Threshold Selection for Multivariate Heavy-Tailed Data

Phyllis Wan ${ }^{*, * *}$, Richard Davis*

Columbia University*, Erasmus University Rotterdam**

June 21, 2018

Regular variation

- Univariate regularly varying: $X \in \mathbb{R}_{+}, X \sim R V(\alpha)$ if

$$
\lim _{t \rightarrow \infty} \mathbb{P}[X>t x \mid X>t]=c(x), \quad x \geq 1
$$

- c is of the form $c(x)=x^{-\alpha}, \alpha>0$.

Regular variation

- Univariate regularly varying: $X \in \mathbb{R}_{+}, X \sim R V(\alpha)$ if

$$
\lim _{t \rightarrow \infty} \mathbb{P}[X>t x \mid X>t]=c(x), \quad x \geq 1
$$

- c is of the form $c(x)=x^{-\alpha}, \alpha>0$.
- Multivariate regularly varying: $\mathbf{X} \in \mathbb{R}_{+}^{d}, \mathbf{X} \sim \operatorname{MRV}(\alpha)$ if

$$
\lim _{t \rightarrow \infty} \mathbb{P}[\mathbf{X}>t \mathbf{x} \mid \mathbf{X}>t \mathbf{1}]=\nu(\mathbf{x}), \quad \mathbf{x} \geq \mathbf{1}
$$

- ν satisfies $\nu(s \mathbf{x})=s^{-\alpha} \nu(\mathbf{x}), \alpha>0$

Regular variation

- Univariate regularly varying: $X \in \mathbb{R}_{+}, X \sim R V(\alpha)$ if

$$
\lim _{t \rightarrow \infty} \mathbb{P}[X>t x \mid X>t]=c(x), \quad x \geq 1
$$

- c is of the form $c(x)=x^{-\alpha}, \alpha>0$.
- Multivariate regularly varying: $\mathbf{X} \in \mathbb{R}_{+}^{d}, \mathbf{X} \sim \mathbf{M R V}(\alpha)$ if

$$
\lim _{t \rightarrow \infty} \mathbb{P}[\mathbf{X}>t \mathbf{x} \mid \mathbf{X}>t \mathbf{1}]=\nu(\mathbf{x}), \quad \mathbf{x} \geq \mathbf{1}
$$

- ν satisfies $\nu(s \mathbf{x})=s^{-\alpha} \nu(\mathbf{x}), \alpha>0$
- Let $(R, \boldsymbol{\Theta})=\left(\|\mathbf{X}\|, \frac{\mathbf{x}}{\|\mathbf{x}\|}\right)$, then $\mathbf{X} \sim \mathbf{M R V}(\alpha)$ if and only if

1. $R \sim$ Univariate $R V(\alpha)$
2. $P(\Theta \in \cdot \mid R>r) \rightarrow S(\cdot), \quad r \rightarrow \infty$.

- In other words, Θ becomes independent of R as $R \rightarrow \infty$.
- S characterizes the extremal dependence.

Example: $X_{i}, Y_{i} \stackrel{i i d}{\sim}\left|t_{1}\right|$

Example: $X_{i}, Y_{i} \stackrel{i i d}{\sim}\left|t_{1}\right|$

Example: $X_{i}, Y_{i} \stackrel{i i d}{\sim}\left|t_{1}\right|$

Example: $X_{i}, Y_{i} \stackrel{i i d}{\sim}\left|t_{1}\right|$

Example: $\left(X_{i}, Y_{i}\right) \stackrel{i i d}{\sim}$ Bilogistic

- $F(x, y)=\exp \left\{-\left(x^{-1 / s}+y^{-1 / s}\right)^{s}\right\}$
- $s=0.6$

Example: $\left(X_{i}, Y_{i}\right) \stackrel{i i d}{\sim}$ Bilogistic

Example: $\left(X_{i}, Y_{i}\right) \stackrel{i i d}{\sim}$ Bilogistic

Example: $\left(X_{i}, Y_{i}\right) \stackrel{i i d}{\sim}$ Bilogistic
99.5\%-quantile

90\%-quantile

99\%-quantile

70\%-quantile

95\%-quantile

50\%-quantile

Estimating $S(\cdot)$, the limiting angular distribution
Observe $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n} \sim \mathbf{M R V}(\alpha)$ and $\left(R_{i}, \boldsymbol{\Theta}_{i}\right)=\left(\left\|\mathbf{X}_{i}\right\|, \frac{\mathbf{X}_{i}}{\left\|\mathbf{X}_{i}\right\|}\right)$. We know

$$
P(\boldsymbol{\Theta} \in \cdot \mid R>r) \rightarrow S(\cdot), \quad r \rightarrow \infty .
$$

How to estimate $S(\cdot)$?

- Look at the subset $\boldsymbol{\Theta}_{i_{1}}, \ldots, \boldsymbol{\Theta}_{i_{K}}$ where $R_{i_{k}}>r_{0}$ for r_{0} large

Estimating $S(\cdot)$, the limiting angular distribution
Observe $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n} \sim \mathbf{M R V}(\alpha)$ and $\left(R_{i}, \mathbf{\Theta}_{i}\right)=\left(\left\|\mathbf{X}_{i}\right\|, \frac{\mathbf{X}_{i}}{\left\|\mathbf{X}_{i}\right\|}\right)$. We know

$$
P(\boldsymbol{\Theta} \in \cdot \mid R>r) \rightarrow S(\cdot), \quad r \rightarrow \infty .
$$

How to estimate $S(\cdot)$?

- Look at the subset $\boldsymbol{\Theta}_{i_{1}}, \ldots, \boldsymbol{\Theta}_{i_{K}}$ where $R_{i_{k}}>r_{0}$ for r_{0} large

How large should r_{0} be?

- Conditional on $R>r_{0},(R, \boldsymbol{\Theta})$ are approximately independent

Estimating $S(\cdot)$, the limiting angular distribution

Observe $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n} \sim \mathbf{M R V}(\alpha)$ and $\left(R_{i}, \boldsymbol{\Theta}_{i}\right)=\left(\left\|\mathbf{X}_{i}\right\|, \frac{\mathbf{X}_{i}}{\left\|\mathbf{X}_{i}\right\|}\right)$. We know

$$
P(\Theta \in \cdot \mid R>r) \rightarrow S(\cdot), \quad r \rightarrow \infty .
$$

How to estimate $S(\cdot)$?

- Look at the subset $\boldsymbol{\Theta}_{i_{1}}, \ldots, \boldsymbol{\Theta}_{i_{K}}$ where $R_{i_{k}}>r_{0}$ for r_{0} large

How large should r_{0} be?

- Conditional on $R>r_{0},(R, \boldsymbol{\Theta})$ are approximately independent

How to measure the dependence between R and $\boldsymbol{\Theta}$?

- R is heavy-tailed - may not even have 1st moment!
- Θ could be multi-dimensional
- Solution: distance covariance

Distance covariance

- Feuerverger (1993), Székely et al. (2007), Meintanis \& Iliopoulos (2008).
- $X \in \mathbb{R}^{p}, Y \in \mathbb{R}^{q}$, let φ denote the characteristic function, then

$$
X \perp Y \Longleftrightarrow \varphi_{X, Y}=\varphi_{X} \varphi_{Y}
$$

- Distance covariance w.r.t. weight measure $\mu(s, t)$

$$
T(X, Y ; \mu)=\int_{\mathbb{R}^{p+q}}\left|\varphi_{X, Y}(s, t)-\varphi_{X}(s) \varphi_{Y}(t)\right|^{2} \mu(d s, d t)
$$

- Distance correlation

$$
R(X, Y ; \mu)=\frac{T(X, Y ; \mu)}{\sqrt{T(X, X ; \mu) T(Y, Y ; \mu)}} \in[0,1]
$$

Distance covariance

$$
T(X, Y ; \mu)=\int_{\mathbb{R}^{p+q}}\left|\varphi_{X, Y}(s, t)-\varphi_{X}(s) \varphi_{Y}(t)\right|^{2} \mu(d s, d t)
$$

Empirical version?

Distance covariance

$$
\begin{aligned}
T(X, Y ; \mu) & =\int\left|\varphi_{X, Y}(s, t)-\varphi_{X}(s) \varphi_{Y}(t)\right|^{2} \mu(d s, d t) \\
& =\int\left|\mathbb{E} e^{i s X+i t Y}-\mathbb{E} e^{i s X} \mathbb{E} e^{i t Y}\right|^{2} \mu(d s, d t)
\end{aligned}
$$

Distance covariance

$$
\begin{aligned}
T(X, Y ; \mu) & =\int\left|\varphi_{X, Y}(s, t)-\varphi_{X}(s) \varphi_{Y}(t)\right|^{2} \mu(d s, d t) \\
& =\int\left|\mathbb{E} e^{i s X+i t Y}-\mathbb{E} e^{i s X} \mathbb{E} e^{i t Y}\right|^{2} \mu(d s, d t) \\
& \left(\text { Let } X^{\prime}, Y^{\prime}, Y^{\prime \prime}, Y^{\prime \prime \prime} \text { be independent copies of } X, Y\right)
\end{aligned}
$$

Distance covariance

$$
\begin{aligned}
& T(X, Y ; \mu)=\int\left|\varphi_{X, Y}(s, t)-\varphi_{X}(s) \varphi_{Y}(t)\right|^{2} \mu(d s, d t) \\
&=\int\left|\mathbb{E} e^{i s X+i t Y}-\mathbb{E} e^{i s X} \mathbb{E} e^{i t Y}\right|^{2} \mu(d s, d t) \\
&\left(\begin{array} { l }
{ \text { Let } X ^ { \prime } , Y ^ { \prime } , Y ^ { \prime \prime } , Y ^ { \prime \prime \prime } } \\
{ } \\
{ = } \\
{ }
\end{array} \quad \int \left(\mathbb{E} e^{i s\left(X-X^{\prime}\right)+i t\left(Y-Y^{\prime}\right)}+\mathbb{E} e^{i s\left(X-X^{\prime}\right)} e^{i t\left(Y^{\prime \prime}-Y^{\prime \prime \prime}\right)}\right.\right. \\
&\left.\quad-\mathbb{E} e^{i s\left(X-X^{\prime}\right)+i t\left(Y-Y^{\prime \prime}\right)}-\mathbb{E} e^{-i s\left(X-X^{\prime}\right)-i t\left(Y-Y^{\prime \prime}\right)}\right) \mu(d s, d t)
\end{aligned}
$$

Distance covariance

$$
\begin{aligned}
& T(X, Y ; \mu)= \int\left|\varphi e_{X, Y}(s, t)-\varphi_{X}(s) \varphi Y(t)\right|^{2} \mu(d s, d t) \\
&= \int\left|\mathbb{E} e^{i s X+i t Y}-\mathbb{E} e^{i s X} \mathbb{E} e^{i t Y}\right|^{2} \mu(d s, d t) \\
&\left(\text { Let } X^{\prime}, Y^{\prime}, Y^{\prime \prime}, Y^{\prime \prime \prime} \text { be independent copies of } X, Y\right) \\
&= \int\left(\mathbb{E} e^{i s\left(X-X^{\prime}\right)+i t\left(Y-Y^{\prime}\right)}+\mathbb{E} e^{i s\left(X-X^{\prime}\right)} e^{i t\left(Y^{\prime \prime}-Y^{\prime \prime \prime}\right)}\right. \\
&\left.-\mathbb{E} e^{i s\left(X-X^{\prime}\right)+i t\left(Y-Y^{\prime \prime}\right)}-\mathbb{E} e^{-i s\left(X-X^{\prime}\right)-i t\left(Y-Y^{\prime \prime}\right)}\right) \mu(d s, d t) \\
&\left(\text { Let } h(x, y)=\operatorname{Re}\left(\int e^{i s x+i t y} \mu(d s, d t)\right)\right)
\end{aligned}
$$

Distance covariance

$$
\begin{aligned}
& T(X, Y ; \mu)= \int|\varphi X, Y(s, t)-\varphi X(s) \varphi Y(t)|^{2} \mu(d s, d t) \\
&= \int\left|\mathbb{E} e^{i s X+i t Y}-\mathbb{E} e^{i s X} \mathbb{E} e^{i t Y}\right|^{2} \mu(d s, d t) \\
&\left(\begin{array}{l}
\text { Let } X^{\prime}, Y^{\prime}, Y^{\prime \prime}, Y^{\prime \prime \prime} \\
\text { be independent copies of } X, Y) \\
= \\
\\
\\
\quad\left(\operatorname{Let} h(X, y)=\operatorname{Re}\left(\int e^{i s\left(X-X^{\prime}\right)+i t\left(Y-Y^{\prime}\right)}+\mathbb{E} e^{i s\left(X-X^{\prime}\right)}\right)+i t\left(Y-Y^{\prime \prime}\right)\right. \\
i t\left(Y^{\prime \prime}-Y^{\prime \prime \prime}\right) \\
= \\
\left.\left.\mathbb{E} h\left(X-e^{-i s\left(X-X^{\prime}\right)-i t\left(Y-Y^{\prime \prime}\right)}\right) \mu(d s, d t)\right)\right) \\
\\
\\
\quad-2 \mathbb{E} h\left(X-X^{\prime}, Y-Y^{\prime \prime}\right)
\end{array}\right.
\end{aligned}
$$

Distance covariance

$$
T(X, Y ; \mu)=\int_{\mathbb{R}^{p+q}}\left|\varphi_{X, Y}(s, t)-\varphi_{X}(s) \varphi_{Y}(t)\right|^{2} \mu(d s, d t)
$$

Empirical version

$$
\begin{aligned}
T_{n}(X, Y ; \mu)= & \frac{1}{n^{2}}
\end{aligned} \sum_{j, k=1}^{n} h\left(X_{j}-X_{k}, Y_{j}-Y_{k}\right) ~ 子 \begin{aligned}
n^{4} & \sum_{j, k, l, r=1}^{n} h\left(X_{j}-X_{k}, Y_{l}-Y_{r}\right) \\
& \quad-\frac{2}{n^{3}} \sum_{k, l, r=1}^{n} h\left(X_{j}-X_{k}, Y_{j}-Y_{l}\right)
\end{aligned}
$$

Distance covariance

$$
T(X, Y ; \mu)=\int_{\mathbb{R}^{p+q}}\left|\varphi_{X, Y}(s, t)-\varphi_{X}(s) \varphi_{Y}(t)\right|^{2} \mu(d s, d t)
$$

Choice of μ ?

- Székely et al. (2007): $\mu(s, t) \propto|s|_{q}^{-\alpha-q}|t|_{p}^{-\alpha-p} d s d t$, for $0<\alpha<2$.
- $h\left(x-x^{\prime}, y-y^{\prime}\right)=\left|x-x^{\prime}\right|_{p}^{\alpha}\left|y-y^{\prime}\right|_{q}^{\alpha}$
- Requires $E|X|_{p}^{\alpha}+E|Y|_{q}^{\alpha}+E|X|_{p}^{\alpha}|Y|_{q}^{\alpha}<\infty$

Distance covariance

$$
T(X, Y ; \mu)=\int_{\mathbb{R}^{p+q}}\left|\varphi_{X, Y}(s, t)-\varphi_{X}(s) \varphi_{Y}(t)\right|^{2} \mu(d s, d t)
$$

Choice of μ ?

- Székely et al. (2007): $\mu(s, t) \propto|s|_{q}^{-\alpha-q}|t|_{p}^{-\alpha-p} d s d t$, for $0<\alpha<2$.
- $h\left(x-x^{\prime}, y-y^{\prime}\right)=\left|x-x^{\prime}\right|_{p}^{\alpha}\left|y-y^{\prime}\right|_{q}^{\alpha}$
- Requires $E|X|_{p}^{\alpha}+E|Y|_{q}^{\alpha}+E|X|_{p}^{\alpha}|Y|_{q}^{\alpha}<\infty$
- $\mu(d s, d t)=\mu_{S}(d s) \mu_{T}(d t)$, product of probability measures
- $h\left(x-x^{\prime}, y-y^{\prime}\right)=\varphi_{S}\left(x-x^{\prime}\right) \varphi_{T}\left(y-y^{\prime}\right)$.
- No constraints on X, Y
- E.g. Normal, $h\left(x-x^{\prime}\right)=\exp \left(-\frac{\sigma^{2}}{2}\left|x-x^{\prime}\right|^{2}\right)$
- E.g. Cauchy, $h\left(x-x^{\prime}\right)=\exp \left(-\gamma\left|x-x^{\prime}\right|\right)$

Limit theory of distance covariance (Davis et al., 2018)

Consistency

Let $\left\{\left(X_{t}, Y_{t}\right)\right\}$ be stationary and ergodic, then

$$
T_{n}(X, Y ; \mu) \xrightarrow{\text { a.s. }} T(X, Y ; \mu) .
$$

Limiting distribution

Further let $\left\{\left(X_{t}, Y_{t}\right)\right\}$ be α-mixing with $\sum_{h=1}^{\infty} \alpha_{h}^{1 / r}<\infty, 1<r<2$.

- If $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ are independent, then

$$
n T_{n}(X, Y ; \mu) \xrightarrow{d} \int\left|Q_{X, Y}\right|^{2} d \mu .
$$

where $Q_{X, Y}$ is a centered Gaussian process.

- If $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ are dependent, then

$$
\sqrt{n}\left(T_{n}(X, Y ; \mu)-T(X, Y ; \mu)\right) \xrightarrow{d} \int Q_{X, Y}^{\prime} d \mu .
$$

where $Q_{X, Y}^{\prime}$ is a centered Gaussian process.

- Test of independence.

Limit theory of distance covariance (Davis et al., 2018)

Consistency

Let $\left\{\left(X_{t}, Y_{t}\right)\right\}$ be stationary and ergodic, then

$$
T_{n}(X, Y ; \mu) \xrightarrow{\text { a.s. }} T(X, Y ; \mu) .
$$

Limiting distribution

Further let $\left\{\left(X_{t}, Y_{t}\right)\right\}$ be α-mixing with $\sum_{h=1}^{\infty} \alpha_{h}^{1 / r}<\infty, 1<r<2$.

- If $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ are independent, then

$$
n T_{n}(X, Y ; \mu) \xrightarrow{d} \int\left|Q_{X, Y}\right|^{2} d \mu .
$$

where $Q_{X, Y}$ is a centered Gaussian process.

- If $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ are dependent, then

$$
\sqrt{n}\left(T_{n}(X, Y ; \mu)-T(X, Y ; \mu)\right) \xrightarrow{d} \int Q_{X, Y}^{\prime} d \mu .
$$

where $Q_{X, Y}^{\prime}$ is a centered Gaussian process.

- Test of independence.

Limit theory of distance covariance (Davis et al., 2018)

Consistency

Let $\left\{\left(X_{t}, Y_{t}\right)\right\}$ be stationary and ergodic, then

$$
T_{n}(X, Y ; \mu) \xrightarrow{\text { a.s. }} T(X, Y ; \mu) .
$$

Limiting distribution

Further let $\left\{\left(X_{t}, Y_{t}\right)\right\}$ be α-mixing with $\sum_{h=1}^{\infty} \alpha_{h}^{1 / r}<\infty, 1<r<2$.

- If $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ are independent, then

$$
n T_{n}(X, Y ; \mu) \xrightarrow{d} \int\left|Q_{X, Y}\right|^{2} d \mu .
$$

where $Q_{X, Y}$ is a centered Gaussian process.

- If $\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ are dependent, then

$$
\sqrt{n}\left(T_{n}(X, Y ; \mu)-T(X, Y ; \mu)\right) \xrightarrow{d} \int Q_{X, Y}^{\prime} d \mu .
$$

where $Q_{X, Y}^{\prime}$ is a centered Gaussian process.

- Test of independence.

Limit theory of distance covariance for triangular arrays

- Distance covariance between $\left(R_{i}, \boldsymbol{\Theta}_{i}\right)$ given $R_{i}>r_{n}$

$$
\tilde{T}_{n}:=\left.T_{n}(R, \boldsymbol{\Theta} ; \mu)\right|_{R>r_{n}}
$$

- Effective sample size

$$
k_{n}:=\#\left\{R_{i}>r_{n}\right\}
$$

Theorem

$$
k_{n} \tilde{T}_{n} \xrightarrow{d} \int|\tilde{Q}|^{2} d \mu,
$$

where \tilde{Q} is a centered Gaussian process.

Limit theory of distance covariance for triangular arrays

- Distance covariance between $\left(R_{i}, \boldsymbol{\Theta}_{i}\right)$ given $R_{i}>r_{n}$

$$
\tilde{T}_{n}:=\left.T_{n}(R, \boldsymbol{\Theta} ; \mu)\right|_{R>r_{n}}
$$

- Effective sample size

$$
k_{n}:=\#\left\{R_{i}>r_{n}\right\}
$$

- Note that $\left.\left(R_{i}, \boldsymbol{\Theta}_{i}\right)\right|_{R_{i}>r_{n}}, r_{n} \rightarrow \infty, n \rightarrow \infty$, is a triangular array.

Theorem

Under suitable conditions,

$$
k_{n} \tilde{T}_{n} \xrightarrow{d} \int|\tilde{Q}|^{2} d \mu,
$$

where \tilde{Q} is a centered Gaussian process.

Limit theory of distance covariance for triangular arrays

$$
k_{n} \tilde{T}_{n} \xrightarrow{d} \int|\tilde{Q}|^{2} d \mu,
$$

Sketch of the suitable conditions:

1. Effective sample size $k_{n} \rightarrow \infty$

- thresholds $r_{n} \rightarrow \infty$ not too fast

2. $\left.(R, \boldsymbol{\Theta})\right|_{R>r_{n}}$ becomes independent fast enough

- thresholds $r_{n} \rightarrow \infty$ not too slow

3. conditions on weight measure μ such that reddistance covariance exists

- since R is heavy-tailed

4. conditions on mixing coefficients α_{h} such that central limit theorem can be applied

Limit theory of distance covariance for triangular arrays

Details of the suitable conditions:

1. $n \mathbb{P}\left(R>r_{n}\right) \rightarrow \infty$;
2. $n \mathbb{P}\left(R>r_{n}\right) \int\left|\varphi_{\frac{R}{r_{n}}, \Theta \mid r_{n}}-\varphi_{\left.\frac{R}{r_{n}} \right\rvert\, r_{n}} \varphi_{\Theta \mid r_{n}}\right|^{2} d \mu \rightarrow 0$;
3. $\int\left(1 \wedge|s|^{\beta}\right)\left(1 \wedge|t|^{2}\right) \mu(d s, d t)<\infty$ for some $1<\beta<2 \wedge \alpha$;
4. there exists $I_{n} \rightarrow \infty$ such that $I_{n} \mathbb{P}\left(R>r_{n}\right) \rightarrow 0$ and
a) $\mathbb{P}\left(R>r_{n}\right)^{-\delta} \sum_{h=I_{n}}^{\infty} \alpha_{h}^{\delta} \rightarrow 0$ for some $\delta \in(0,1)$;
b) $\lim _{h \rightarrow \infty} \lim \sup _{n \rightarrow \infty} \frac{1}{p_{n}} \sum_{j=h}^{l_{n}} \mathbb{P}\left(\left\|\mathbf{X}_{0}\right\|>r_{n},\left\|\mathbf{X}_{j}\right\|>r_{n}\right)=0$;
c) $n p_{n} \alpha_{l_{n}} \rightarrow 0$.

Limit theory of distance covariance for triangular arrays

Details of the suitable conditions:

1. $n \mathbb{P}\left(R>r_{n}\right) \rightarrow \infty$;
2. $n \mathbb{P}\left(R>r_{n}\right) \int\left|\varphi_{\frac{R}{r_{n}}, \Theta \mid r_{n}}-\varphi_{\left.\frac{R}{r_{n}} \right\rvert\, r_{n}} \varphi_{\Theta \mid r_{n}}\right|^{2} d \mu \rightarrow 0$;
3. $\int\left(1 \wedge|s|^{\beta}\right)\left(1 \wedge|t|^{2}\right) \mu(d s, d t)<\infty$ for some $1<\beta<2 \wedge \alpha$;
4. there exists $I_{n} \rightarrow \infty$ such that $I_{n} \mathbb{P}\left(R>r_{n}\right) \rightarrow 0$ and
a) $\mathbb{P}\left(R>r_{n}\right)^{-\delta} \sum_{h=I_{n}}^{\infty} \alpha_{h}^{\delta} \rightarrow 0$ for some $\delta \in(0,1)$;
b) $\lim _{h \rightarrow \infty} \lim \sup _{n \rightarrow \infty} \frac{1}{p_{n}} \sum_{j=h}^{l_{n}} \mathbb{P}\left(\left\|\mathbf{X}_{0}\right\|>r_{n},\left\|\mathbf{X}_{j}\right\|>r_{n}\right)=0$;
c) $n p_{n} \alpha_{l_{n}} \rightarrow 0$.

Limit theory of distance covariance for triangular arrays

Details of the suitable conditions:

1. $n \mathbb{P}\left(R>r_{n}\right) \rightarrow \infty$;
2. $n \mathbb{P}\left(R>r_{n}\right) \int\left|\varphi_{\frac{R}{r_{n}}, \Theta \mid r_{n}}-\varphi_{\left.\frac{R}{r_{n}} \right\rvert\, r_{n}} \varphi_{\Theta \mid r_{n}}\right|^{2} d \mu \rightarrow 0$;

- can be translated to a second-order RV type condition

3. $\int\left(1 \wedge|s|^{\beta}\right)\left(1 \wedge|t|^{2}\right) \mu(d s, d t)<\infty$ for some $1<\beta<2 \wedge \alpha$;
4. there exists $I_{n} \rightarrow \infty$ such that $I_{n} \mathbb{P}\left(R>r_{n}\right) \rightarrow 0$ and
a) $\mathbb{P}\left(R>r_{n}\right)^{-\delta} \sum_{h=I_{n}}^{\infty} \alpha_{h}^{\delta} \rightarrow 0$ for some $\delta \in(0,1)$;
b) $\lim _{h \rightarrow \infty} \lim \sup _{n \rightarrow \infty} \frac{1}{p_{n}} \sum_{j=h}^{l_{n}} \mathbb{P}\left(\left\|\mathbf{X}_{0}\right\|>r_{n},\left\|\mathbf{X}_{j}\right\|>r_{n}\right)=0$;
c) $n p_{n} \alpha_{l_{n}} \rightarrow 0$.

Limit theory of distance covariance for triangular arrays

Details of the suitable conditions:

1. $n \mathbb{P}\left(R>r_{n}\right) \rightarrow \infty$;
2. $n \mathbb{P}\left(R>r_{n}\right) \int\left|\varphi_{\frac{R}{r_{n}}, \Theta \mid r_{n}}-\varphi_{\left.\frac{R}{r_{n}} \right\rvert\, r_{n}} \varphi_{\Theta \mid r_{n}}\right|^{2} d \mu \rightarrow 0$;

- can be translated to a second-order RV type condition

3. $\int\left(1 \wedge|s|^{\beta}\right)\left(1 \wedge|t|^{2}\right) \mu(d s, d t)<\infty$ for some $1<\beta<2 \wedge \alpha$;

- can be relaxed if looking at $\log R$

4. there exists $I_{n} \rightarrow \infty$ such that $I_{n} \mathbb{P}\left(R>r_{n}\right) \rightarrow 0$ and
a) $\mathbb{P}\left(R>r_{n}\right)^{-\delta} \sum_{h=I_{n}}^{\infty} \alpha_{h}^{\delta} \rightarrow 0$ for some $\delta \in(0,1)$;
b) $\lim _{h \rightarrow \infty} \lim \sup _{n \rightarrow \infty} \frac{1}{p_{n}} \sum_{j=h}^{l_{n}} \mathbb{P}\left(\left\|\mathbf{X}_{0}\right\|>r_{n},\left\|\mathbf{X}_{j}\right\|>r_{n}\right)=0$;
c) $n p_{n} \alpha_{l_{n}} \rightarrow 0$.

Limit theory of distance covariance for triangular arrays

Details of the suitable conditions:

1. $n \mathbb{P}\left(R>r_{n}\right) \rightarrow \infty$;
2. $n \mathbb{P}\left(R>r_{n}\right) \int\left|\varphi_{\frac{R}{r_{n}}, \Theta \mid r_{n}}-\varphi_{\left.\frac{R}{r_{n}} \right\rvert\, r_{n}} \varphi_{\Theta \mid r_{n}}\right|^{2} d \mu \rightarrow 0$;

- can be translated to a second-order RV type condition

3. $\int\left(1 \wedge|s|^{\beta}\right)\left(1 \wedge|t|^{2}\right) \mu(d s, d t)<\infty$ for some $1<\beta<2 \wedge \alpha$;

- can be relaxed if looking at $\log R$

4. there exists $I_{n} \rightarrow \infty$ such that $I_{n} \mathbb{P}\left(R>r_{n}\right) \rightarrow 0$ and
a) $\mathbb{P}\left(R>r_{n}\right)^{-\delta} \sum_{h=I_{n}}^{\infty} \alpha_{h}^{\delta} \rightarrow 0$ for some $\delta \in(0,1)$;
b) $\lim _{h \rightarrow \infty} \lim \sup _{n \rightarrow \infty} \frac{1}{p_{n}} \sum_{j=h}^{l_{n}} \mathbb{P}\left(\left\|\mathbf{X}_{0}\right\|>r_{n},\left\|\mathbf{X}_{j}\right\|>r_{n}\right)=0$;
c) $n p_{n} \alpha_{l_{n}} \rightarrow 0$.

- adapted from Davis \& Mikosch (2009)

Illustration: $R \perp \Theta$ only when $R>r_{0.1}$, the upper 10%-quantile.

Illustration: $R \perp \Theta$ only when $R>r_{0.1}$

Illustration: $R \perp \Theta$ only when $R>r_{0.1}$

For each upper quantile r_{q},

- calculate conditional distance covariance from $\left(R_{i_{1}}, \boldsymbol{\Theta}_{i_{1}}\right), \ldots,\left(R_{i_{K}}, \boldsymbol{\Theta}_{i_{K}}\right)$ for which $R_{i_{k}}>r_{q}$
- derive the p-value of test of independence

Illustration: $R \perp \Theta$ only when $R>r_{0.1}$
For each upper quantile r_{q},

- calculate conditional distance covariance for m independent subsamples from $\left(R_{i_{1}}, \boldsymbol{\Theta}_{i_{1}}\right), \ldots,\left(R_{i_{k}}, \boldsymbol{\Theta}_{i_{K}}\right)$ for which $R_{i_{k}}>r_{q}$
- derive the p-value of test of independence for each subsample

Illustration: $R \perp \Theta$ only when $R>r_{0.1}$

For each upper quantile r_{q},

- calculate conditional distance covariance for m independent subsamples from $\left(R_{i_{1}}, \boldsymbol{\Theta}_{i_{1}}\right), \ldots,\left(R_{i_{K}}, \boldsymbol{\Theta}_{i_{K}}\right)$ for which $R_{i_{k}}>r_{q}$
- derive the p-value of test of independence for each subsample
- average the p-values

Illustration: $R \perp \Theta$ only when $R>r_{0.1}$
For each upper quantile r_{q},

- calculate conditional distance covariance for m independent subsamples from $\left(R_{i_{1}}, \boldsymbol{\Theta}_{i_{1}}\right), \ldots,\left(R_{i_{K}}, \boldsymbol{\Theta}_{i_{K}}\right)$ for which $R_{i_{k}}>r_{q}$
- derive the p-value of test of independence for each subsample
- average the p-values

Illustration: $R \perp \Theta$ only when $R>r_{0.1}$

To choose the threshold,

- when the mean of p-values falls below 0.5
- Wild Binary Segmentation (Fryzlewicz, 2014) fits a piecewise constant spline to the data based on CUSUM statistics

Daily absolute log-returns of exchange rates, from 1990-01-01 to 1998-12-31

Daily absolute log-returns of exchange rates, from 1990-01-01 to 1998-12-31

Daily absolute log-returns of exchange rates, from 1990-01-01 to 1998-12-31

Detecting non-regular variation

Detecting non-regular variation

Detecting non-regular variation

Selected references

- Davis, R.A., Matsui, M., Mikosch T., Wan, P. (2018) Applications of Distance Correlation to Time Series. Bernoulli. 24(4A), 3087-3116.
- Davis, R.A., Mikosch T. (2009) The extremogram: A correlogram for extreme events. Bernoulli. 15(4), 977-1009.
- Feuerverger, A. (1993) A consistent test for bivariate dependence. Int. Stat. Rev. 61, 419-433.
- Fryzlewicz, P. (2004) Wild binary segmentation for multiple change-point detection. Ann. Statist., 42(6):2243-2281.
- Meintanis, S.G. and Iliopoulos, G. (2008) Fourier methods for testing multivariate independence. Comput. Statist. Data Anal. 52, 1884-1895.
- Székely, G.J., Rizzo, M.L. and Bakirov, N.K. (2007) Measuring and testing dependence by correlation of distances. Ann. Statist. 35, 2769-2794.
- Wan, P. and Davis, R.A. (2018+) Threshold selection for multivariate heavy-tailed data. Extremes.

