Efficient simulation of Brown-Resnick processes based on variance reduction of Gaussian processes

Kirstin Strokorb
joint work with Marco Oesting

Oaxaca - June 21, 2018

Why would you want to simulate a Brown-Resnick process?

Brown-Resnick process

"Original" definition

$\operatorname{PPP} \sim u^{-2} \mathrm{~d} u$

$$
\left\{U_{i}\right\}_{i=1}^{\infty}
$$

\&
i.i.d. log-Gaussian
$V^{(i)}(x)=e^{W^{(i)}(x)-\sigma^{2}(x) / 2}$

Brown-Resnick process
$Z(x)=\bigvee_{i=1}^{\infty} U_{i} V^{(i)}(x)$

[Brown/Resnick '77, Kabluchko/Schlather/de Haan '09]

Brown-Resnick process

"Original" definition

$\operatorname{PPP} \sim u^{-2} \mathrm{~d} u$

$$
\left\{U_{i}\right\}_{i=1}^{\infty}
$$

i.i.d. log-Gaussian
$V^{(i)}(x)=e^{W^{(i)}(x)-\sigma^{2}(x) / 2}$

Brown-Resnick process $Z(x)=\bigvee_{i=1}^{\infty} U_{i} V^{(i)}(x)$

[Brown/Resnick '77, Kabluchko/Schlather/de Haan '09]

Brown-Resnick process

"Original" definition

$\operatorname{PPP} \sim u^{-2} \mathrm{~d} u$

$$
\left\{U_{i}\right\}_{i=1}^{\infty}
$$

\&
i.i.d. log-Gaussian
$V^{(i)}(x)=e^{W^{(i)}(x)-\sigma^{2}(x) / 2}$

Brown-Resnick process
$Z(x)=\bigvee_{i=1}^{\infty} U_{i} V^{(i)}(x)$

[Brown/Resnick '77, Kabluchko/Schlather/de Haan '09]

Brown-Resnick process

"Original" definition

$\mathbf{P P P} \sim u^{-2} \mathrm{~d} u$

$$
\left\{U_{i}\right\}_{i=1}^{\infty}
$$

i.i.d. log-Gaussian
$V^{(i)}(x)=e^{W^{(i)}(x)-\sigma^{2}(x) / 2}$

Brown-Resnick process $Z(x)=\bigvee_{i=1}^{\infty} U_{i} V^{(i)}(x)$

[Brown/Resnick '77, Kabluchko/Schlather/de Haan '09]

Brown-Resnick process

"Original" definition
$\operatorname{PPP} \sim u^{-2} \mathrm{~d} u$

$$
\left\{U_{i}\right\}_{i=1}^{\infty}
$$

i.i.d. log-Gaussian
$V^{(i)}(x)=e^{W^{(i)}(x)-\sigma^{2}(x) / 2}$
\&

Brown-Resnick process
$Z(x)=\bigvee_{i=1}^{\infty} U_{i} V^{(i)}(x)$

[Brown/Resnick '77, Kabluchko/Schlather/de Haan '09]

Properties

Brown-Resnick process

$$
Z(x)=\bigvee_{i=1}^{\infty} U_{i} e^{W^{(i)}(x)-\sigma^{2}(x) / 2}
$$

The BR process Z is

- max-stable (here std. Fréchet-margins)

Properties

The BR process Z is

Brown-Resnick process

$$
Z(x)=\bigvee_{i=1}^{\infty} U_{i} e^{W^{(i)}(x)-\sigma^{2}(x) / 2}
$$

- max-stable (here std. Fréchet-margins)
- stationary if the Gaussian process W has stationary increments

Properties

Brown-Resnick process

$$
Z(x)=\bigvee_{i=1}^{\infty} U_{i} e^{W^{(i)}(x)-\sigma^{2}(x) / 2}
$$

The BR process Z is

- max-stable (here std. Fréchet-margins)
- stationary if the Gaussian process W has stationary increments
- fully specified (its law!) by the variogram

$$
\gamma(x-y)=\mathbb{E}(W(x)-W(y))^{2}
$$

Properties

Brown-Resnick process

$$
Z(x)=\bigvee_{i=1}^{\infty} U_{i} e^{W^{(i)}(x)-\sigma^{2}(x) / 2}
$$

The BR process Z is

- max-stable (here std. Fréchet-margins)
- stationary if the Gaussian process W has stationary increments
- fully specified (its law!) by the variogram

$$
\gamma(x-y)=\mathbb{E}(W(x)-W(y))^{2}
$$

- arises as max-limit of triangular arrays of Gaussian processes

Properties

Brown-Resnick process

$$
Z(x)=\bigvee_{i=1}^{\infty} U_{i} e^{W^{(i)}}(x)-\sigma^{2}(x) / 2
$$

The BR process Z is

- max-stable (here std. Fréchet-margins)
- stationary if the Gaussian process W has stationary increments
- fully specified (its law!) by the variogram

$$
\gamma(x-y)=\mathbb{E}(W(x)-W(y))^{2}
$$

- arises as max-limit of triangular arrays of Gaussian processes
\Rightarrow popular (benchmark) model for spatial extremes
(consistent, parsimonious, tractable, flexible, smoothness control, ...)

Simulation approaches so far

Notation.

- K simulation domain
- N number of points in K
on which Z shall be simulated

Overview

Method/Reference	Stopping rule for exact simulation	Expected number of Gaussian processes
(1) Original definition Kabluchko/Schlather/deHaan '09	no	unclear
(2) Random shift Oesting/Kabluchko/Schlather '12	no	unclear
(3) M3 representation Oesting/Kabluchko/Schlather '12	no	unclear
(4) L1-normalized spectral process Dieker/Mikosch '15	yes	$N \cdot C_{K}$
© Sup-normalized spectral process Oesting/Schlather/Zhou '18	(yes/no)	$\begin{gathered} \theta_{K} \cdot C_{K} \cdot \# \text { MCMC steps } \\ =\mathcal{O}(1) \text { wrt } N \end{gathered}$
© Iterative extremal functions Dombry/Engelke/Oesting '16	yes	N
($)$ Record breakers Liu/Blanchet/Dieker/Mikosch 16+	yes	$o\left(N^{\varepsilon}\right), \varepsilon>0$

Which to use for exact simulation?

Heuristic ${ }^{1}$ (on average fastest algorithm)

6 Iterative extremal functions Dombry/Engelke/Oesting '16
© Sup-normalized spectral process Oesting/Schlather/Zhou '18
${ }^{1}$ not taking $\boldsymbol{\int}$ Record breakers Liu/Blan./Diek./Mik. 16+ into account, difficult to compare

What if an error is allowed?

(E.g. to speed up simulation or make it feasible at all.)

Threshold Stopping as in [schlather oor

$$
\begin{gathered}
\mathbf{P P P} \sim u^{-2} \mathrm{~d} u \\
\left\{U_{i}\right\}_{i=1}^{\infty}
\end{gathered}
$$

i.i.d. log-Gaussian
$V^{(i)}(x)=e^{W^{(i)}(x)-\sigma^{2}(x) / 2}$

Brown-Resnick process

$$
\mathbf{Z}^{(k)}(x)=\bigvee_{i=1}^{k} U_{i} V^{(i)}(x)
$$

Stop when $\quad U_{k+1} \leqslant \inf _{x \in K} \frac{Z^{(k)}(x)}{\tau}$.

Threshold Stopping as in [schlather oor

PPP $\sim u^{-2} \mathrm{~d} u$
$\left\{U_{i}\right\}_{i=1}^{\infty}$
\&
i.i.d. log-Gaussian
$V^{(i)}(x)=e^{W^{(i)}(x)-\sigma^{2}(x) / 2}$

Brown-Resnick process

$$
\mathbf{Z}^{(k)}(x)=\bigvee_{i=1}^{k} U_{i} V^{(i)}(x)
$$

Stop when $\quad U_{k+1} \leqslant \inf _{x \in K} \frac{Z^{(k)}(x)}{\tau}$.

Threshold Stopping as in [schlather oor

$$
\begin{gathered}
\text { PPP } \sim u^{-2} \mathrm{~d} u \\
\left\{U_{i}\right\}_{i=1}^{\infty}
\end{gathered}
$$

i.i.d. log-Gaussian
$V^{(i)}(x)=e^{W^{(i)}(x)-\sigma^{2}(x) / 2}$

Brown-Resnick process

$$
\mathbf{Z}^{(k)}(x)=\bigvee_{i=1}^{k} U_{i} V^{(i)}(x)
$$

Stop when $\quad U_{k+1} \leqslant \inf _{x \in K} \frac{Z^{(k)}(x)}{\tau}$.

Threshold Stopping as in [schlather oor

$\mathbf{P P P} \sim u^{-2} \mathrm{~d} u$
$\left\{U_{i}\right\}_{i=1}^{\infty}$
\&
i.i.d. log-Gaussian
$V^{(i)}(x)=e^{W^{(i)}(x)-\sigma^{2}(x) / 2}$

Brown-Resnick process

$$
\mathbf{Z}^{(k)}(x)=\bigvee_{i=1}^{k} U_{i} V^{(i)}(x)
$$

Stop when $\quad U_{k+1} \leqslant \inf _{x \in K} \frac{Z^{(k)}(x)}{\tau}$.

Threshold Stopping as in [schlather oor

$$
\begin{gathered}
\mathbf{P P P} \sim u^{-2} \mathrm{~d} u \\
\left\{U_{i}\right\}_{i=1}^{\infty}
\end{gathered}
$$

i.i.d. log-Gaussian
$V^{(i)}(x)=e^{W^{(i)}(x)-\sigma^{2}(x) / 2}$

Brown-Resnick process

$$
\mathbf{Z}^{(k)}(x)=\bigvee_{i=1}^{k} U_{i} V^{(i)}(x)
$$

Stop when $\quad U_{k+1} \leqslant \inf _{x \in K} \frac{Z^{(k)}(x)}{\tau}$.

Threshold Stopping as in [Schlather '02]

$\mathbf{P P P} \sim u^{-2} \mathrm{~d} u$
$\left\{U_{i}\right\}_{i=1}^{\infty}$
\&
i.i.d. log-Gaussian
$V^{(i)}(x)=e^{W^{(i)}(x)-\sigma^{2}(x) / 2}$

Brown-Resnick process

$$
\mathbf{Z}^{(k)}(x)=\bigvee_{i=1}^{k} U_{i} V^{(i)}(x)
$$

Stop when $\quad U_{k+1} \leqslant \inf _{x \in K} \frac{Z^{(k)}(x)}{\tau}$.

First observations

- expected threshold stopping time

$$
\geqslant \tau \mathbb{E}\left\{1 / \inf _{x \in K} Z(\boldsymbol{x})\right\}
$$

- expected number of missing extremal functions

$$
\leqslant \mathbb{E}\left(\sup _{x \in K} \frac{V^{\prime}(\boldsymbol{x})}{Z^{\prime}(\boldsymbol{x})}-\sup _{x \in K} \frac{\tau}{Z^{\prime}(\boldsymbol{x})}\right)_{+}
$$

for independent stochastic processes Z^{\prime} and V^{\prime} with the same distributions as Z and V, respectively.

Error bounds

$$
\begin{aligned}
\mathcal{P}_{K, \tau, \varepsilon}^{(\mathrm{abs})} & =\mathbb{P}\left(\sup _{\boldsymbol{x} \in K}\left|Z(\boldsymbol{x})-Z^{(T)}(\boldsymbol{x})\right|>\varepsilon\right) \\
& =1-\mathbb{E}_{Z^{(T)}}\left\{\exp \left(-\mathbb{E}_{V}\left(\sup _{\boldsymbol{x} \in K} \frac{V(\boldsymbol{x})}{Z^{(T)}(\boldsymbol{x})+\varepsilon}-\sup _{\boldsymbol{x} \in K} \frac{\tau}{Z^{(T)}(\boldsymbol{x})}\right)_{+}\right)\right\} \\
\mathcal{P}_{K, \tau, \varepsilon}^{(\mathrm{rel})} & =\mathbb{P}\left(\sup _{\boldsymbol{x} \in K} \frac{\left|Z(\boldsymbol{x})-Z^{(T)}(\boldsymbol{x})\right|}{Z^{(T)}(\boldsymbol{x})}>\varepsilon\right) \\
& =1-\mathbb{E}_{Z^{(T)}}\left\{\exp \left(-\mathbb{E}_{V}\left(\sup _{\boldsymbol{x} \in K} \frac{V(\boldsymbol{x})}{(1+\varepsilon) Z^{(T)}(\boldsymbol{x})}-\sup _{\boldsymbol{x} \in K} \frac{\tau}{Z^{(T)}(\boldsymbol{x})}\right)_{+}\right)\right\} \\
\mathcal{P}_{K, \tau} & =\mathbb{P}\left(Z^{(T)} \neq Z^{(\infty)} \text { on } K\right) \\
& \left.=1-\mathbb{E}_{Z^{(T)}}\left\{\exp \left(-\mathbb{E}_{V}\left(\sup _{x \in K} \frac{V(\boldsymbol{x})}{Z^{(T)}(\boldsymbol{x})}-\sup _{\boldsymbol{x} \in K} \frac{\tau}{Z^{(T)}(\boldsymbol{x})}\right)+\right)_{+}\right)\right\} \\
& \leqslant \mathbb{E}\left(\sup _{x \in K} \frac{V(x)}{Z(x)}-\sup _{x \in K} \frac{\tau}{Z(x)}\right) \leqslant C_{K} \cdot \underbrace{\mathbb{E} \sup (V(x)-\tau)_{+}}_{x \in K} \underset{\tau}{\mathbb{P}\left(\sup _{x \in K} V(x)>u\right) d u}
\end{aligned}
$$

Minimal Gaussian Variance

Idea. Choose spectral rep. $V(x)=\exp \left(W(x)-\sigma^{2}(x) / 2\right)$ such that $\sup _{x \in K} W(x)-\sigma^{2}(x) / 2 \quad$ becomes as "light tailed" as possible.

Minimal Gaussian Variance

Idea. Choose spectral rep. $V(x)=\exp \left(W(x)-\sigma^{2}(x) / 2\right)$ such that

$$
\sup _{x \in K} W(x)-\sigma^{2}(x) / 2 \quad \text { becomes as "light tailed" as possible. }
$$

Proposition

(MO/KS: Application of [Debicki/Kosinski/Mandjes/Rolski '10])
Let $\left\{W_{i}(x), x \in K\right\}, i=1,2$ be centered Gaussian processes with a.s. bounded sample paths and variance functions $\sigma_{i}^{2}(x)=\operatorname{Var}\left(W_{i}(x)\right)$ and

Then

$$
\sup _{x \in K} \sigma_{1}^{2}(x)<\sup _{x \in K} \sigma_{2}^{2}(x)<\infty
$$

$\sup _{x \in K} W_{1}(x)-\sigma_{1}^{2}(x) / 2$ has lighter tail than $\sup _{x \in K} W_{2}(x)-\sigma_{2}^{2}(x) / 2$.

Minimal Gaussian Variance

Problem. Find centred sample-continuous Gaussian process W

- minimizing $\sup _{x \in K} \operatorname{Var}(W(x))$
(I)
- subject to $\gamma(x-y)=\mathbb{E}(W(x)-W(y))^{2}, x, y \in K$

Minimal Gaussian Variance

Problem. Find centred sample-continuous Gaussian process W

- minimizing $\sup _{x \in K} \operatorname{Var}(W(x))$
- subject to $\gamma(x-y)=\mathbb{E}(W(x)-W(y))^{2}, x, y \in K$

[Matheron '74]

Let W_{0} be any (reference) process satisfying (II).
Then the solution can be represented as

$$
W^{\lambda}(x)=W_{0}(x)-\int_{K} W_{0}\left(x^{\prime}\right) \lambda\left(d x^{\prime}\right), \quad x \in K
$$

for some probability measure λ on K.
\Rightarrow "Parametrization by probability measures λ on K."

Example

- $W_{0}=B=$ std. Brownian motion on $K=[-R, R]$ (variogram $\left.\gamma(x)=|x|\right)$

Example

- $W_{0}=B=$ std. Brownian motion on $K=[-R, R]$ (variogram $\left.\gamma(x)=|x|\right)$
- Modified Brownian motion with $\lambda=\frac{1}{2} \delta_{-R}+\frac{1}{2} \delta_{R}$

$$
W^{\lambda}(x)=W_{0}(x)-\int_{K} W_{0}\left(x^{\prime}\right) \lambda\left(d x^{\prime}\right)=B(x)-\left(\frac{1}{2} B(-R)+\frac{1}{2} B(R)\right)
$$

has the same variogram.

Example

- $W_{0}=B=$ std. Brownian motion on $K=[-R, R]$ (variogram $\left.\gamma(x)=|x|\right)$
- Modified Brownian motion with $\lambda=\frac{1}{2} \delta_{-R}+\frac{1}{2} \delta_{R}$

$$
W^{\lambda}(x)=W_{0}(x)-\int_{K} W_{0}\left(x^{\prime}\right) \lambda\left(d x^{\prime}\right)=B(x)-\left(\frac{1}{2} B(-R)+\frac{1}{2} B(R)\right)
$$

has the same variogram.

Original Brownian motions

Modified Brownian motions

Example

- $W_{0}=B=$ std. Brownian motion on $K=[-R, R]$ (variogram $\left.\gamma(x)=|x|\right)$
- Modified Brownian motion with $\lambda=\frac{1}{2} \delta_{-R}+\frac{1}{2} \delta_{R}$

$$
W^{\lambda}(x)=W_{0}(x)-\int_{K} W_{0}\left(x^{\prime}\right) \lambda\left(d x^{\prime}\right)=B(x)-\left(\frac{1}{2} B(-R)+\frac{1}{2} B(R)\right)
$$

has the same variogram.

Original Brownian motions

Modified Brownian motions

This choice minimizes $\lambda \mapsto \sup _{x \in[-R, R]} \operatorname{Var}\left(W^{\lambda}(x)\right)$.
It is even locally stationary.

More generally ...

Proposition

Let

- $\gamma(x)=\psi\left(\|x\|^{2}\right)$ be a convex variogram on \mathbb{R}^{d} and W_{0} a reference process with variogram γ,
- $K \subset \mathbb{R}^{d}$ compact, such that $S(E x(K))$ acts transitively on $\operatorname{Ex}(K)$

Then the modified process

$$
W^{\lambda}(x)=W_{0}(x)-\int_{K} W_{0}\left(x^{\prime}\right) \lambda\left(d x^{\prime}\right), \quad x \in K
$$

with $\lambda=$ uniform distribution on $\operatorname{Ex}(K)$ minimizes $\lambda \mapsto \sup _{x \in K} \operatorname{Var}\left(W^{\lambda}(x)\right)$.

Example. $\gamma(x)=\|x\|^{\alpha}, \alpha \in[1,2)$ (fractional Brownian sheet) on a hyperrectangle $K=\prod_{i=1}^{d}\left[-R_{i}, R_{i}\right]$ (d-dim'l simulation window)

Example

For $\alpha \geqslant 1$ the modified fractional Brownian motion

$$
\widetilde{B}_{\alpha}(x)=B_{\alpha}(x)-\left(\frac{1}{2} B_{\alpha}(-R)+\frac{1}{2} B_{\alpha}(R)\right)
$$

minimizes $W \mapsto \sup _{x \in[-R, R]} \operatorname{Var}(W(x))$
(among Gaussian processes with variogram $\gamma(x)=\|x\|^{\alpha}$).

Problem. Find centred sample-continuous Gaussian process W

- minimizing $\sup _{x \in K} \operatorname{Var}(W(x))$
- subject to $\gamma(x-y)=\mathbb{E}(W(x)-W(y))^{2}, x, y \in K$

What if the variogram is not convex?

Still subtracting vertices reduces the variance

Proposition

Let

- $\gamma(x)=\psi\left(\|x\|^{2}\right)$ for a Bernstein function ψ and W_{0} the reference process on \mathbb{R}^{d} with $W_{0}(0)=0$,
- $K=\prod_{i=1}^{d}\left[-R_{i}, R_{i}\right]$ be a hyperrectangle.

Then the process

$$
W^{\lambda}(x)=W_{0}(x)-\int_{K} W_{0}\left(x^{\prime}\right) \lambda\left(d x^{\prime}\right), \quad x \in K
$$

with $\lambda=$ uniform distribution on the vertices of K reduces $W \mapsto \sup _{x \in K} \operatorname{Var}(W(x)$), i.e.,

$$
\sup _{x \in K} \operatorname{Var}(W(x)) \leqslant \sup _{x \in K} \operatorname{Var}\left(W_{0}(x)\right)
$$

Remark. Can replace K with any subset containing the vertices of the hyperrectangle.

Still subtracting vertices reduces the variance

Proof. Need to show $\operatorname{Var}(W(x)) \leqslant \sup _{x \in K} \operatorname{Var}\left(W_{0}(x)\right)$ for all $x \in K$.

Still subtracting vertices reduces the variance

Proof. Need to show $\operatorname{Var}(W(x)) \leqslant \sup _{x \in K} \operatorname{Var}\left(W_{0}(x)\right)$ for all $x \in K$.

$$
\Leftrightarrow \quad \frac{1}{2^{d}} \sum_{A \subset\{1, \ldots, d\}} \gamma\left(x-v_{A}\right)-\frac{1}{2} \gamma\left(v_{\emptyset}-v_{A}\right) \leqslant \gamma\left(v_{\emptyset}\right)
$$

(label the vertices $\left(\pm R_{1}, \pm R_{2}, \ldots, \pm R_{d}\right)$ of K

$$
\text { by } A \subset\{1, \ldots, d\} \text { according to } \pm \text {) }
$$

Still subtracting vertices reduces the variance

Proof. Need to show $\operatorname{Var}(W(x)) \leqslant \sup _{x \in K} \operatorname{Var}\left(W_{0}(x)\right)$ for all $x \in K$.

$$
\begin{aligned}
& \Leftrightarrow \quad \frac{1}{2^{d}} \sum_{A \subset\{1, \ldots, d\}} \gamma\left(x-v_{A}\right)-\frac{1}{2} \gamma\left(v_{\emptyset}-v_{A}\right) \leqslant \gamma\left(v_{\emptyset}\right) \\
& \text { (label the vertices }\left(\pm R_{1}, \pm R_{2}, \ldots, \pm R_{d}\right) \text { of } K \\
& \text { by } A \subset\{1, \ldots, d\} \text { according to } \pm \text {) } \\
& \Leftrightarrow \frac{1}{2^{d}} \sum_{A \subset\{1, \ldots, d\}} \psi\left(3 \sum_{i \in A} R_{i}^{2}+\sum_{j \in A^{c}} R_{j}^{2}\right)-\frac{1}{2} \psi\left(4 \sum_{i \in A} R_{i}^{2}\right) \leqslant \psi\left(\sum_{i=1}^{d} R_{i}^{2}\right) \\
& \\
& \text { (using 2-alternation of } \psi \text { iteratively } d \text { times) }
\end{aligned}
$$

Still subtracting vertices reduces the variance

Proof. Need to show $\operatorname{Var}(W(x)) \leqslant \sup _{x \in K} \operatorname{Var}\left(W_{0}(x)\right)$ for all $x \in K$.

$$
\Leftrightarrow \quad \frac{1}{2^{d}} \sum_{A \subset\{1, \ldots, d\}} \gamma\left(x-v_{A}\right)-\frac{1}{2} \gamma\left(v_{\nexists}-v_{A}\right) \leqslant \gamma\left(v_{\emptyset}\right)
$$

$$
\text { (label the vertices }\left(\pm R_{1}, \pm R_{2}, \ldots, \pm R_{d}\right) \text { of } K
$$

$$
\text { by } A \subset\{1, \ldots, d\} \text { according to } \pm \text {) }
$$

$$
\Leftarrow \frac{1}{2^{d}} \sum_{A \subset\{1, \ldots, d\}} \psi\left(3 \sum_{i \in A} R_{i}^{2}+\sum_{j \in A^{c}} R_{j}^{2}\right)-\frac{1}{2} \psi\left(4 \sum_{i \in A} R_{i}^{2}\right) \leqslant \psi\left(\sum_{i=1}^{d} R_{i}^{2}\right)
$$

$$
\text { (using 2-alternation of } \psi \text { iteratively } d \text { times) }
$$

$$
\Leftarrow \quad \psi(3 a+b)-\frac{1}{2} \psi(4 a) \leqslant \psi(a+b)
$$

Still subtracting vertices reduces the variance

Proof. Need to show $\operatorname{Var}(W(x)) \leqslant \sup _{x \in K} \operatorname{Var}\left(W_{0}(x)\right)$ for all $x \in K$.

$$
\Leftrightarrow \quad \frac{1}{2^{d}} \sum_{A \subset\{1, \ldots, d\}} \gamma\left(x-v_{A}\right)-\frac{1}{2} \gamma\left(v_{\nexists}-v_{A}\right) \leqslant \gamma\left(v_{\theta}\right)
$$

$$
\text { (label the vertices }\left(\pm R_{1}, \pm R_{2}, \ldots, \pm R_{d}\right) \text { of } K
$$

$$
\text { by } A \subset\{1, \ldots, d\} \text { according to } \pm \text {) }
$$

$$
\Leftarrow \frac{1}{2^{d}} \sum_{A \subset\{1, \ldots, d\}} \psi\left(3 \sum_{i \in A} R_{i}^{2}+\sum_{j \in A^{c}} R_{j}^{2}\right)-\frac{1}{2} \psi\left(4 \sum_{i \in A} R_{i}^{2}\right) \leqslant \psi\left(\sum_{i=1}^{d} R_{i}^{2}\right)
$$

$$
\text { (using 2-alternation of } \psi \text { iteratively } d \text { times) }
$$

$$
\Leftarrow \quad \psi(3 a+b)-\frac{1}{2} \psi(4 a) \leqslant \psi(a+b)
$$

which is true for Bernstein functions (uses combination of 2-alternation and 3-alternation).

More about fractional Brownian sheets

Proposition

(Combining [Matheron '74] and [Gneiting '00 (Addendum)])
For $\alpha \in(0,2)$ the function

$$
C(x-y)=a-\|x-y\|^{\alpha}, \quad x, y \in B_{R}(o)
$$

is a covariance function if and only if

$$
a \geqslant \frac{\Gamma\left(\frac{2-\alpha}{2}\right) \Gamma\left(\frac{d+\alpha}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} R^{\alpha}=: A_{\alpha, d}(R) .
$$

(locally stationary rep. on $B_{R}(o)$ for the variogram $\gamma(x-y)=\|x-y\|^{\alpha}$).
Choosing $a=A_{\alpha, d}(R)$ minimizes $W \mapsto \sup _{x \in B_{R}(o)} \operatorname{Var}(W(x))$ among Gaussian representations for γ if and only if $d=1$ and $\alpha \leqslant 1$.

Example

Original fBM

$$
(\alpha=0.7)
$$

Modified fBM

$$
(\alpha=0.7)
$$

Reduced variance.

Locally stationary fBM

$$
(\alpha=0.7)
$$

Minimal variance.

Figure : (above) Variances $\sigma^{2}(t)$ of the Gaussian representations of the variogram $\gamma(h)=|h / s|^{\alpha}$ on the domain $K=[-1,1]$. The plots show the variance for the original representation with $W_{0}(0)=0$ (black), the minimal K-stationary representation (red) and the λ-modified representation with $\lambda=\operatorname{Unif}(\operatorname{Ex}(K))$ (blue). For $\alpha=1$ the last two coincide. The scale $s>0$ is chosen such that the variance of the minimal K-stationary representation (red) is normalized to 1 .

Figure : (next page) Variances $\sigma^{2}(t)$ of the Gaussian representations of the variogram $\gamma(\boldsymbol{h})=\|\boldsymbol{h} / \sqrt{2}\|^{\alpha}$ on the domain $K=[-1,1]^{2}$ for $\alpha \in\{0.7,1.0,1.3\}$ (left to right). The plots show the variance for the original representation with $W_{0}(\mathbf{0})=0$, the minimal K-stationary representation and the λ-modified representation with $\lambda=\operatorname{Unif}(\operatorname{Ex}(K))$ (top to bottom). Minimality of the K-stationary representation refers to the minimal ball $B_{\sqrt{2}}(\mathbf{0})$ containing K.

Quick wrap up.

- several situations in which we understand how to reduce the maximal variance a of Gaussian processes (subject to fixed variogram)

Quick wrap up.

- several situations in which we understand how to reduce the maximal variance a of Gaussian processes (subject to fixed variogram)

How can this be useful for BR-simulation?

- helps to pick a (log-)Gaussian spectral representation whose supremum over the simulation window has a lighter tail
- which reduces either the error or simulation time (when simulation is based on threshold stopping)

Quick wrap up.

- several situations in which we understand how to reduce the maximal variance a of Gaussian processes (subject to fixed variogram)

How can this be useful for BR-simulation?

- helps to pick a (log-)Gaussian spectral representation whose supremum over the simulation window has a lighter tail
- which reduces either the error or simulation time (when simulation is based on threshold stopping)

To what extent?
Comparison with existing methods?

What can go wrong? (Typical phenomena)

Original definition
 (Threshold stopping)

Pointwise boxplots of 10000 simulations, Gumbel scale, each stopped "too early".

What can go wrong? (Typical phenomena)

Random shift
 (Threshold stopping)

Pointwise boxplots of 10000 simulations, Gumbel scale, each stopped "too early".

What can go wrong? (Typical phenomena)

Reduced/Minimal variance (Threshold stopping)

Pointwise boxplots of 10000 simulations, Gumbel scale, each stopped "too early".

What can go wrong? (Typical phenomena)

Extremal functions

Pointwise boxplots of 10000 simulations, Gumbel scale, each stopped "too early".

Numerical experiments

Fair comparison?

Efficiency

- Time $=$ Expected number of Gaussian processes to be simulated

- Error $=$ Expected number of missing extremal functions

Fix time.
Observe error.

Numerical results (dimension 1)

Table : Benchmark error terms $\hat{P}_{K, \tau}$ for the simulation of BR processes on the interval $K=[-1,1]$ (step size 0.004) for the variogram $\gamma(h)=|h / s|^{\alpha}$.

Scenario		Original definition	$K-$ stationary	$\begin{gathered} \boldsymbol{\lambda}=\operatorname{Unif}(\operatorname{Ex}(K)) \\ \text { modification } \end{gathered}$	Extremal functions
$\begin{aligned} & -1 \\ & \stackrel{0}{\dddot{N}} \\ & \dot{\sim} \end{aligned}$	$\alpha=0.7$	0.33	0.07	0.17	0.77
	$\alpha=1.0$	0.21	0.08	0.09	0.55
	$\alpha=1.3$	0.09	0.32	0.03	0.32
NUU	$\alpha=0.7$	0.76	0.33	0.55	0.85
	$\alpha=1.0$	0.51	0.31	0.29	0.64
	$\alpha=1.3$	0.26	0.31	0.13	0.37
$\begin{aligned} & m \\ & \frac{0}{\Pi} \\ & \dot{U} \end{aligned}$	$\alpha=0.7$	0.97	0.84	0.96	0.81
	$\alpha=1.0$	0.90	0.79	0.81	0.70
	$\alpha=1.3$	0.76	0.72	0.46	0.42

Remark. "True" minimizing measure for $\alpha<1$ of discrete problem available. Even better.
Ongoing: comparison with Dieker-Mikosch and others. DM often extremely good.

Discretization effects

Consider $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}=K \subset \mathbb{R}^{d}$ (study area).

Discretization effects

Consider $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}=K \subset \mathbb{R}^{d}$ (study area).

- for convex variograms: nothing changes (subtracting extremal points is optimal)

Discretization effects

Consider $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}=K \subset \mathbb{R}^{d}$ (study area).

- for convex variograms: nothing changes (subtracting extremal points is optimal)
- for concave variograms:

Discretization effects

Consider $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}=K \subset \mathbb{R}^{d}$ (study area).

- for convex variograms: nothing changes (subtracting extremal points is optimal)
- for concave variograms:
A) Still subtracting vertices with uniform weights helps.

Useful for α close to 1 for $\gamma(h)=\|h / s\|^{\alpha}$.

Discretization effects

Consider $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}=K \subset \mathbb{R}^{d}$ (study area).

- for convex variograms: nothing changes (subtracting extremal points is optimal)
- for concave variograms:
A) Still subtracting vertices with uniform weights helps.

Useful for α close to 1 for $\gamma(h)=\|h / s\|^{\alpha}$.
B) Usually possible to solve

$$
\int_{K} \gamma(x-y) \lambda_{0}(d y)=1, \quad x \in K
$$

If $\lambda_{0} \geqslant 0$, then its normalization to a probability measure is $\lambda_{\text {min }}$. Useful for $d=1$ and $\alpha \in(0,1)$ or α close to 0 .

Discretization effects

Consider $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}=K \subset \mathbb{R}^{d}$ (study area).

- for convex variograms: nothing changes (subtracting extremal points is optimal)
- for concave variograms:
A) Still subtracting vertices with uniform weights helps.

Useful for α close to 1 for $\gamma(h)=\|h / s\|^{\alpha}$.
B) Usually possible to solve

$$
\int_{K} \gamma(x-y) \lambda_{0}(d y)=1, \quad x \in K
$$

If $\lambda_{0} \geqslant 0$, then its normalization to a probability measure is $\lambda_{\text {min }}$.
Useful for $d=1$ and $\alpha \in(0,1)$ or α close to 0 .
C) Remaining cases.
$\min _{\boldsymbol{\lambda}} \max _{i=1}^{N} \frac{1}{2}\left(\boldsymbol{\lambda}-\boldsymbol{e}^{i}\right)^{\top}(-\boldsymbol{\Gamma})\left(\boldsymbol{\lambda}-\boldsymbol{e}^{i}\right) \quad$ subject to $\quad \boldsymbol{e}^{\top} \boldsymbol{\lambda}=1, \boldsymbol{\lambda} \geqslant \mathbf{0}$.
(Reformulations, augmented problem, dual problem, ...)

Open problem

Let $\Gamma_{i j}=\left\|x_{i}-x_{j}\right\|^{\alpha}, i, j \in\{1, \ldots, N\},\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}^{d}$
Consider

$$
\lambda=\Gamma^{-1}(1,1, \ldots, 1)^{T} .
$$

Open problem

Let $\Gamma_{i j}=\left\|x_{i}-x_{j}\right\|^{\alpha}, i, j \in\{1, \ldots, N\},\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}^{d}$
Consider

$$
\lambda=\Gamma^{-1}(1,1, \ldots, 1)^{T} .
$$

Conjecture 1.
For $d=1$ and $\alpha \in(0,1]$ we have $\lambda \geqslant 0$.

Conjecture 2.

For $d>2$ there exists $\alpha_{\text {critical }}=\alpha_{\text {critical }}\left(x_{1}, \ldots, x_{N}\right) \in(0,1)$ such that $\lambda \geqslant 0$ for $\alpha \leqslant \alpha_{\text {critical }}$.

Summary

- Brown-Resnick processes $=$ popular model for spatial extremes.

Summary

- Brown-Resnick processes = popular model for spatial extremes.
- Several simulation algorithms are suitable for exact simulation.

Summary

- Brown-Resnick processes = popular model for spatial extremes.
- Several simulation algorithms are suitable for exact simulation.

Summary

- Brown-Resnick processes = popular model for spatial extremes.
- Several simulation algorithms are suitable for exact simulation.
- Once, an error is allowed/necessary: not so clear.

Our focus: Role of simulation domain K.

Summary

- Brown-Resnick processes = popular model for spatial extremes.
- Several simulation algorithms are suitable for exact simulation.
- Once, an error is allowed/necessary: not so clear.

Our focus: Role of simulation domain K.

- Very simple trick to reduce/minimize the maximal variance of Gaussian spectral functions:

Subtract corners of simulation window with equal weights.

Summary

- Brown-Resnick processes = popular model for spatial extremes.
- Several simulation algorithms are suitable for exact simulation.
- Once, an error is allowed/necessary: not so clear.

Our focus: Role of simulation domain K.

- Very simple trick to reduce/minimize the maximal variance of Gaussian spectral functions:

Subtract corners of simulation window with equal weights.

- ... always outperforms "original definition", comparison with "extremal functions": depends on the scenario.

Summary

- Brown-Resnick processes = popular model for spatial extremes.
- Several simulation algorithms are suitable for exact simulation.
- Once, an error is allowed/necessary: not so clear.

Our focus: Role of simulation domain K.

- Very simple trick to reduce/minimize the maximal variance of Gaussian spectral functions:

Subtract corners of simulation window with equal weights.

- ... always outperforms "original definition", comparison with "extremal functions": depends on the scenario.
- Often worthwile doing: Solve discrete optimization problem first. (Associated open problems for $\gamma(h)=|h|^{\alpha}, \alpha \in(0,1)$)

Summary

- Brown-Resnick processes = popular model for spatial extremes.
- Several simulation algorithms are suitable for exact simulation.
- Once, an error is allowed/necessary: not so clear.

Our focus: Role of simulation domain K.

- Very simple trick to reduce/minimize the maximal variance of Gaussian spectral functions:

Subtract corners of simulation window with equal weights.

- ... always outperforms "original definition", comparison with "extremal functions": depends on the scenario.
- Often worthwile doing: Solve discrete optimization problem first. (Associated open problems for $\gamma(h)=|h|^{\alpha}, \alpha \in(0,1)$)
- Ongoing: Comparison with other normalizations (can perform very well).

References

Thank you!

A. B. Dieker and T. Mikosch.

Exact simulation of Brown-Resnick random fields at a finite number of locations.
Extremes, 18(2):301-314, 2015.
C. Dombry, S. Engelke and M. Oesting.

Exact simulation of max-stable processes.
Biometrika 103(2):303-317, 2016.
T. Gneiting.

Isotropic correlation functions on d-dimensional balls.
Adv. Appl. Probab., 31(3):625-631, 1999.
Z. Kabluchko, M. Schlather and L. de Haan.

Stationary max-stable fields associated
to negative definite functions.
Ann. Probab. 37(5):2042-2065.
Z. Liu, Z., J. H. Blanchet, A. Dieker and T. Mikosch

Optimal exact simulation of max-stable and related random fields.
arXiv preprint arXiv:1609.06001, 2016.
G. Matheron.

Représentations stationnaires et représentations minimales pour les f.a.i.-k.
Note Géostatistique 125, Centre de Morph. Math.
Fontainebleau, École des Mines de Paris, 1974.
M. Oesting, Z. Kabluchko and M. Schlather.

Simulation of Brown-Resnick processes.
Extremes 15(1):89-107, 2012.
M. Oesting, M. Schlather and C. Zhou.

Exact and fast simulation of max-stable processes on a compact set using the normalized spectral representation. Bernoulli. To appear.

M. Oesting, K. Strokorb.

Efficient simulation of Brown-Resnick processes based on variance reduction of Gaussian processes
https://arxiv.org/abs/1709.06037.
M. Schlather.

Models for stationary max-stable random fields.
Extremes 5(1):33-44, 2002.

Numerical experiments

Setting.

- Variogram $\gamma(x)=|x|^{\alpha}$
- Simulation domain $K=[-5,5]$
- Step size 0.02
- Threshold for "Reduced variance": $\tau=\exp \left(2 \sqrt{5^{\alpha} / 2}\right)$

> Error $=$ Expected \# of missing extremal functions (based on 25000 simulations)

		Threshold stopping		Extremal
	Original defn.	Random shift	Reduced variance	functions
$\alpha=0.7$	1.11	1.35	$\mathbf{0 . 7 0}$	3.03
$\alpha=1.0$	0.97	1.22	$\mathbf{0 . 6 1}$	1.24
$\alpha=1.3$	0.95	1.08	0.63	$\mathbf{0 . 2 7}$

Boxplots $\alpha=1.3$

Original defn

Reduced variance

Random shift

Extremal functions

Numerical results (dimension 2)

Table: Benchmark error terms $\widehat{P}_{K, \tau}$ for the simulation of BR processes on the square $K=[-1,1]^{2}$ for the variogram $\gamma(\boldsymbol{h})=(2 \sqrt{2} / \pi)\|\boldsymbol{h}\|$.

Scenario	Original definition	$\boldsymbol{K}-$ stationary	$\boldsymbol{\lambda}=\operatorname{Unif}(\operatorname{Ex}(K))$ modification	Extremal functions
$\sigma_{\mathrm{LS}}^{2}=1, \alpha=1.0$	0.07	0.09	$\mathbf{0 . 0 1}$	0.73

