Threshold Selection for Multivariate Heavy-Tailed Data

Phyllis Wan*,**, Richard Davis*

Columbia University*, Erasmus University Rotterdam**

June 21, 2018

Regular variation

▶ Univariate regularly varying: $X \in \mathbb{R}_+$, $X \sim RV(\alpha)$ if

$$\lim_{t\to\infty}\mathbb{P}[X>tx|X>t]=c(x),\quad x\geq 1.$$

• c is of the form $c(x) = x^{-\alpha}$, $\alpha > 0$.

Regular variation

▶ Univariate regularly varying: $X \in \mathbb{R}_+$, $X \sim RV(\alpha)$ if

$$\lim_{t\to\infty} \mathbb{P}[X > tx | X > t] = c(x), \quad x \ge 1.$$

- c is of the form $c(x) = x^{-\alpha}$, $\alpha > 0$.
- ▶ Multivariate regularly varying: $\mathbf{X} \in \mathbb{R}^d_+$, $\mathbf{X} \sim \mathbf{MRV}(\alpha)$ if

$$\lim_{t o \infty} \mathbb{P}[\mathbf{X} > t\mathbf{x} | \mathbf{X} > t\mathbf{1}] =
u(\mathbf{x}), \quad \mathbf{x} \geq \mathbf{1}.$$

• ν satisfies $\nu(s\mathbf{x}) = s^{-\alpha}\nu(\mathbf{x}), \ \alpha > 0$

Regular variation

▶ Univariate regularly varying: $X \in \mathbb{R}_+$, $X \sim RV(\alpha)$ if

$$\lim_{t\to\infty} \mathbb{P}[X > tx | X > t] = c(x), \quad x \ge 1.$$

- c is of the form $c(x) = x^{-\alpha}$, $\alpha > 0$.
- ▶ Multivariate regularly varying: $\mathbf{X} \in \mathbb{R}^d_+$, $\mathbf{X} \sim \mathbf{MRV}(\alpha)$ if

$$\lim_{t \to \infty} \mathbb{P}[\mathsf{X} > t\mathsf{x} | \mathsf{X} > t\mathbf{1}] = \nu(\mathsf{x}), \quad \mathsf{x} \geq \mathbf{1}.$$

- ν satisfies $\nu(s\mathbf{x}) = s^{-\alpha}\nu(\mathbf{x}), \ \alpha > 0$
- ▶ Let $(R, \Theta) = (\|\mathbf{X}\|, \frac{\mathbf{X}}{\|\mathbf{X}\|})$, then $\mathbf{X} \sim \mathbf{MRV}(\alpha)$ if and only if
 - 1. $R \sim \text{Univariate } RV(\alpha)$
 - 2. $P(\Theta \in \cdot | R > r) \rightarrow S(\cdot), \quad r \rightarrow \infty.$
 - In other words, Θ becomes independent of R as $R \to \infty$.
 - S characterizes the extremal dependence.

- $F(x,y) = \exp\left\{-(x^{-1/s} + y^{-1/s})^s\right\}$
- ► *s* = 0.6

Estimating $S(\cdot)$, the limiting angular distribution

Observe $\mathbf{X}_1, \dots, \mathbf{X}_n \sim \mathbf{MRV}(\alpha)$ and $(R_i, \mathbf{\Theta}_i) = (\|\mathbf{X}_i\|, \frac{\mathbf{X}_i}{\|\mathbf{X}_i\|})$. We know

$$P(\mathbf{\Theta} \in \cdot | R > r) \to S(\cdot), \quad r \to \infty.$$

How to estimate $S(\cdot)$?

▶ Look at the subset $\Theta_{i_1}, \ldots, \Theta_{i_K}$ where $R_{i_k} > r_0$ for r_0 large

Estimating $S(\cdot)$, the limiting angular distribution

Observe $X_1, \ldots, X_n \sim MRV(\alpha)$ and $(R_i, \Theta_i) = (\|X_i\|, \frac{X_i}{\|X_i\|})$. We know

$$P(\mathbf{\Theta} \in \cdot | R > r) \to S(\cdot), \quad r \to \infty.$$

How to estimate $S(\cdot)$?

▶ Look at the subset $\Theta_{i_1}, \ldots, \Theta_{i_K}$ where $R_{i_k} > r_0$ for r_0 large

How large should r_0 be?

▶ Conditional on $R > r_0$, (R, Θ) are approximately independent

Estimating $S(\cdot)$, the limiting angular distribution

Observe $X_1, \ldots, X_n \sim MRV(\alpha)$ and $(R_i, \Theta_i) = (\|X_i\|, \frac{X_i}{\|X_i\|})$. We know

$$P(\mathbf{\Theta} \in \cdot | R > r) \to S(\cdot), \quad r \to \infty.$$

How to estimate $S(\cdot)$?

▶ Look at the subset $\Theta_{i_1}, \ldots, \Theta_{i_K}$ where $R_{i_k} > r_0$ for r_0 large

How large should r_0 be?

▶ Conditional on $R > r_0$, (R, Θ) are approximately independent

How to measure the dependence between R and Θ ?

- R is heavy-tailed may not even have 1st moment!
- ▶ **O** could be multi-dimensional
- ► Solution: distance covariance

- ► Feuerverger (1993), Székely et al. (2007), Meintanis & Iliopoulos (2008).
- $X \in \mathbb{R}^p$, $Y \in \mathbb{R}^q$, let φ denote the characteristic function, then

$$X \perp Y \iff \varphi_{X,Y} = \varphi_X \varphi_Y.$$

Distance covariance w.r.t. weight measure $\mu(s,t)$

$$T(X,Y;\mu) = \int_{\mathbb{R}^{p+q}} |\varphi_{X,Y}(s,t) - \varphi_X(s)\varphi_Y(t)|^2 \mu(ds,dt).$$

► Distance correlation

$$R(X,Y;\mu) = \frac{T(X,Y;\mu)}{\sqrt{T(X,X;\mu)T(Y,Y;\mu)}} \in [0,1].$$

$$T(X,Y;\mu) = \int_{\mathbb{R}^{p+q}} |\varphi_{X,Y}(s,t) - \varphi_X(s)\varphi_Y(t)|^2 \mu(ds,dt)$$

Empirical version?

$$T(X, Y; \mu) = \int |\varphi_{X,Y}(s, t) - \varphi_X(s)\varphi_Y(t)|^2 \mu(ds, dt)$$
$$= \int |\mathbb{E}e^{isX+itY} - \mathbb{E}e^{isX}\mathbb{E}e^{itY}|^2 \mu(ds, dt)$$

$$T(X,Y;\mu) = \int |\varphi_{X,Y}(s,t) - \varphi_X(s)\varphi_Y(t)|^2 \mu(ds,dt)$$

$$= \int |\mathbb{E}e^{isX+itY} - \mathbb{E}e^{isX}\mathbb{E}e^{itY}|^2 \mu(ds,dt)$$
(Let X',Y',Y'',Y''' be independent copies of X,Y)

$$T(X,Y;\mu) = \int |\varphi_{X,Y}(s,t) - \varphi_X(s)\varphi_Y(t)|^2 \mu(ds,dt)$$

$$= \int |\mathbb{E}e^{isX+itY} - \mathbb{E}e^{isX}\mathbb{E}e^{itY}|^2 \mu(ds,dt)$$

$$\left(\text{Let }X',Y',Y'',Y''' \text{ be independent copies of }X,Y\right)$$

$$= \int \left(\mathbb{E}e^{is(X-X')+it(Y-Y')} + \mathbb{E}e^{is(X-X')}e^{it(Y''-Y''')} - \mathbb{E}e^{-is(X-X')-it(Y-Y''')}\right) \mu(ds,dt)$$

$$T(X,Y;\mu) = \int |\varphi_{X,Y}(s,t) - \varphi_X(s)\varphi_Y(t)|^2 \mu(ds,dt)$$

$$= \int |\mathbb{E}e^{isX+itY} - \mathbb{E}e^{isX}\mathbb{E}e^{itY}|^2 \mu(ds,dt)$$

$$\left(\text{Let } X',Y',Y'',Y''' \text{ be independent copies of } X,Y\right)$$

$$= \int \left(\mathbb{E}e^{is(X-X')+it(Y-Y')} + \mathbb{E}e^{is(X-X')}e^{it(Y''-Y''')} - \mathbb{E}e^{is(X-X')+it(Y-Y'')} - \mathbb{E}e^{-is(X-X')-it(Y-Y'')}\right) \mu(ds,dt)$$

$$\left(\text{Let } h(x,y) = \text{Re}\left(\int e^{isx+ity} \mu(ds,dt)\right)\right)$$

$$T(X,Y;\mu) = \int |\varphi_{X,Y}(s,t) - \varphi_{X}(s)\varphi_{Y}(t)|^{2}\mu(ds,dt)$$

$$= \int |\mathbb{E}e^{isX+itY} - \mathbb{E}e^{isX}\mathbb{E}e^{itY}|^{2}\mu(ds,dt)$$

$$\left(\text{Let }X',Y',Y'',Y''' \text{ be independent copies of }X,Y\right)$$

$$= \int \left(\mathbb{E}e^{is(X-X')+it(Y-Y')} + \mathbb{E}e^{is(X-X')}e^{it(Y''-Y''')}\right)$$

$$-\mathbb{E}e^{is(X-X')+it(Y-Y'')} - \mathbb{E}e^{-is(X-X')-it(Y-Y'')}\right)\mu(ds,dt)$$

$$\left(\text{Let }h(x,y) = \text{Re}\left(\int e^{isx+ity}\mu(ds,dt)\right)\right)$$

$$= \mathbb{E}h(X-X',Y-Y') + \mathbb{E}h(X-X',Y''-Y''')$$

$$-2\mathbb{E}h(X-X',Y-Y'')$$

$$T(X,Y;\mu) = \int_{\mathbb{R}^{p+d}} |\varphi_{X,Y}(s,t) - \varphi_X(s)\varphi_Y(t)|^2 \mu(ds,dt)$$

Empirical version

$$T_n(X,Y;\mu) = \frac{1}{n^2} \sum_{j,k=1}^n h(X_j - X_k, Y_j - Y_k)$$

$$+ \frac{1}{n^4} \sum_{j,k,l,r=1}^n h(X_j - X_k, Y_l - Y_r)$$

$$- \frac{2}{n^3} \sum_{k,l,r=1}^n h(X_j - X_k, Y_j - Y_l)$$

$$T(X,Y;\mu) = \int_{\mathbb{R}^{p+q}} |\varphi_{X,Y}(s,t) - \varphi_X(s)\varphi_Y(t)|^2 \mu(ds,dt)$$

Choice of μ ?

- ► Székely et al. (2007): $\mu(s,t) \propto |s|_q^{-\alpha-q} |t|_p^{-\alpha-p} ds dt$, for $0 < \alpha < 2$.
 - $h(x-x',y-y') = |x-x'|_p^{\alpha}|y-y'|_q^{\alpha}$
 - Requires $E|X|_p^{\alpha} + E|Y|_q^{\alpha} + E|X|_p^{\alpha}|Y|_q^{\alpha} < \infty$

$$T(X,Y;\mu) = \int_{\mathbb{R}^{p+q}} |\varphi_{X,Y}(s,t) - \varphi_X(s)\varphi_Y(t)|^2 \mu(ds,dt)$$

Choice of μ ?

- ▶ Székely et al. (2007): $\mu(s,t) \propto |s|_{q}^{-\alpha-q}|t|_{p}^{-\alpha-p}ds dt$, for $0 < \alpha < 2$.
 - $h(x-x',y-y') = |x-x'|_p^{\alpha} |y-y'|_q^{\alpha}$
 - Requires $E|X|_p^{\alpha} + E|Y|_q^{\alpha} + E|X|_p^{\alpha}|Y|_q^{\alpha} < \infty$
- $\mu(ds, dt) = \mu_S(ds)\mu_T(dt)$, product of probability measures
 - $h(x-x',y-y') = \varphi_S(x-x')\varphi_T(y-y').$
 - ► No constraints on X, Y
 - ► E.g. Normal, $h(x x') = \exp(-\frac{\sigma^2}{2}|x x'|^2)$
 - E.g. Cauchy, $h(x x') = \exp(-\gamma |x x'|)$

Limit theory of distance covariance (Davis et al., 2018)

Consistency

Let $\{(X_t, Y_t)\}$ be stationary and ergodic, then

$$T_n(X, Y; \mu) \stackrel{a.s.}{\rightarrow} T(X, Y; \mu).$$

Limiting distribution

Further let $\{(X_t, Y_t)\}$ be α -mixing with $\sum_{h=1}^{\infty} \alpha_h^{1/r} < \infty$, 1 < r < 2.

▶ If $\{X_t\}$ and $\{Y_t\}$ are independent, then

$$nT_n(X,Y;\mu) \stackrel{d}{\to} \int |Q_{X,Y}|^2 d\mu.$$

where $Q_{X,Y}$ is a centered Gaussian process.

▶ If $\{X_t\}$ and $\{Y_t\}$ are dependent, then

$$\sqrt{n}\left(T_n(X,Y;\mu)-T(X,Y;\mu)\right)\stackrel{d}{
ightarrow}\int Q'_{X,Y}d\mu.$$

where $Q'_{X,Y}$ is a centered Gaussian process.

Test of independence.

Limit theory of distance covariance (Davis et al., 2018)

Consistency

Let $\{(X_t, Y_t)\}$ be stationary and ergodic, then

$$T_n(X, Y; \mu) \stackrel{a.s.}{\rightarrow} T(X, Y; \mu).$$

Limiting distribution

Further let $\{(X_t, Y_t)\}$ be α -mixing with $\sum_{h=1}^{\infty} \alpha_h^{1/r} < \infty$, 1 < r < 2.

▶ If $\{X_t\}$ and $\{Y_t\}$ are independent, then

$$nT_n(X,Y;\mu) \stackrel{d}{\to} \int |Q_{X,Y}|^2 d\mu.$$

where $Q_{X,Y}$ is a centered Gaussian process.

▶ If $\{X_t\}$ and $\{Y_t\}$ are dependent, then

$$\sqrt{n}\left(T_n(X,Y;\mu)-T(X,Y;\mu)\right)\stackrel{d}{
ightarrow}\int Q'_{X,Y}d\mu.$$

where $Q'_{X,Y}$ is a centered Gaussian process.

Test of independence.

Limit theory of distance covariance (Davis et al., 2018)

Consistency

Let $\{(X_t, Y_t)\}$ be stationary and ergodic, then

$$T_n(X, Y; \mu) \stackrel{a.s.}{\rightarrow} T(X, Y; \mu).$$

Limiting distribution

Further let $\{(X_t, Y_t)\}$ be α -mixing with $\sum_{h=1}^{\infty} \alpha_h^{1/r} < \infty$, 1 < r < 2.

▶ If $\{X_t\}$ and $\{Y_t\}$ are independent, then

$${}_{n}T_{n}(X,Y;\mu) \stackrel{d}{\rightarrow} \int |Q_{X,Y}|^{2}d\mu.$$

where $Q_{X,Y}$ is a centered Gaussian process.

▶ If $\{X_t\}$ and $\{Y_t\}$ are dependent, then

$$\sqrt{n}(T_n(X,Y;\mu)-T(X,Y;\mu))\stackrel{d}{\to} \int Q'_{X,Y}d\mu.$$

where $Q'_{X,Y}$ is a centered Gaussian process.

Test of independence.

▶ Distance covariance between (R_i, Θ_i) given $R_i > r_n$

$$\tilde{T}_n := T_n(R, \boldsymbol{\Theta}; \mu)\big|_{R>r_n}$$

► Effective sample size

$$k_n := \#\{R_i > r_n\}$$

Theorem

$$k_n \tilde{T}_n \stackrel{d}{\to} \int |\tilde{Q}|^2 d\mu,$$

where \tilde{Q} is a centered Gaussian process.

▶ Distance covariance between (R_i, Θ_i) given $R_i > r_n$

$$\tilde{T}_n := T_n(R, \boldsymbol{\Theta}; \mu)\big|_{R > r_n}$$

Effective sample size

$$k_n := \#\{R_i > r_n\}$$

▶ Note that $(R_i, \Theta_i)|_{R_i > r_n}$, $r_n \to \infty$, $n \to \infty$, is a triangular array.

Theorem

Under suitable conditions,

$$k_n \tilde{T}_n \stackrel{d}{\to} \int |\tilde{Q}|^2 d\mu,$$

where \tilde{Q} is a centered Gaussian process.

$$k_n \tilde{T}_n \stackrel{d}{\to} \int |\tilde{Q}|^2 d\mu,$$

Sketch of the suitable conditions:

- 1. Effective sample size $k_n \to \infty$
 - ▶ thresholds $r_n \to \infty$ not too fast
- 2. $(R, \Theta)|_{R>r_n}$ becomes independent fast enough
 - ▶ thresholds $r_n \to \infty$ not too slow
- 3. conditions on weight measure μ such that reddistance covariance exists
 - since R is heavy-tailed
- 4. conditions on mixing coefficients α_h such that central limit theorem can be applied

Details of the suitable conditions:

- 1. $n\mathbb{P}(R > r_n) \to \infty$;
- 2. $n\mathbb{P}(R > r_n) \int |\varphi_{\frac{R}{r_n},\Theta|r_n} \varphi_{\frac{R}{r_n}|r_n} \varphi_{\Theta|r_n}|^2 d\mu \to 0;$

3. $\int (1 \wedge |s|^{\beta})(1 \wedge |t|^2)\mu(ds, dt) < \infty$ for some $1 < \beta < 2 \wedge \alpha$;

- 4. there exists $I_n \to \infty$ such that $I_n \mathbb{P}(R > r_n) \to 0$ and
 - a) $\mathbb{P}(R > r_n)^{-\delta} \sum_{h=l_n}^{\infty} \alpha_h^{\delta} \to 0$ for some $\delta \in (0,1)$;
 - b) $\lim_{h\to\infty}\limsup_{n\to\infty}\frac{1}{\rho_n}\sum_{j=h}^{l_n}\mathbb{P}(\|\mathbf{X}_0\|>r_n,\|\mathbf{X}_j\|>r_n)=0;$
 - c) $np_n\alpha_{l_n}\to 0$.

Details of the suitable conditions:

- 1. $n\mathbb{P}(R > r_n) \to \infty$;
- 2. $n\mathbb{P}(R > r_n) \int |\varphi_{\frac{R}{r_n},\Theta|r_n} \varphi_{\frac{R}{r_n}|r_n} \varphi_{\Theta|r_n}|^2 d\mu \to 0;$

3. $\int (1 \wedge |s|^{\beta})(1 \wedge |t|^2)\mu(ds, dt) < \infty$ for some $1 < \beta < 2 \wedge \alpha$;

- 4. there exists $I_n \to \infty$ such that $I_n \mathbb{P}(R > r_n) \to 0$ and
 - a) $\mathbb{P}(R > r_n)^{-\delta} \sum_{h=l_n}^{\infty} \alpha_h^{\delta} \to 0$ for some $\delta \in (0,1)$;
 - b) $\lim_{h\to\infty}\limsup_{n\to\infty}\frac{1}{\rho_n}\sum_{j=h}^{l_n}\mathbb{P}(\|\mathbf{X}_0\|>r_n,\|\mathbf{X}_j\|>r_n)=0;$
 - c) $np_n\alpha_{l_n}\to 0$.

Details of the suitable conditions:

- 1. $n\mathbb{P}(R > r_n) \to \infty$;
- 2. $n\mathbb{P}(R > r_n) \int |\varphi_{\frac{R}{2},\Theta|r_n} \varphi_{\frac{R}{2}|r_n} \varphi_{\Theta|r_n}|^2 d\mu \to 0;$
 - ▶ can be translated to a second-order RV type condition
- 3. $\int (1 \wedge |s|^{\beta})(1 \wedge |t|^2)\mu(ds, dt) < \infty$ for some $1 < \beta < 2 \wedge \alpha$;

- 4. there exists $I_n \to \infty$ such that $I_n \mathbb{P}(R > r_n) \to 0$ and
 - a) $\mathbb{P}(R > r_n)^{-\delta} \sum_{h=l_n}^{\infty} \alpha_h^{\delta} \to 0$ for some $\delta \in (0,1)$;
 - b) $\lim_{h\to\infty}\limsup_{n\to\infty}\frac{1}{p_n}\sum_{j=h}^{l_n}\mathbb{P}(\|\mathbf{X}_0\|>r_n,\|\mathbf{X}_j\|>r_n)=0;$
 - c) $np_n\alpha_{l_n}\to 0$.

Details of the suitable conditions:

- 1. $n\mathbb{P}(R > r_n) \to \infty$;
- 2. $n\mathbb{P}(R > r_n) \int |\varphi_{\frac{R}{r_n},\Theta|r_n} \varphi_{\frac{R}{r_n}|r_n} \varphi_{\Theta|r_n}|^2 d\mu \to 0;$
 - ► can be translated to a second-order RV type condition
- 3. $\int (1 \wedge |s|^{\beta})(1 \wedge |t|^2)\mu(ds, dt) < \infty$ for some $1 < \beta < 2 \wedge \alpha$;
 - ► can be relaxed if looking at log R
- 4. there exists $I_n \to \infty$ such that $I_n \mathbb{P}(R > r_n) \to 0$ and
 - a) $\mathbb{P}(R > r_n)^{-\delta} \sum_{h=l_n}^{\infty} \alpha_h^{\delta} \to 0$ for some $\delta \in (0,1)$;
 - b) $\lim_{n\to\infty} \limsup_{n\to\infty} \frac{1}{n} \sum_{i=n}^{l_n} \mathbb{P}(\|\mathbf{X}_0\| > r_n, \|\mathbf{X}_i\| > r_n) = 0;$
 - c) $np_n\alpha_{l_n}\to 0$.

Details of the suitable conditions:

1.
$$n\mathbb{P}(R > r_n) \to \infty$$
;

2.
$$n\mathbb{P}(R > r_n) \int |\varphi_{\frac{R}{2},\Theta|r_n} - \varphi_{\frac{R}{2}|r_n} \varphi_{\Theta|r_n}|^2 d\mu \to 0;$$

- ► can be translated to a second-order RV type condition
- 3. $\int (1 \wedge |s|^{\beta})(1 \wedge |t|^2)\mu(ds, dt) < \infty$ for some $1 < \beta < 2 \wedge \alpha$;
 - ► can be relaxed if looking at log R
- 4. there exists $I_n \to \infty$ such that $I_n \mathbb{P}(R > r_n) \to 0$ and
 - a) $\mathbb{P}(R > r_n)^{-\delta} \sum_{h=l_n}^{\infty} \alpha_h^{\delta} \to 0$ for some $\delta \in (0,1)$;
 - b) $\lim_{h\to\infty}\limsup_{n\to\infty}\frac{1}{p_n}\sum_{j=h}^{l_n}\mathbb{P}(\|\mathbf{X}_0\|>r_n,\|\mathbf{X}_j\|>r_n)=0;$
 - c) $np_n\alpha_{l_n} \to 0$.
 - ► adapted from Davis & Mikosch (2009)

Illustration: $R \perp \Theta$ only when $R > r_{0.1}$, the upper 10%-quantile.

- ▶ calculate conditional distance covariance from $(R_{i_1}, \Theta_{i_1}), \ldots, (R_{i_K}, \Theta_{i_K})$ for which $R_{i_k} > r_q$
- ▶ derive the *p*-value of test of independence

- ▶ calculate conditional distance covariance for m independent subsamples from $(R_{i_1}, \Theta_{i_1}), \dots, (R_{i_K}, \Theta_{i_K})$ for which $R_{i_k} > r_q$
- ▶ derive the *p*-value of test of independence for each subsample

- ▶ calculate conditional distance covariance for m independent subsamples from $(R_{i_1}, \Theta_{i_1}), \dots, (R_{i_K}, \Theta_{i_K})$ for which $R_{i_k} > r_q$
- ▶ derive the *p*-value of test of independence for each subsample
- ▶ average the p-values

- ▶ calculate conditional distance covariance for m independent subsamples from $(R_{i_1}, \Theta_{i_1}), \dots, (R_{i_K}, \Theta_{i_K})$ for which $R_{i_k} > r_q$
- ▶ derive the *p*-value of test of independence for each subsample
- ▶ average the p-values

To choose the threshold,

- ▶ when the mean of p-values falls below 0.5
- Wild Binary Segmentation (Fryzlewicz, 2014) fits a piecewise constant spline to the data based on CUSUM statistics

Daily absolute log-returns of exchange rates, from 1990-01-01 to 1998-12-31

Daily absolute log-returns of exchange rates, from 1990-01-01 to 1998-12-31

Daily absolute log-returns of exchange rates, from 1990-01-01 to 1998-12-31

Detecting non-regular variation

Detecting non-regular variation

Detecting non-regular variation

Selected references

- Davis, R.A., Matsui, M., Mikosch T., Wan, P. (2018) Applications of Distance Correlation to Time Series. Bernoulli. 24(4A), 3087–3116.
- Davis, R.A., Mikosch T. (2009) The extremogram: A correlogram for extreme events. Bernoulli. 15(4), 977–1009.
- Feuerverger, A. (1993) A consistent test for bivariate dependence. Int. Stat. Rev. 61, 419–433.
- Fryzlewicz, P. (2004) Wild binary segmentation for multiple change-point detection.
 Ann. Statist., 42(6):2243–2281.
- Meintanis, S.G. and Iliopoulos, G. (2008) Fourier methods for testing multivariate independence. Comput. Statist. Data Anal. 52, 1884–1895.
- Székely, G.J., Rizzo, M.L. and Bakirov, N.K. (2007) Measuring and testing dependence by correlation of distances. *Ann. Statist.* 35, 2769–2794.
- Wan, P. and Davis, R.A. (2018+) Threshold selection for multivariate heavy-tailed data.
 Extremes.