLE of $\delta, \hat{\delta}^{M L E}$ (cf. Gao and van der Vaart (2017)).
- Plugging $\hat{\delta}^{M L E}$ into the theoretical value of α gives

$$
\hat{\alpha}^{M L E}=2+\hat{\delta}^{M L E} .
$$

However, the MLE approach is not ROBUST against modeling error, compared to the extreme value estimation approach (cf. Wan, Wang, Davis and Resnick (2017)).

Option 2: Hill estimator.

Let $X_{(1)} \geq \ldots \geq X_{(n)}$ be order statistics of $\left\{X_{i}: 1 \leq i \leq n\right\}$, then the Hill estimator $H_{k, n}$ based on k upper order statistics of $\left\{X_{i}: 1 \leq i \leq n\right\}$ is defined as (cf. Hill (1975))

$$
H_{k, n}=\frac{1}{k} \sum_{i=1}^{k} \log \frac{X_{(1)}}{X_{(k+1)}}
$$

Option 2: Hill estimator.

Let $X_{(1)} \geq \ldots \geq X_{(n)}$ be order statistics of $\left\{X_{i}: 1 \leq i \leq n\right\}$, then the Hill estimator $H_{k, n}$ based on k upper order statistics of $\left\{X_{i}: 1 \leq i \leq n\right\}$ is defined as (cf. Hill (1975))

$$
H_{k, n}=\frac{1}{k} \sum_{i=1}^{k} \log \frac{X_{(1)}}{X_{(k+1)}}
$$

ROBUST and widely used in practice, e.g. KONECT:

Option 2: Hill estimator.

Let $X_{(1)} \geq \ldots \geq X_{(n)}$ be order statistics of $\left\{X_{i}: 1 \leq i \leq n\right\}$, then the Hill estimator $H_{k, n}$ based on k upper order statistics of $\left\{X_{i}: 1 \leq i \leq n\right\}$ is defined as (cf. Hill (1975))

$$
H_{k, n}=\frac{1}{k} \sum_{i=1}^{k} \log \frac{X_{(1)}}{X_{(k+1)}}
$$

ROBUST and widely used in practice, e.g. KONECT:

Power law exponent

The power law exponent is a number that characterizes the degrees of the nodes in the network. In many circumstances, networks are modeled to follow a degree distribution power law, i.e., the number of nodes with degree n is taken to be proportional to the power $n^{-\gamma}$, for a constant γ larger than one [1]. This constant γ is called the power law exponent. Given a network, its degree distribution can be used to estimate a value γ. There are multiple ways of estimating γ, and thus a network does not have a single definite value of it. In KONECT, we estimate γ using the robust method given in [2]

$$
\gamma=1+n\left(\sum_{u \in V} \ln \frac{d(u)}{d_{\min }}\right)^{-1}
$$

in which $d_{\text {min }}$ is the minimal degree.
[1] M. E. J. Newman. Power laws, Pareto distributions and Zipf's law. Contemporary Phys., 46(5):323-351, 2006.
[2] Albert-LÃiszl \tilde{A}^{3} BarabÃisi and RÃ®ka Albert. Emergence of scaling in random networks. Science, 286(5439):509-512, 1999.

Consistency of Hill Estimators

Suppose that $\left\{X_{i}: 1 \leq i \leq n\right\}$ iid and non-negative with common regularly varying distribution tail $\bar{F} \in R V_{-\alpha}, \alpha>0$, then:

- There exists a sequence $\{b(n)\}$ such that

$$
\sum_{i=1}^{n} \epsilon_{X_{i} / b(n)} \Rightarrow \operatorname{PRM}\left(\nu_{\alpha}\right) \quad \text { in } M_{p}((0, \infty])
$$

with $\nu_{\alpha}(y, \infty]=y^{-\alpha}, y>0$.

- For some intermediate sequence $k_{n} \rightarrow \infty, k_{n} / n \rightarrow 0$ as $n \rightarrow \infty$:

$$
\frac{1}{k_{n}} \sum_{i=1}^{n} \epsilon_{X_{i} / b\left(n / k_{n}\right)} \Rightarrow \nu_{\alpha} \quad \text { in } M_{+}((0, \infty])
$$

- The Hill estimator is consistent:

$$
H_{k_{n}, n} \xrightarrow{P} 1 / \alpha .
$$

Network data is NOT iid!!! Will $H_{k_{n}, n}$ still be consistent?

Network data is NOT iid!!! Will $H_{k_{n}, n}$ still be consistent?

Drawing analogies to the iid case, we want to show:

- The degree sequence has empirical measure

$$
\sum_{i=1}^{n} \epsilon_{D_{i}(n) / n^{1 /(2+\delta)}}
$$

converging weakly to some random limit point measure in $M_{p}((0, \infty])$.

Network data is NOT iid!!! Will $H_{k_{n}, n}$ still be consistent?

Drawing analogies to the iid case, we want to show:

- The degree sequence has empirical measure

$$
\sum_{i=1}^{n} \epsilon_{D_{i}(n) / n^{1 /(2+\delta)}}
$$

converging weakly to some random limit point measure in $M_{p}((0, \infty])$.

- For some intermediate sequence k_{n} and some function $b(\cdot)$:

$$
\frac{1}{k_{n}} \sum_{i=1}^{n} \epsilon_{D_{i}(n) / b\left(n / k_{n}\right)} \Rightarrow \nu_{2+\delta}, \quad \text { in } M_{+}((0, \infty])
$$

This would facilitate proving consistency of the Hill estimator.

Embedding

Idea: Embed the degree sequence $\left(D_{1}(n), \ldots, D_{n}(n), 0, \ldots\right)$ into a sequence of birth immigration processes (B.I. processes).

Embedding

Idea: Embed the degree sequence $\left(D_{1}(n), \ldots, D_{n}(n), 0, \ldots\right)$ into a sequence of birth immigration processes (B.I. processes).

Preliminaries:

- A linear birth process $\{\zeta(t): t \geq 0\}$ is a continuous time Markov process taking values in the set $\mathbb{N}^{+}=\{1,2, \ldots\}$ and having a transition rate $q_{i, i+1}=\lambda i, i \in \mathbb{N}^{+}, \lambda>0$.

Embedding

Idea: Embed the degree sequence $\left(D_{1}(n), \ldots, D_{n}(n), 0, \ldots\right)$ into a sequence of birth immigration processes (B.I. processes).

Preliminaries:

- A linear birth process $\{\zeta(t): t \geq 0\}$ is a continuous time Markov process taking values in the set $\mathbb{N}^{+}=\{1,2, \ldots\}$ and having a transition rate $q_{i, i+1}=\lambda i, i \in \mathbb{N}^{+}, \lambda>0$.
- The linear birth process $\{\zeta(t): t \geq 0\}$ is a mixed Poisson process, i.e. with $\zeta(0)=1$, we have

$$
\zeta(t)=1+N_{0}\left(W\left(e^{\lambda t}-1\right), t \geq 0\right.
$$

where $\left\{N_{0}(t): t \geq 0\right\}$ is a unit rate homogeneous Poisson on \mathbb{R}_{+} with $N_{0}(0)=0$ and W is a unit exponential random variable independent of N_{0}.

Embedding

Idea: Embed the degree sequence $\left(D_{1}(n), \ldots, D_{n}(n), 0, \ldots\right)$ into a sequence of birth immigration processes (B.I. processes).

Preliminaries:

- A linear birth process $\{\zeta(t): t \geq 0\}$ is a continuous time Markov process taking values in the set $\mathbb{N}^{+}=\{1,2, \ldots\}$ and having a transition rate $q_{i, i+1}=\lambda i, i \in \mathbb{N}^{+}, \lambda>0$.
- The linear birth process $\{\zeta(t): t \geq 0\}$ is a mixed Poisson process, i.e. with $\zeta(0)=1$, we have

$$
\zeta(t)=1+N_{0}\left(W\left(e^{\lambda t}-1\right), t \geq 0\right.
$$

where $\left\{N_{0}(t): t \geq 0\right\}$ is a unit rate homogeneous Poisson on \mathbb{R}_{+} with $N_{0}(0)=0$ and W is a unit exponential random variable independent of N_{0}.

- For $\zeta(0)=1, e^{-\lambda t} \zeta(t) \xrightarrow{\text { a.s. }} W \sim \operatorname{Exp}(1)$.

The linear birth process with immigration (B.I. process), $\{B I(t): t \geq 0\}$, having lifetime parameter $\lambda>0$ and immigration parameter $\theta \geq 0$ is a continuous time Markov process with state space $\mathbb{N}=\{0,1,2, \ldots\}$ and transition rate $q_{i, i+1}=\lambda i+\theta$.

The linear birth process with immigration (B.I. process), $\{B I(t): t \geq 0\}$, having lifetime parameter $\lambda>0$ and immigration parameter $\theta \geq 0$ is a continuous time Markov process with state space $\mathbb{N}=\{0,1,2, \ldots\}$ and transition rate $q_{i, i+1}=\lambda i+\theta$.

- Suppose that $N_{\theta}(t)$ is the counting function of homogeneous Poisson points $0<\tau_{1}<\tau_{2}<\ldots$ with rate θ.
- Independent of $N_{\theta}(\cdot)$, we have independent copies of a linear birth process $\left\{\zeta_{i}(t): t \geq 0\right\}_{i \geq 1}$ with parameter $\lambda>0$ and $\zeta_{i}(0)=1$ for $i \geq 1$.

The linear birth process with immigration (B.I. process), $\{B I(t): t \geq 0\}$, having lifetime parameter $\lambda>0$ and immigration parameter $\theta \geq 0$ is a continuous time Markov process with state space $\mathbb{N}=\{0,1,2, \ldots\}$ and transition rate $q_{i, i+1}=\lambda i+\theta$.

- Suppose that $N_{\theta}(t)$ is the counting function of homogeneous Poisson points $0<\tau_{1}<\tau_{2}<\ldots$ with rate θ.
- Independent of $N_{\theta}(\cdot)$, we have independent copies of a linear birth process $\left\{\zeta_{i}(t): t \geq 0\right\}_{i \geq 1}$ with parameter $\lambda>0$ and $\zeta_{i}(0)=1$ for $i \geq 1$.
- Let $B I(0)=0$, then the B.I. process is a shot noise process with form

$$
B I(t):=\sum_{i=1}^{\infty} \zeta_{i}\left(t-\tau_{i}\right) \mathbf{1}_{\left\{t \geq \tau_{i}\right\}}=\sum_{i=1}^{N_{\theta}(t)} \zeta_{i}\left(t-\tau_{i}\right)
$$

The linear birth process with immigration (B.I. process), $\{B I(t): t \geq 0\}$, having lifetime parameter $\lambda>0$ and immigration parameter $\theta \geq 0$ is a continuous time Markov process with state space $\mathbb{N}=\{0,1,2, \ldots\}$ and transition rate $q_{i, i+1}=\lambda i+\theta$.

- Suppose that $N_{\theta}(t)$ is the counting function of homogeneous Poisson points $0<\tau_{1}<\tau_{2}<\ldots$ with rate θ.
- Independent of $N_{\theta}(\cdot)$, we have independent copies of a linear birth process $\left\{\zeta_{i}(t): t \geq 0\right\}_{i \geq 1}$ with parameter $\lambda>0$ and $\zeta_{i}(0)=1$ for $i \geq 1$.
- Let $B I(0)=0$, then the B.I. process is a shot noise process with form

$$
B I(t):=\sum_{i=1}^{\infty} \zeta_{i}\left(t-\tau_{i}\right) \mathbf{1}_{\left\{t \geq \tau_{i}\right\}}=\sum_{i=1}^{N_{\theta}(t)} \zeta_{i}\left(t-\tau_{i}\right)
$$

- For $B I(0)=k \geq 0$,

$$
e^{-\lambda t} B I(t) \xrightarrow{\text { a.s. }} \sigma \sim \operatorname{Gamma}(k+\theta / \lambda, 1) .
$$

B.I. Process Setup Let $\left\{B I_{i}(t): t \geq 0\right\}_{i \geq 1}$ be independent B.I. processes such that

$$
B I_{1}(0)=2, \quad B I_{i}(0)=1, \quad \forall i \geq 2 .
$$

Each has transition rate is $q_{j, j+1}=j+\delta, \delta>-1$.
B.I. Process Setup Let $\left\{B I_{i}(t): t \geq 0\right\}_{i \geq 1}$ be independent B.I. processes such that

$$
B I_{1}(0)=2, \quad B I_{i}(0)=1, \quad \forall i \geq 2 .
$$

Each has transition rate is $q_{j, j+1}=j+\delta, \delta>-1$.

- Set $T_{1}=0$ and relative to $B I_{1}(\cdot)$ define T_{2} be the first time that $B I_{1}(\cdot)$ jumps.
- Start the new B.I. process $\left\{B I_{2}\left(t-T_{2}\right): t \geq T_{2}\right\}$ at T_{2}.
B.I. Process Setup Let $\left\{B I_{i}(t): t \geq 0\right\}_{i \geq 1}$ be independent B.I. processes such that

$$
B I_{1}(0)=2, \quad B I_{i}(0)=1, \quad \forall i \geq 2 .
$$

Each has transition rate is $q_{j, j+1}=j+\delta, \delta>-1$.

- Set $T_{1}=0$ and relative to $B I_{1}(\cdot)$ define T_{2} be the first time that $B I_{1}(\cdot)$ jumps.
- Start the new B.I. process $\left\{B I_{2}\left(t-T_{2}\right): t \geq T_{2}\right\}$ at T_{2}.
- Let T_{3} be the first time after T_{2} that either $B I_{1}(\cdot)$ or $B I_{2}(\cdot)$ jumps.
- Start a new, independent B.I. process $\left\{B l_{3}\left(t-T_{3}\right)\right\}_{t \geq T_{3}}$ at T_{3}.
- Continue in this way.

$$
\begin{aligned}
& B I_{1}(0)=2 \quad B I_{1}\left(T_{2}\right)=3 \\
& T_{1}=0 \\
& T_{2}=\tau_{1}^{(1)} \\
& T_{3}=\tau_{1}^{(2)}+T_{2}
\end{aligned}
$$

$$
\begin{aligned}
& B I_{1}\left(T_{3}\right)=3 \\
& B I_{2}\left(T_{3}-T_{2}\right)=2 \\
& B I_{3}(0)=1
\end{aligned}
$$

Figure 5.1: Embedding procedure for Model A assuming $\tau_{1}^{(2)}+T_{2}<\tau_{2}^{(1)}$.

Embedding Results:

For each n, let $\mathbf{D}(n):=\left(D_{1}(n), D_{2}(n), \ldots, D_{n}(n), 0, \ldots\right)$ and $\widetilde{\mathbf{D}}(n):=\left(B I_{1}\left(T_{n}\right), B I_{2}\left(T_{n}-T_{2}\right), \ldots, B I_{n}(0), 0, \ldots\right)$. Then $\mathbf{D}(n)$ and $\widetilde{\mathbf{D}}(n)$ have the same distribution in \mathbb{R}^{∞}.

Embedding Results:

For each n, let $\mathbf{D}(n):=\left(D_{1}(n), D_{2}(n), \ldots, D_{n}(n), 0, \ldots\right)$ and $\widetilde{\mathbf{D}}(n):=\left(B I_{1}\left(T_{n}\right), B I_{2}\left(T_{n}-T_{2}\right), \ldots, B I_{n}(0), 0, \ldots\right)$. Then $\mathbf{D}(n)$ and $\widetilde{\mathbf{D}}(n)$ have the same distribution in \mathbb{R}^{∞}.

$$
\text { Degree Sequence } \quad \Rightarrow \quad \text { B.I. Processes. }
$$

Embedding Results:

For each n, let $\mathbf{D}(n):=\left(D_{1}(n), D_{2}(n), \ldots, D_{n}(n), 0, \ldots\right)$ and $\widetilde{\mathbf{D}}(n):=\left(B I_{1}\left(T_{n}\right), B I_{2}\left(T_{n}-T_{2}\right), \ldots, B I_{n}(0), 0, \ldots\right)$. Then $\mathbf{D}(n)$ and $\widetilde{\mathbf{D}}(n)$ have the same distribution in \mathbb{R}^{∞}.

$$
\text { Degree Sequence } \quad \Rightarrow \quad \text { B.I. Processes. }
$$

Convergence of $\left\{T_{n}\right\}$:
The counting process $N(t):=\frac{1}{2} \sum_{i=1}^{\infty} B l_{i}\left(t-T_{i}\right) \mathbf{1}_{\left\{t \geq T_{i}\right\}}$ is a pure birth process with transition rate $q_{i, i+1}=(2+\delta) i$. Also,

$$
\frac{n}{e^{(2+\delta) T_{n}}} \xrightarrow{\text { a.s. }} W,
$$

where W is an exponential random variable with unit mean.

Convergence of the Degree for a Fixed Node:

(i) Suppose that $\left\{\sigma_{i}\right\}_{i \geq 1}$ is a sequence of independent Gamma random variables with

$$
\sigma_{1} \sim \operatorname{Gamma}(2+\delta, 1), \quad \text { and } \quad \sigma_{i} \sim \operatorname{Gamma}(1+\delta, 1), \quad i \geq 2
$$

then

$$
\frac{D_{i}(n)}{n^{1 /(2+\delta)}} \Rightarrow W^{-1 /(2+\delta)} \sigma_{i} e^{-T_{i}}
$$

Convergence of the Degree for a Fixed Node:

(i) Suppose that $\left\{\sigma_{i}\right\}_{i \geq 1}$ is a sequence of independent Gamma random variables with

$$
\sigma_{1} \sim \operatorname{Gamma}(2+\delta, 1), \quad \text { and } \quad \sigma_{i} \sim \operatorname{Gamma}(1+\delta, 1), \quad i \geq 2
$$

then

$$
\frac{D_{i}(n)}{n^{1 /(2+\delta)}} \Rightarrow W^{-1 /(2+\delta)} \sigma_{i} e^{-T_{i}}
$$

(ii) Set $D_{i}(n):=0$ for all $i \geq n+1$. For $\delta>-1$,

$$
\max _{i \geq 1} \frac{D_{i}(n)}{n^{1 /(2+\delta)}} \Rightarrow W^{-1 /(2+\delta)} \max _{i \geq 1} \sigma_{i} e^{-T_{i}},
$$

Convergence of the Degree for a Fixed Node:

(i) Suppose that $\left\{\sigma_{i}\right\}_{i \geq 1}$ is a sequence of independent Gamma random variables with

$$
\sigma_{1} \sim \operatorname{Gamma}(2+\delta, 1), \quad \text { and } \quad \sigma_{i} \sim \operatorname{Gamma}(1+\delta, 1), \quad i \geq 2
$$

then

$$
\frac{D_{i}(n)}{n^{1 /(2+\delta)}} \Rightarrow W^{-1 /(2+\delta)} \sigma_{i} e^{-T_{i}}
$$

(ii) Set $D_{i}(n):=0$ for all $i \geq n+1$. For $\delta>-1$,

$$
\max _{i \geq 1} \frac{D_{i}(n)}{n^{1 /(2+\delta)}} \Rightarrow W^{-1 /(2+\delta)} \max _{i \geq 1} \sigma_{i} e^{-T_{i}},
$$

Convergence of the Empirical Measure:

In $M_{p}((0, \infty])$, we have for $\delta \geq 0$,

$$
\sum_{i=1}^{n} \epsilon_{D_{i}(n) / n^{1 /(2+\delta)}}(\cdot) \Rightarrow \sum_{i=1}^{\infty} \epsilon_{\sigma_{i} e^{-T_{i}} / W^{1 /(2+\delta)}}(\cdot)
$$

Consistency of Hill Estimators: Heuristics

From the limit measure:

- Gamma random variables σ_{i} have light tailed distributions.

Consistency of Hill Estimators: Heuristics

From the limit measure:

- Gamma random variables σ_{i} have light tailed distributions. $\Rightarrow\left\{\sigma_{i}: i \geq 1\right\}$ may not distort the consistency result.

Consistency of Hill Estimators: Heuristics

From the limit measure:

- Gamma random variables σ_{i} have light tailed distributions. $\Rightarrow\left\{\sigma_{i}: i \geq 1\right\}$ may not distort the consistency result.
- Set $Y_{i}:=e^{-T_{i}} / W^{1 /(2+\delta)}$ and apply the Hill estimator to the $Y^{\prime} s$:

$$
H_{k, n}=\frac{1}{k} \sum_{i=1}^{k} \log \left(\frac{Y_{i}}{Y_{k+1}}\right)=\frac{1}{k} \sum_{i=1}^{k}\left(T_{k+1}-T_{i}\right)
$$

Consistency of Hill Estimators: Heuristics

From the limit measure:

- Gamma random variables σ_{i} have light tailed distributions.
$\Rightarrow\left\{\sigma_{i}: i \geq 1\right\}$ may not distort the consistency result.
- Set $Y_{i}:=e^{-T_{i}} / W^{1 /(2+\delta)}$ and apply the Hill estimator to the $Y^{\prime} s$:

$$
H_{k, n}=\frac{1}{k} \sum_{i=1}^{k} \log \left(\frac{Y_{i}}{Y_{k+1}}\right)=\frac{1}{k} \sum_{i=1}^{k}\left(T_{k+1}-T_{i}\right)
$$

- By the B.I. process construction, we have

$$
T_{n+1}-T_{n} \stackrel{d}{=} E_{n} /(n(2+\delta))
$$

where $E_{n}, n \geq 1$ are iid unit exponential random variables.

Consistency of Hill Estimators: Heuristics

From the limit measure:

- Gamma random variables σ_{i} have light tailed distributions.
$\Rightarrow\left\{\sigma_{i}: i \geq 1\right\}$ may not distort the consistency result.
- Set $Y_{i}:=e^{-T_{i}} / W^{1 /(2+\delta)}$ and apply the Hill estimator to the $Y^{\prime} s$:

$$
H_{k, n}=\frac{1}{k} \sum_{i=1}^{k} \log \left(\frac{Y_{i}}{Y_{k+1}}\right)=\frac{1}{k} \sum_{i=1}^{k}\left(T_{k+1}-T_{i}\right)
$$

- By the B.I. process construction, we have

$$
T_{n+1}-T_{n} \stackrel{d}{=} E_{n} /(n(2+\delta))
$$

where $E_{n}, n \geq 1$ are iid unit exponential random variables.

- Provided that $k \rightarrow \infty$, we have

$$
H_{k, n}=\frac{1}{k} \sum_{i=1}^{k} \sum_{l=i}^{k}\left(T_{l+1}-T_{l}\right)=\frac{1}{k} \sum_{l=1}^{k} \frac{E_{l}}{2+\delta} \xrightarrow{\text { a.s. }} \frac{1}{2+\delta} .
$$

For rigorous justifications we need:
For some function $b(\cdot)$ and some intermediate sequence $\left\{k_{n}\right\}$ wich $k_{n} \rightarrow \infty$ and $k_{n} / n \rightarrow 0$ as $n \rightarrow \infty$,

$$
\frac{1}{k_{n}} \sum_{i=1}^{n} \epsilon_{D_{i}(n) / b\left(n / k_{n}\right)} \Rightarrow \nu_{2+\delta}, \quad \text { in } M_{+}((0, \infty])
$$

For rigorous justifications we need:
For some function $b(\cdot)$ and some intermediate sequence $\left\{k_{n}\right\}$ wich $k_{n} \rightarrow \infty$ and $k_{n} / n \rightarrow 0$ as $n \rightarrow \infty$,

$$
\frac{1}{k_{n}} \sum_{i=1}^{n} \epsilon_{D_{i}(n) / b\left(n / k_{n}\right)} \Rightarrow \nu_{2+\delta}, \quad \text { in } M_{+}((0, \infty])
$$

Note that for any $y>0$,

$$
\frac{1}{k_{n}} \sum_{i=1}^{n} \epsilon_{D_{i}(n) / b\left(n / k_{n}\right)}(y, \infty]=\frac{1}{k_{n}} N_{>b\left(n / k_{n}\right) y}(n)
$$

For rigorous justifications we need:
For some function $b(\cdot)$ and some intermediate sequence $\left\{k_{n}\right\}$ wich $k_{n} \rightarrow \infty$ and $k_{n} / n \rightarrow 0$ as $n \rightarrow \infty$,

$$
\frac{1}{k_{n}} \sum_{i=1}^{n} \epsilon_{D_{i}(n) / b\left(n / k_{n}\right)} \Rightarrow \nu_{2+\delta}, \quad \text { in } M_{+}((0, \infty])
$$

Note that for any $y>0$,

$$
\frac{1}{k_{n}} \sum_{i=1}^{n} \epsilon_{D_{i}(n) / b\left(n / k_{n}\right)}(y, \infty]=\frac{1}{k_{n}} N_{>b\left(n / k_{n}\right) y}(n)
$$

Hence, we need to control:
(i) Bias: $\left|N_{>b\left(n / k_{n}\right) y}-\mathbb{E}\left(N_{>b\left(n / k_{n}\right) y}(n)\right)\right|$.
(ii) Concentration of $\mathbb{E}\left(N_{>b\left(n / k_{n}\right) y}(n)\right) / n$ on $p_{>b\left(n / k_{n}\right) y}$: $\left|\mathbb{E}\left(N_{>b\left(n / k_{n}\right) y}(n)\right)-n p_{>b\left(n / k_{n}\right) y}\right|$.
(iii) Difference between $\frac{n}{k_{n}} p_{>b\left(n / k_{n}\right) y}$ and $y^{-(2+\delta)}$.

We need the following: as $n \rightarrow \infty$,
(i) $\frac{1}{k_{n}}\left|N_{>b\left(n / k_{n}\right) y}-\mathbb{E}\left(N_{>b\left(n / k_{n}\right) y}(n)\right)\right| \xrightarrow{P} 0$.
(ii) $\frac{1}{k_{n}}\left|\mathbb{E}\left(N_{>b\left(n / k_{n}\right) y}(n)\right)-n p_{>b\left(n / k_{n}\right) y}\right| \longrightarrow 0$.
(iii) $\left|\frac{n}{k_{n}} p_{>b\left(n / k_{n}\right) y}-y^{-(2+\delta)}\right| \longrightarrow 0$.

The third part can be justified using Stirling's formula. We prove (i) and (ii) by establishing the following concentration results:

We need the following: as $n \rightarrow \infty$,
(i) $\frac{1}{k_{n}}\left|N_{>b\left(n / k_{n}\right) y}-\mathbb{E}\left(N_{>b\left(n / k_{n}\right) y}(n)\right)\right| \xrightarrow{P} 0$.
(ii) $\frac{1}{k_{n}}\left|\mathbb{E}\left(N_{>b\left(n / k_{n}\right) y}(n)\right)-n p_{>b\left(n / k_{n}\right) y}\right| \longrightarrow 0$.
(iii) $\left|\frac{n}{k_{n}} p_{>b\left(n / k_{n}\right) y}-y^{-(2+\delta)}\right| \longrightarrow 0$.

The third part can be justified using Stirling's formula. We prove (i) and (ii) by establishing the following concentration results:

Concentration of the Degree Sequence:

For $\delta>-1$ there exists a constant $C>2 \sqrt{2}$, such that as $n \rightarrow \infty$,

$$
\mathbb{P}\left(\max _{k}\left|N_{>k}(n)-n p_{>k}\right| \geq C(1+\sqrt{n \log n})\right)=o(1)
$$

We need the following: as $n \rightarrow \infty$,
(i) $\frac{1}{k_{n}}\left|N_{>b\left(n / k_{n}\right) y}-\mathbb{E}\left(N_{>b\left(n / k_{n}\right) y}(n)\right)\right| \xrightarrow{P} 0$.
(ii) $\frac{1}{k_{n}}\left|\mathbb{E}\left(N_{>b\left(n / k_{n}\right) y}(n)\right)-n p_{>b\left(n / k_{n}\right) y}\right| \longrightarrow 0$.
(iii) $\left|\frac{n}{k_{n}} p_{>b\left(n / k_{n}\right) y}-y^{-(2+\delta)}\right| \longrightarrow 0$.

The third part can be justified using Stirling's formula. We prove (i) and (ii) by establishing the following concentration results:

Concentration of the Degree Sequence:

For $\delta>-1$ there exists a constant $C>2 \sqrt{2}$, such that as $n \rightarrow \infty$,

$$
\mathbb{P}\left(\max _{k}\left|N_{>k}(n)-n p_{>k}\right| \geq C(1+\sqrt{n \log n})\right)=o(1)
$$

Such concentration results restrict the choice of k_{n}, since:

$$
\begin{aligned}
& \mathbb{P}\left(\left|N_{>\left[b\left(n / k_{n}\right) y\right]}(n)-\mathbb{E}\left(N_{>\left[b\left(n / k_{n}\right) y\right]}(n)\right)\right|>\epsilon k_{n}\right) \\
& \quad \leq \mathbb{P}\left(\max _{k}\left|N_{>k}(n)-\mathbb{E}\left(N_{>k}(n)\right)\right| \geq \epsilon k_{n}\right) .
\end{aligned}
$$

Hence, the intermediate sequence k_{n} must be large enough so that

$$
\mathbb{P}\left(\max _{k}\left|N_{>k}(n)-\mathbb{E}\left(N_{>k}(n)\right)\right| \geq \epsilon k_{n}\right)=o(1)
$$

Hence, the intermediate sequence k_{n} must be large enough so that

$$
\mathbb{P}\left(\max _{k}\left|N_{>k}(n)-\mathbb{E}\left(N_{>k}(n)\right)\right| \geq \epsilon k_{n}\right)=o(1) .
$$

Sufficient condition:

$$
\liminf _{n \rightarrow \infty} k_{n} /(n \log n)^{1 / 2}>0 .
$$

Hence, the intermediate sequence k_{n} must be large enough so that

$$
\mathbb{P}\left(\max _{k}\left|N_{>k}(n)-\mathbb{E}\left(N_{>k}(n)\right)\right| \geq \epsilon k_{n}\right)=o(1)
$$

Sufficient condition:

$$
\liminf _{n \rightarrow \infty} k_{n} /(n \log n)^{1 / 2}>0 .
$$

Convergence of the Tail Empirical Measure:

 Let $D_{(1)}(n) \geq D_{(2)}(n) \geq \cdots \geq D_{(n)}(n)$ be the order statistics of the degree sequence. Suppose that $\left\{k_{n}\right\}$ is some intermediate sequence satisfying$$
\liminf _{n \rightarrow \infty} k_{n} /(n \log n)^{1 / 2}>0 \quad \text { and } \quad k_{n} / n \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

then

$$
\frac{1}{k_{n}} \sum_{i=1}^{n} \epsilon_{D_{i}(n) / D_{\left(k_{n}\right)}(n)}(\cdot) \Rightarrow \nu_{2+\delta}
$$

in $M_{+}((0, \infty])$.

Consistency of the Hill Estimator:

Define the Hill estimator as

$$
H_{k_{n}, n}=\frac{1}{k_{n}} \sum_{i=1}^{k_{n}} \log \frac{D_{(i)}(n)}{D_{\left(k_{n}+1\right)}(n)} .
$$

Let $\left\{k_{n}\right\}$ be an intermediate sequence satisfying

$$
\liminf _{n \rightarrow \infty} k_{n} /(n \log n)^{1 / 2}>0 \quad \text { and } \quad k_{n} / n \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Then

$$
H_{k_{n}, n} \xrightarrow{P} \frac{1}{2+\delta} .
$$

Consistency of the Hill Estimator:

Define the Hill estimator as

$$
H_{k_{n}, n}=\frac{1}{k_{n}} \sum_{i=1}^{k_{n}} \log \frac{D_{(i)}(n)}{D_{\left(k_{n}+1\right)}(n)} .
$$

Let $\left\{k_{n}\right\}$ be an intermediate sequence satisfying

$$
\liminf _{n \rightarrow \infty} k_{n} /(n \log n)^{1 / 2}>0 \quad \text { and } \quad k_{n} / n \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Then

$$
H_{k_{n}, n} \xrightarrow{P} \frac{1}{2+\delta} .
$$

Proof idea: Write the Hill estimator as $H_{k_{n}, n}=\int_{1}^{\infty} \hat{\nu}_{n}(y, \infty] \frac{\mathrm{d} y}{y}=: T\left(\hat{\nu}_{n}\right)$, and justify the the continuity of the mapping T at $\nu_{2+\delta}$ so that

$$
H_{k_{n}, n}=\int_{1}^{\infty} \hat{\nu}_{n}(y, \infty] \frac{\mathrm{d} y}{y} \xrightarrow{P} \int_{1}^{\infty} \nu_{2+\delta}(y, \infty] \frac{\mathrm{d} y}{y}=\frac{1}{2+\delta} .
$$

Wrap-Up

- Undirected linear preferential attachment model is widely used to model social networks.
- Generates power laws.

Wrap-Up

- Undirected linear preferential attachment model is widely used to model social networks.
- Generates power laws.
- Practical issue: estimate the power-law exponent.
- Hill estimator \Rightarrow More ROBUST.

Wrap-Up

- Undirected linear preferential attachment model is widely used to model social networks.
- Generates power laws.
- Practical issue: estimate the power-law exponent.
- Hill estimator \Rightarrow More ROBUST.
- Consistency of Hill estimator for network data:
- Embedding technique:

Degree sequence \mapsto A sequence of birth immigration processes.

- Convergence of the tail empirical measure.
- Convergence of Hill.

Selected References

- T. Wang and S.I. Resnick. Consistency of Hill estimators in a linear preferential attachment model. ArXiv e-prints, 2017. Submitted to Extremes, under revision.
- F. Gao and A. van der Vaart (2017). On the asymptotic normality of estimating the affine preferential attachment network models with random initial degrees. Stoch. Process. Appl. 127.11, pp. 3754-3775.
- B.M. Hill. A simple general approach to inference about the tail of a distribution. Ann. Statist., 3:1163-1174, 1975.

