Cosistency of Hill Estimators in a Linear Preferential Attachment Model

Tiandong Wang Joint Work with **S.I. Resnick**

School of Operations Research and Information Engineering, Cornell University

June 21st, 2018

Flickr Links Data:

(cf. KONECT: http://konect.uni-koblenz.de/networks/flickr-links) Undirected network of Flickr users and their connections.

Flickr Links Data:

(cf. KONECT: http://konect.uni-koblenz.de/networks/flickr-links) Undirected network of Flickr users and their connections.

Flickr Links Data:

(cf. KONECT: http://konect.uni-koblenz.de/networks/flickr-links) Undirected network of Flickr users and their connections.

Goal: Estimate the power-law index α .

T. Wang (ORIE)

Hill Est	June 21st, 2018		2 / 21
Assortativity	-0.015282	Ē.	うくで
Relative edge distribution entropy	82.2%		
Gini coefficient	88.2%		
Power law exponent (estimated) wi	th d _{min} 1.7310 (d _{min} = 8)		
4-tour count	3,483,825,597,342		
Square count	428,143,604,855		

Notations:

- G(n) := the random graph after *n*-steps.
- $[n] := \{1, 2, ..., n\}$, set of nodes in G(n).
- $D_i(n) := \text{Degree of node } i \in [n].$
- $\delta > -1$, parameter.

Initialize with a single node having a self loop.

This node is considered as having degree 2, i.e. $D_1(1) = 2.$ From G(n) to G(n+1), assuming **linear** preferential attachment function: $f(i) = i + \delta$:

The new node n + 1 attaches to node $i \in [n]$ with probability

$$\frac{D_i(n)+\delta}{(2+\delta)n},$$

and $D_{n+1}(n+1) = 1$.

Define
$$N_k(n) := \sum_{j=1}^n \mathbf{1}_{\{D_j(n)=k\}}$$
, then as $n \to \infty$,
 $N_k(n)/n \xrightarrow{a.s.} p_k \sim C(\delta)k^{-3-\delta} =: C(\delta)k^{-1-\alpha}$ for $k \to \infty$.

Define
$$N_k(n) := \sum_{j=1}^n \mathbf{1}_{\{D_j(n)=k\}}$$
, then as $n \to \infty$,
 $N_k(n)/n \xrightarrow{a.s.} p_k \sim C(\delta)k^{-3-\delta} =: C(\delta)k^{-1-\alpha} \text{ for } k \to \infty.$

How to estimate the power-law index α ?

Option 1:

- Find MLE of δ , $\hat{\delta}^{MLE}$ (cf. Gao and van der Vaart (2017)).
- Plugging $\hat{\delta}^{\textit{MLE}}$ into the theoretical value of α gives

$$\hat{\alpha}^{MLE} = 2 + \hat{\delta}^{MLE}$$

Define
$$N_k(n) := \sum_{j=1}^n \mathbf{1}_{\{D_j(n)=k\}}$$
, then as $n \to \infty$,
 $N_k(n)/n \xrightarrow{a.s.} p_k \sim C(\delta)k^{-3-\delta} =: C(\delta)k^{-1-\alpha} \text{ for } k \to \infty.$

How to estimate the power-law index α ?

Option 1:

- Find MLE of δ , $\hat{\delta}^{MLE}$ (cf. Gao and van der Vaart (2017)).
- Plugging $\hat{\delta}^{\textit{MLE}}$ into the theoretical value of α gives

$$\hat{\alpha}^{\textit{MLE}} = 2 + \hat{\delta}^{\textit{MLE}}$$

However, the MLE approach is not **ROBUST** against modeling error, compared to the extreme value estimation approach (cf. Wan, Wang, Davis and Resnick (2017)).

Option 2: Hill estimator.

Let $X_{(1)} \ge ... \ge X_{(n)}$ be order statistics of $\{X_i : 1 \le i \le n\}$, then the Hill estimator $H_{k,n}$ based on k upper order statistics of $\{X_i : 1 \le i \le n\}$ is defined as (cf. Hill (1975))

$$H_{k,n} = rac{1}{k} \sum_{i=1}^{k} \log rac{X_{(1)}}{X_{(k+1)}}.$$

Option 2: Hill estimator.

Let $X_{(1)} \ge \ldots \ge X_{(n)}$ be order statistics of $\{X_i : 1 \le i \le n\}$, then the Hill estimator $H_{k,n}$ based on k upper order statistics of $\{X_i : 1 \le i \le n\}$ is defined as (cf. Hill (1975))

$$H_{k,n} = rac{1}{k} \sum_{i=1}^k \log rac{X_{(1)}}{X_{(k+1)}}.$$

ROBUST and widely used in practice, e.g. KONECT:

Option 2: Hill estimator.

Let $X_{(1)} \ge \ldots \ge X_{(n)}$ be order statistics of $\{X_i : 1 \le i \le n\}$, then the Hill estimator $H_{k,n}$ based on k upper order statistics of $\{X_i : 1 \le i \le n\}$ is defined as (cf. Hill (1975))

$$H_{k,n} = rac{1}{k} \sum_{i=1}^k \log rac{X_{(1)}}{X_{(k+1)}}.$$

ROBUST and widely used in practice, e.g. KONECT:

Power law exponent

The **power law exponent** is a number that characterizes the degrees of the nodes in the network. In many circumstances, networks are modeled to follow a degree distribution power law, i.e., the number of nodes with degree *n* is taken to be proportional to the power $n^{-\gamma}$, for a constant γ larger than one [1]. This constant γ is called the power law exponent. Given a network, its degree distribution can be used to estimate a value γ . There are multiple ways of estimating γ , and thus a network does not have a single definite value of it. In KONECT, we estimate γ using the robust method given in [2]

$$\gamma = 1 + n \left(\sum_{u \in V} \ln \frac{d(u)}{d_{\min}} \right)^{-1}$$

in which d_{\min} is the minimal degree.

- [1] M. E. J. Newman. Power laws, Pareto distributions and Zipf's law. Contemporary Phys., 46(5):323-351, 2006.
- [2] Albert-LÄiszlÄ³ BarabÄisi and RÄ©ka Albert. Emergence of scaling in random networks. Science, 286(5439):509–512, 1999.

Consistency of Hill Estimators

Suppose that $\{X_i : 1 \le i \le n\}$ iid and non-negative with common regularly varying distribution tail $\overline{F} \in RV_{-\alpha}$, $\alpha > 0$, then:

• There exists a sequence $\{b(n)\}$ such that

$$\sum_{i=1}^{n} \epsilon_{X_i/b(n)} \Rightarrow PRM(\nu_{\alpha}) \quad \text{in } M_p((0,\infty]),$$

with $\nu_{\alpha}(y,\infty] = y^{-\alpha}$, y > 0.

• For some intermediate sequence $k_n \to \infty$, $k_n/n \to 0$ as $n \to \infty$:

$$\frac{1}{k_n}\sum_{i=1}^n \epsilon_{X_i/b(n/k_n)} \Rightarrow \nu_\alpha \qquad \text{in } M_+((0,\infty]).$$

The Hill estimator is consistent:

$$H_{k_n,n} \xrightarrow{P} 1/\alpha.$$

Network data is **NOT** iid!!! Will $H_{k_n,n}$ still be consistent?

3

< 口 > < 同

Network data is **NOT** iid!!! Will $H_{k_n,n}$ still be consistent?

Drawing analogies to the iid case, we want to show:

• The degree sequence has empirical measure

$$\sum_{i=1}^{n} \epsilon_{D_i(n)/n^{1/(2+\delta)}}$$

converging weakly to some random limit point measure in $M_p((0,\infty])$.

Network data is **NOT** iid!!! Will $H_{k_n,n}$ still be consistent?

Drawing analogies to the iid case, we want to show:

• The degree sequence has empirical measure

$$\sum_{i=1}^{n} \epsilon_{D_i(n)/n^{1/(2+\delta)}}$$

converging weakly to some random limit point measure in $M_p((0,\infty])$.

• For some intermediate sequence k_n and some function $b(\cdot)$:

$$\frac{1}{k_n}\sum_{i=1}^n \epsilon_{D_i(n)/b(n/k_n)} \Rightarrow \nu_{2+\delta}, \quad \text{in } M_+((0,\infty]).$$

This would facilitate proving consistency of the Hill estimator.

Idea: Embed the degree sequence $(D_1(n), \ldots, D_n(n), 0, \ldots)$ into a sequence of **birth immigration processes** (B.I. processes).

Idea: Embed the degree sequence $(D_1(n), \ldots, D_n(n), 0, \ldots)$ into a sequence of **birth immigration processes** (B.I. processes). **Preliminaries:**

• A linear birth process $\{\zeta(t) : t \ge 0\}$ is a continuous time Markov process taking values in the set $\mathbb{N}^+ = \{1, 2, \ldots\}$ and having a transition rate $q_{i,i+1} = \lambda i$, $i \in \mathbb{N}^+$, $\lambda > 0$.

Idea: Embed the degree sequence $(D_1(n), \ldots, D_n(n), 0, \ldots)$ into a sequence of **birth immigration processes** (B.I. processes). **Preliminaries:**

- A linear birth process $\{\zeta(t) : t \ge 0\}$ is a continuous time Markov process taking values in the set $\mathbb{N}^+ = \{1, 2, ...\}$ and having a transition rate $q_{i,i+1} = \lambda i$, $i \in \mathbb{N}^+$, $\lambda > 0$.
- The linear birth process {ζ(t) : t ≥ 0} is a mixed Poisson process, i.e. with ζ(0) = 1, we have

$$\zeta(t) = 1 + N_0 \big(W(e^{\lambda t} - 1), \ t \ge 0,$$

where $\{N_0(t) : t \ge 0\}$ is a unit rate homogeneous Poisson on \mathbb{R}_+ with $N_0(0) = 0$ and W is a unit exponential random variable independent of N_0 .

Idea: Embed the degree sequence $(D_1(n), \ldots, D_n(n), 0, \ldots)$ into a sequence of **birth immigration processes** (B.I. processes). **Preliminaries:**

- A linear birth process $\{\zeta(t) : t \ge 0\}$ is a continuous time Markov process taking values in the set $\mathbb{N}^+ = \{1, 2, ...\}$ and having a transition rate $q_{i,i+1} = \lambda i$, $i \in \mathbb{N}^+$, $\lambda > 0$.
- The linear birth process {ζ(t) : t ≥ 0} is a mixed Poisson process, i.e. with ζ(0) = 1, we have

$$\zeta(t) = 1 + N_0 \big(W(e^{\lambda t} - 1), \ t \ge 0,$$

where $\{N_0(t) : t \ge 0\}$ is a unit rate homogeneous Poisson on \mathbb{R}_+ with $N_0(0) = 0$ and W is a unit exponential random variable independent of N_0 .

• For $\zeta(0) = 1$, $e^{-\lambda t}\zeta(t) \xrightarrow{a.s.} W \sim \mathsf{Exp}(1)$.

- Suppose that N_θ(t) is the counting function of homogeneous Poisson points 0 < τ₁ < τ₂ < ... with rate θ.
- Independent of $N_{\theta}(\cdot)$, we have independent copies of a linear birth process $\{\zeta_i(t) : t \ge 0\}_{i\ge 1}$ with parameter $\lambda > 0$ and $\zeta_i(0) = 1$ for $i \ge 1$.

- Suppose that N_θ(t) is the counting function of homogeneous Poisson points 0 < τ₁ < τ₂ < ... with rate θ.
- Independent of $N_{\theta}(\cdot)$, we have independent copies of a linear birth process $\{\zeta_i(t) : t \ge 0\}_{i\ge 1}$ with parameter $\lambda > 0$ and $\zeta_i(0) = 1$ for $i \ge 1$.
- Let BI(0) = 0, then the B.I. process is a shot noise process with form

$$BI(t) := \sum_{i=1}^{\infty} \zeta_i(t-\tau_i) \mathbf{1}_{\{t \geq \tau_i\}} = \sum_{i=1}^{N_{\theta}(t)} \zeta_i(t-\tau_i).$$

- Suppose that N_θ(t) is the counting function of homogeneous Poisson points 0 < τ₁ < τ₂ < ... with rate θ.
- Independent of $N_{\theta}(\cdot)$, we have independent copies of a linear birth process $\{\zeta_i(t) : t \ge 0\}_{i\ge 1}$ with parameter $\lambda > 0$ and $\zeta_i(0) = 1$ for $i \ge 1$.
- Let BI(0) = 0, then the B.I. process is a shot noise process with form

$$BI(t) := \sum_{i=1}^{\infty} \zeta_i(t-\tau_i) \mathbf{1}_{\{t \geq \tau_i\}} = \sum_{i=1}^{N_{\theta}(t)} \zeta_i(t-\tau_i).$$

• For $BI(0) = k \ge 0$,

$$e^{-\lambda t}BI(t) \xrightarrow{a.s.} \sigma \sim \mathbf{Gamma}(k + \theta/\lambda, 1).$$

B.I. Process Setup Let $\{BI_i(t) : t \ge 0\}_{i\ge 1}$ be independent B.I. processes such that

$$BI_1(0) = 2$$
, $BI_i(0) = 1$, $\forall i \ge 2$.

Each has transition rate is $q_{j,j+1} = j + \delta$, $\delta > -1$.

B.I. Process Setup Let $\{BI_i(t) : t \ge 0\}_{i\ge 1}$ be independent B.I. processes such that

$$BI_1(0) = 2, \quad BI_i(0) = 1, \quad \forall i \ge 2.$$

Each has transition rate is $q_{j,j+1} = j + \delta$, $\delta > -1$.

- Set $T_1 = 0$ and relative to $BI_1(\cdot)$ define T_2 be the first time that $BI_1(\cdot)$ jumps.
- Start the new B.I. process $\{Bl_2(t T_2) : t \ge T_2\}$ at T_2 .

B.I. Process Setup Let $\{Bl_i(t) : t \ge 0\}_{i\ge 1}$ be independent B.I. processes such that

$$BI_1(0) = 2, \quad BI_i(0) = 1, \quad \forall i \ge 2.$$

Each has transition rate is $q_{j,j+1} = j + \delta$, $\delta > -1$.

- Set $T_1 = 0$ and relative to $BI_1(\cdot)$ define T_2 be the first time that $BI_1(\cdot)$ jumps.
- Start the new B.I. process $\{Bl_2(t T_2) : t \ge T_2\}$ at T_2 .
- Let T_3 be the first time after T_2 that either $Bl_1(\cdot)$ or $Bl_2(\cdot)$ jumps.
- Start a new, independent B.I. process $\{BI_3(t T_3)\}_{t \ge T_3}$ at T_3 .
- Continue in this way.

Figure 5.1: Embedding procedure for Model A assuming $\tau_1^{(2)} + T_2 < \tau_2^{(1)}$.

Embedding Results:

For each *n*, let $\mathbf{D}(n) := (D_1(n), D_2(n), \dots, D_n(n), 0, \dots)$ and $\widetilde{\mathbf{D}}(n) := (Bl_1(T_n), Bl_2(T_n - T_2), \dots, Bl_n(0), 0, \dots)$. Then $\mathbf{D}(n)$ and $\widetilde{\mathbf{D}}(n)$ have the same distribution in \mathbb{R}^{∞} .

Embedding Results:

For each *n*, let $\mathbf{D}(n) := (D_1(n), D_2(n), \dots, D_n(n), 0, \dots)$ and $\widetilde{\mathbf{D}}(n) := (BI_1(T_n), BI_2(T_n - T_2), \dots, BI_n(0), 0, \dots)$. Then $\mathbf{D}(n)$ and $\widetilde{\mathbf{D}}(n)$ have the same distribution in \mathbb{R}^{∞} .

Degree Sequence \Rightarrow B.I. Processes.

Embedding Results:

For each *n*, let $\mathbf{D}(n) := (D_1(n), D_2(n), \dots, D_n(n), 0, \dots)$ and $\widetilde{\mathbf{D}}(n) := (Bl_1(T_n), Bl_2(T_n - T_2), \dots, Bl_n(0), 0, \dots)$. Then $\mathbf{D}(n)$ and $\widetilde{\mathbf{D}}(n)$ have the same distribution in \mathbb{R}^{∞} .

Degree Sequence \Rightarrow B.I. Processes.

Convergence of $\{T_n\}$: The counting process $N(t) := \frac{1}{2} \sum_{i=1}^{\infty} BI_i(t - T_i) \mathbf{1}_{\{t \ge T_i\}}$ is a pure birth process with transition rate $q_{i,i+1} = (2 + \delta)i$. Also,

$$\frac{n}{\mathrm{e}^{(2+\delta)T_n}} \xrightarrow{\mathrm{a.s.}} W,$$

where W is an exponential random variable with unit mean.

Convergence of the Degree for a Fixed Node:

(i) Suppose that $\{\sigma_i\}_{i\geq 1}$ is a sequence of independent Gamma random variables with

$$\sigma_1\sim {\sf Gamma}(2+\delta,1), \quad {\sf and} \quad \sigma_i\sim {\sf Gamma}(1+\delta,1), \quad i\geq 2,$$

then

$$\frac{D_i(n)}{n^{1/(2+\delta)}} \Rightarrow W^{-1/(2+\delta)}\sigma_i e^{-T_i}.$$

Convergence of the Degree for a Fixed Node:

(i) Suppose that $\{\sigma_i\}_{i\geq 1}$ is a sequence of independent Gamma random variables with

$$\sigma_1\sim {\sf Gamma}(2+\delta,1), \quad {\sf and} \quad \sigma_i\sim {\sf Gamma}(1+\delta,1), \quad i\geq 2,$$

then

$$\frac{D_i(n)}{n^{1/(2+\delta)}} \Rightarrow W^{-1/(2+\delta)}\sigma_i e^{-T_i}.$$

(ii) Set $D_i(n) := 0$ for all $i \ge n+1$. For $\delta > -1$,

$$\max_{i\geq 1}\frac{D_i(n)}{n^{1/(2+\delta)}} \Rightarrow W^{-1/(2+\delta)}\max_{i\geq 1}\sigma_i e^{-T_i},$$

Convergence of the Degree for a Fixed Node:

(i) Suppose that $\{\sigma_i\}_{i\geq 1}$ is a sequence of independent Gamma random variables with

$$\sigma_1\sim {\sf Gamma}(2+\delta,1), \quad {\sf and} \quad \sigma_i\sim {\sf Gamma}(1+\delta,1), \quad i\geq 2,$$

then

$$\frac{D_i(n)}{n^{1/(2+\delta)}} \Rightarrow W^{-1/(2+\delta)}\sigma_i e^{-T_i}.$$

(ii) Set $D_i(n) := 0$ for all $i \ge n + 1$. For $\delta > -1$,

$$\max_{i\geq 1}\frac{D_i(n)}{n^{1/(2+\delta)}} \Rightarrow W^{-1/(2+\delta)}\max_{i\geq 1}\sigma_i e^{-T_i},$$

Convergence of the Empirical Measure: In $M_p((0,\infty])$, we have for $\delta \ge 0$,

$$\sum_{i=1}^{n} \epsilon_{D_{i}(n)/n^{1/(2+\delta)}}(\cdot) \Rightarrow \sum_{i=1}^{\infty} \epsilon_{\sigma_{i}e^{-\tau_{i}}/W^{1/(2+\delta)}}(\cdot).$$

Consistency of Hill Estimators: Heuristics

From the limit measure:

• Gamma random variables σ_i have light tailed distributions.

From the limit measure:

- Gamma random variables σ_i have light tailed distributions.
 - $\Rightarrow \{\sigma_i : i \ge 1\}$ may not distort the consistency result.

From the limit measure:

- Gamma random variables σ_i have light tailed distributions.
 - $\Rightarrow \{\sigma_i : i \ge 1\}$ may not distort the consistency result.

• Set $Y_i := e^{-T_i} / W^{1/(2+\delta)}$ and apply the Hill estimator to the Y's:

$$H_{k,n} = \frac{1}{k} \sum_{i=1}^{k} \log \left(\frac{Y_i}{Y_{k+1}} \right) = \frac{1}{k} \sum_{i=1}^{k} (T_{k+1} - T_i).$$

From the limit measure:

- Gamma random variables σ_i have light tailed distributions.
 - $\Rightarrow \{\sigma_i : i \ge 1\}$ may not distort the consistency result.
- Set $Y_i := e^{-T_i} / W^{1/(2+\delta)}$ and apply the Hill estimator to the Y's:

$$H_{k,n} = \frac{1}{k} \sum_{i=1}^{k} \log \left(\frac{Y_i}{Y_{k+1}} \right) = \frac{1}{k} \sum_{i=1}^{k} (T_{k+1} - T_i).$$

• By the B.I. process construction, we have

$$T_{n+1} - T_n \stackrel{d}{=} E_n/(n(2+\delta)),$$

where E_n , $n \ge 1$ are iid unit exponential random variables.

From the limit measure:

- Gamma random variables σ_i have light tailed distributions.
 - $\Rightarrow \{\sigma_i : i \ge 1\}$ may not distort the consistency result.
- Set $Y_i := e^{-T_i} / W^{1/(2+\delta)}$ and apply the Hill estimator to the Y's:

$$H_{k,n} = \frac{1}{k} \sum_{i=1}^{k} \log\left(\frac{Y_i}{Y_{k+1}}\right) = \frac{1}{k} \sum_{i=1}^{k} (T_{k+1} - T_i).$$

• By the B.I. process construction, we have

$$T_{n+1} - T_n \stackrel{d}{=} E_n/(n(2+\delta)),$$

where E_n , $n \ge 1$ are iid unit exponential random variables.

• Provided that $k \to \infty$, we have

$$H_{k,n} = \frac{1}{k} \sum_{i=1}^{k} \sum_{l=i}^{k} (T_{l+1} - T_l) = \frac{1}{k} \sum_{l=1}^{k} \frac{E_l}{2+\delta} \xrightarrow{a.s.} \frac{1}{2+\delta}.$$

For rigorous justifications we need:

For some function $b(\cdot)$ and some intermediate sequence $\{k_n\}$ wich $k_n \to \infty$ and $k_n/n \to 0$ as $n \to \infty$,

$$\frac{1}{k_n}\sum_{i=1}^n \epsilon_{D_i(n)/b(n/k_n)} \Rightarrow \nu_{2+\delta}, \quad \text{in } M_+((0,\infty]).$$

For rigorous justifications we need:

For some function $b(\cdot)$ and some intermediate sequence $\{k_n\}$ wich $k_n \to \infty$ and $k_n/n \to 0$ as $n \to \infty$,

$$\frac{1}{k_n}\sum_{i=1}^n \epsilon_{D_i(n)/b(n/k_n)} \Rightarrow \nu_{2+\delta}, \quad \text{in } M_+((0,\infty]).$$

Note that for any y > 0,

$$\frac{1}{k_n}\sum_{i=1}^n \epsilon_{D_i(n)/b(n/k_n)}(y,\infty] = \frac{1}{k_n}N_{>b(n/k_n)y}(n).$$

For rigorous justifications we need:

For some function $b(\cdot)$ and some intermediate sequence $\{k_n\}$ wich $k_n \to \infty$ and $k_n/n \to 0$ as $n \to \infty$,

$$\frac{1}{k_n}\sum_{i=1}^n \epsilon_{D_i(n)/b(n/k_n)} \Rightarrow \nu_{2+\delta}, \quad \text{in } M_+((0,\infty]).$$

Note that for any y > 0,

$$\frac{1}{k_n}\sum_{i=1}^n \epsilon_{D_i(n)/b(n/k_n)}(y,\infty] = \frac{1}{k_n}N_{>b(n/k_n)y}(n).$$

Hence, we need to control:

(iii) Difference between $\frac{n}{k_n}p_{>b(n/k_n)y}$ and $y^{-(2+\delta)}$.

We need the following: as $n \to \infty$,

(i)
$$\frac{1}{k_n} |N_{>b(n/k_n)y} - \mathbb{E}(N_{>b(n/k_n)y}(n))| \xrightarrow{P} 0.$$

(ii) $\frac{1}{k_n} |\mathbb{E}(N_{>b(n/k_n)y}(n)) - np_{>b(n/k_n)y}| \longrightarrow 0.$
(iii) $|\frac{n}{k_n} p_{>b(n/k_n)y} - y^{-(2+\delta)}| \longrightarrow 0.$

The third part can be justified using Stirling's formula. We prove (i) and (ii) by establishing the following concentration results:

We need the following: as $n \to \infty$,

(i)
$$\frac{1}{k_n} |N_{>b(n/k_n)y} - \mathbb{E}(N_{>b(n/k_n)y}(n))| \xrightarrow{P} 0.$$

(ii) $\frac{1}{k_n} |\mathbb{E}(N_{>b(n/k_n)y}(n)) - np_{>b(n/k_n)y}| \longrightarrow 0.$
(iii) $|\frac{n}{k_n} p_{>b(n/k_n)y} - y^{-(2+\delta)}| \longrightarrow 0.$

The third part can be justified using Stirling's formula. We prove (i) and (ii) by establishing the following concentration results:

Concentration of the Degree Sequence:

For $\delta > -1$ there exists a constant $C > 2\sqrt{2}$, such that as $n \to \infty$,

$$\mathbb{P}\left(\max_{k}|N_{>k}(n)-np_{>k}|\geq C(1+\sqrt{n\log n})\right)=o(1).$$

We need the following: as $n \to \infty$,

(i)
$$\frac{1}{k_n} |N_{>b(n/k_n)y} - \mathbb{E}(N_{>b(n/k_n)y}(n))| \xrightarrow{P} 0.$$

(ii) $\frac{1}{k_n} |\mathbb{E}(N_{>b(n/k_n)y}(n)) - np_{>b(n/k_n)y}| \longrightarrow 0.$
(iii) $|\frac{n}{k_n} p_{>b(n/k_n)y} - y^{-(2+\delta)}| \longrightarrow 0.$

The third part can be justified using Stirling's formula. We prove (i) and (ii) by establishing the following concentration results:

Concentration of the Degree Sequence:

For $\delta > -1$ there exists a constant $C > 2\sqrt{2}$, such that as $n \to \infty$,

$$\mathbb{P}\left(\max_{k}|N_{>k}(n)-np_{>k}|\geq C(1+\sqrt{n\log n})\right)=o(1).$$

Such concentration results restrict the choice of k_n , since:

$$\mathbb{P}\left(\left|N_{\geq [b(n/k_n)y]}(n) - \mathbb{E}(N_{\geq [b(n/k_n)y]}(n))\right| > \epsilon k_n\right)$$

$$\leq \mathbb{P}\left(\max_k |N_{>k}(n) - \mathbb{E}(N_{>k}(n))| \ge \epsilon k_n\right).$$

Hence, the intermediate sequence k_n must be large enough so that

$$\mathbb{P}\left(\max_{k}|N_{>k}(n)-\mathbb{E}(N_{>k}(n))|\geq\epsilon k_{n}
ight)=o(1).$$

Hence, the intermediate sequence k_n must be large enough so that

$$\mathbb{P}\left(\max_{k}|N_{>k}(n)-\mathbb{E}(N_{>k}(n))|\geq\epsilon k_{n}
ight)=o(1).$$

Sufficient condition:

$$\liminf_{n\to\infty} k_n/(n\log n)^{1/2} > 0.$$

Hence, the intermediate sequence k_n must be large enough so that

$$\mathbb{P}\left(\max_{k}|N_{>k}(n)-\mathbb{E}(N_{>k}(n))|\geq\epsilon k_{n}
ight)=o(1).$$

Sufficient condition:

$$\liminf_{n\to\infty} k_n/(n\log n)^{1/2} > 0.$$

Convergence of the Tail Empirical Measure: Let $D_{(1)}(n) \ge D_{(2)}(n) \ge \cdots \ge D_{(n)}(n)$ be the order statistics of the degree sequence. Suppose that $\{k_n\}$ is some intermediate sequence satisfying

$$\liminf_{n \to \infty} k_n / (n \log n)^{1/2} > 0 \quad \text{and} \quad k_n / n \to 0 \quad \text{as} \quad n \to \infty,$$

then

$$\frac{1}{k_n}\sum_{i=1}^n \epsilon_{D_i(n)/D_{(k_n)}(n)}(\cdot) \Rightarrow \nu_{2+\delta},$$

in $M_+((0,\infty])$.

Consistency of the Hill Estimator:

Define the Hill estimator as

$$H_{k_n,n} = rac{1}{k_n} \sum_{i=1}^{k_n} \log rac{D_{(i)}(n)}{D_{(k_n+1)}(n)}.$$

Let $\{k_n\}$ be an intermediate sequence satisfying

 $\liminf_{n\to\infty} k_n/(n\log n)^{1/2} > 0 \quad \text{and} \quad k_n/n\to 0 \quad \text{as} \quad n\to\infty.$

Then

$$H_{k_n,n} \xrightarrow{P} \frac{1}{2+\delta}.$$

Consistency of the Hill Estimator:

Define the Hill estimator as

$$H_{k_n,n} = rac{1}{k_n} \sum_{i=1}^{k_n} \log rac{D_{(i)}(n)}{D_{(k_n+1)}(n)}.$$

Let $\{k_n\}$ be an intermediate sequence satisfying

 $\liminf_{n\to\infty} k_n/(n\log n)^{1/2} > 0 \quad \text{and} \quad k_n/n\to 0 \quad \text{as} \quad n\to\infty.$

Then

$$H_{k_n,n} \xrightarrow{P} rac{1}{2+\delta}.$$

Proof idea: Write the Hill estimator as $H_{k_n,n} = \int_1^\infty \hat{\nu}_n(y,\infty] \frac{dy}{y} =: T(\hat{\nu}_n)$, and justify the the continuity of the mapping T at $\nu_{2+\delta}$ so that

$$H_{k_n,n} = \int_1^\infty \hat{\nu}_n(y,\infty] \frac{\mathrm{d}y}{y} \xrightarrow{P} \int_1^\infty \nu_{2+\delta}(y,\infty] \frac{\mathrm{d}y}{y} = \frac{1}{2+\delta}.$$

- Undirected linear preferential attachment model is widely used to model social networks.
 - Generates power laws.

э

- Undirected linear preferential attachment model is widely used to model social networks.
 - Generates power laws.
- Practical issue: estimate the power-law exponent.
 - Hill estimator \Rightarrow More **ROBUST**.

- Undirected linear preferential attachment model is widely used to model social networks.
 - Generates power laws.
- Practical issue: estimate the power-law exponent.
 - Hill estimator \Rightarrow More **ROBUST**.
- Consistency of Hill estimator for network data:
 - Embedding technique:
 - Degree sequence \mapsto A sequence of birth immigration processes.
 - Convergence of the tail empirical measure.
 - Convergence of Hill.

- T. Wang and S.I. Resnick. Consistency of Hill estimators in a linear preferential attachment model. ArXiv e-prints, 2017. Submitted to Extremes, under revision.
- F. Gao and A. van der Vaart (2017). On the asymptotic normality of estimating the affine preferential attachment network models with random initial degrees. Stoch. Process. Appl. 127.11, pp. 3754–3775.
- B.M. Hill. A simple general approach to inference about the tail of a distribution. Ann. Statist., 3:1163–1174, 1975.