# Instability of ranks and inference under long memory 

> Shuyang (Ray) Bai*
joint work with Murad S. Taqqu** and Ting Zhang**

University of Georgia* \& Boston University**

June 19, 2018

## Gaussian Subordination Model

A popular class of long-memory models: Gaussian subordination.
$\left\{Z_{k}\right\}$ : standardized stationary long-memory Gaussian with

$$
\operatorname{Cov}\left[Z_{k}, Z_{0}\right] \sim k^{-\beta_{0}}, \quad 0<\beta_{0}<1
$$

Model:

$$
X_{k}=G\left(Z_{k}\right), \quad G(z): \text { a function s.t. } \mathbb{E} G\left(Z_{i}\right)^{2}<\infty .
$$

Hermite polynomials $H_{m}(\cdot)$ : orthogonal polynomials under Gaussian measure.

$$
H_{0}(z)=1, \quad H_{1}(z)=z, \quad H_{2}(z)=z^{2}-1, \quad H_{3}(z)=z^{3}-3 z, \ldots
$$

$L^{2}$-expansion:

$$
G(z)=\mu+g_{m} H_{m}(z)+g_{m+1} H_{m+1}(z)+\ldots, \quad g_{m} \neq 0
$$

$m$ : Hermite rank.
Key Property:

$$
\operatorname{Cov}\left[X_{k}, X_{0}\right] \sim k^{-\beta_{0} m}
$$

$\beta_{0} m>1:\left(X_{n}\right)$ has short memory.
$\beta_{0} m<1$ : $\left(X_{n}\right)$ has long memory with new parameter $\beta=\beta_{0} m$.

## Limit Theorems for Gaussian Subordination

Recall: $X_{k}=G\left(Z_{k}\right),\left(Z_{k}\right)$ standardized Gaussian, $\operatorname{Cov}\left[Z_{k}, Z_{0}\right] \sim k^{-\beta_{0}}$, m: Hermite rank.
Central Limit Theorem Breuer Major (1983), Chambers Slud (1989).
If $\beta_{0} m>1$ (short memory), then

$$
\frac{1}{n^{1 / 2}} \sum_{i=1}^{\lfloor n t\rfloor}\left(X_{i}-\mu\right) \Rightarrow \sigma B(t), \quad B(t): \text { Brownian motion, } \quad \sigma^{2}:=\sum_{k=-\infty}^{+\infty} \operatorname{Cov}\left[X_{k}, X_{0}\right]
$$

Non-Central Limit Theorem Dobrushin \& Major (1979), Taqqu (1979).
If $\beta_{0} m<1$ (long memory with $\beta=\beta_{0} m$ ), then

$$
\frac{1}{n^{1-\beta / 2}} \sum_{i=1}^{\lfloor n t\rfloor}\left(X_{i}-\mu\right) \Rightarrow \nu Z_{m, \beta_{0}}(t), \quad \nu: \text { scale constant. }
$$

Hermite process: $Z_{m, \beta_{0}}(t)=(m=1$ : fractional Brownian motion $)$

$$
\int_{x_{1}<x_{2}<\ldots<x_{m}}\left[\int_{0}^{t} \prod_{j=1}^{m}\left(s-x_{j}\right)_{+}^{-\beta_{0} / 2-1 / 2} d s\right] d B\left(x_{1}\right) d B\left(x_{2}\right) \ldots d B\left(d x_{m}\right)
$$

Summary: $m$ controls both the normalization order and the asymptotic distribution.

## Statistical Challenges with Gaussian Subordination model

Recall Gaussian subordination $X_{k}=G\left(Z_{k}\right)$.
(One can carry out a similar discussion for non-Gaussian linear process $Z_{k}=\sum_{i} a_{i} \epsilon_{k-i}$ ).
To apply previous limit theorems for inference, one needs to know the Hermite rank:

$$
m=\inf \left\{k \geq 1: \int G(z) H_{k}(z) \phi(z) d z \neq 0\right\}
$$

- Situation 1: $G$ is unknown.
$X_{k}=G\left(Z_{k}\right)$ with $G$ unspecified to account for distributional flexibility. E.g., error in regression $u_{k}=\beta_{0}+\beta_{1} v_{k}+G\left(Z_{k}\right)$.
- Situation 2: $G$ is known.
$G$ arises from statistical procedure.
E.g., $Z_{k}$ observed, $G(z)=z^{2}(m=2)$ arises when estimating variance of $Z_{k}$.

Situation 1: difficult to estimate $m$. Often assume $m=1$ (justification?).
Situation 2: seems no problem?
Short conclusion: better not trust a Hermite rank $m \geq 2$.

## Perturbation of Gaussian Subordination

- A common statistical modeling principle:

A small perturbation of assumption should not drastically alter the conclusion.

$$
\text { Model: } G\left(Z_{k}\right) \xrightarrow{\text { perturbation }} G \circ F\left(Z_{k}\right)
$$

$G$ : known or unknown, with Hermite rank $m$.
$F$ : an uncontrollable perturbation transform.
Note: when $G$ is known, $F$ reflects the uncertainty prior to applying $G$.
Question: how likely does $G \circ F$ still have Hermite rank $m$ ?
Answer: if $m \geq 2$, very unlikely. Indeed,

$$
m \geq 2 \Longleftrightarrow \int G \circ F(z) \cdot z \cdot \phi(z) d z=0, \quad \text { where } H_{1}(z)=z
$$

The equality is very rigid. Departing from $F(z)=z$ easily breaks it down.

## Shift Perturbation

As an example, let us consider a shift $F(z)=\theta_{y}(z)=z+y$.
$m(y)$ : Hermite rank of $G \circ \theta_{y}$.

$$
m(y) \geq 2 \Longleftrightarrow H(y)=\int G(z+y) \cdot z \cdot \phi(z) d z=0
$$

Bai \& Taqqu (2018):

$$
H \text { is analytic } \Rightarrow H(y)=0 \text { occurs only for isolated } y^{\prime} s,
$$

unless

$$
H(y) \equiv 0 \Rightarrow G \text { is a constant. }
$$

In particular, if $G$ is not constant,
Hermite rank of $G \geq 2 \Rightarrow$ Hermite rank of $G \circ \theta_{y}$ is 1 in a nbhd of $y=0$.

Similarly arguments apply to more general (parameterized) transforms F.

## Interplay Between Shift Perturbation Size and Sample Size

When $m \geq 2$ and $F$ is close to identity, would $G \circ F$ behave like $m \geq 2$ ?
For shift $F=\theta_{y}$, one can perform a "near-higher-order-rank" analysis as $y=y_{n} \rightarrow 0$ of

$$
S_{n}(t)=\frac{1}{a_{n}} \sum_{n=1}^{\lfloor n t\rfloor}\left[G\left(Z_{k}+y_{n}\right)-\mathbb{E} G\left(Z_{k}+y_{n}\right)\right]
$$

Recall $\operatorname{Cov}\left(Z_{k}, Z_{0}\right) \sim k^{-\beta_{0}}, \beta_{0} \in(0,1)$.

- $\beta_{0}>1 / m, m \geq 2$ :

| $y_{n}$ | $a_{n}$ | f.d.d. limit |
| :---: | :---: | :---: |
| $\ll n^{\left(\beta_{0}-1\right) /(2 m-2)}$ | $n^{1 / 2}$ | $c B(t)$ |
| $\approx n^{\left(\beta_{0}-1\right) /(2 m-2)}$ | $n^{1 / 2}$ | $c_{1} B(t)+c_{2} Z_{1, \beta_{0}}(t)$ |
| $\gg n^{\left(\beta_{0}-1\right) /(2 m-2)}$ | $n^{1-\beta_{0} / 2} y_{n}^{1-m}$ | $c Z_{1, \beta_{0}}(t)$ |

- $\beta_{0}<1 / m$ :

| $y_{n}$ | $a_{n}$ | f.d.d. limit |
| :---: | :---: | :---: |
| $\ll n^{-\beta_{0} / 2}$ | $n^{1-\beta_{0} m / 2}$ | $c Z_{m, \beta_{0}}$ |
| $\approx n^{-\beta_{0} / 2}$ | $n^{1-\beta_{0} m / 2}$ | $\sum_{k=1}^{m} c_{k} Z_{k, \beta_{0}}(t)$ |
| $\gg n^{-\beta_{0} / 2}$ | $n^{1-\beta_{0} / 2} y_{n}^{1-m}$ | $c Z_{1, \beta_{0}}(t)$ |

## Empirical Evidence

Observation:
$\left(Z_{k}\right)$ Gaussian or linear, $\operatorname{Cov}\left(Z_{k}, Z_{0}\right) \sim k^{-\beta_{0}}, \beta_{0} \in(0,1)$. Then "rank theory" predicts

$$
\sum_{k=1}^{n}\left(Z_{k}-\bar{Z}_{n}\right)^{2} \text { has normalization } n^{H}
$$

where

$$
H=H\left(\beta_{0}\right):=\min \left(1 / 2,1-\beta_{0}\right) .
$$

- Design of study:

Suppose we have a collection of long-memory time series data.
One of the series is $\left(Z_{k}, k=1, \ldots, n\right)$.
Estimate $\hat{\beta}_{0}$ from $\left(Z_{k}\right)$, plug in $H\left(\hat{\beta}_{0}\right)$.
Estimate $\widehat{H}$ directly from $\left(Z_{k}-\bar{Z}_{n}\right)^{2}, k=1, \ldots, n$.
With "rank theory", one expects $H\left(\hat{\beta}_{0}\right) \approx \widehat{H}$ on average.
Data: Treering width sequence (The International Tree-Ring Data Bank).
Well-known to exhibit long memory since Mandelbrot \& Wallis (1969).

## Tree Ring Width



Figure: Tree Ring: Living Records of Climate


Failure of "rank theory"
Let $\delta=\widehat{H}-H\left(\hat{\beta}_{0}\right)$.
We contrast with fractional Gaussian noise ( fGn ), for which "rank theory" works.


Figure: Box plot for $\delta$ 's, Treering width (left) vs fGn (right). Aggregated Variance Method.

## Beyond Sum: Instability of Whittle Estimator Asymptotics

 $\left(Z_{k}\right)$ centered long-memory Gaussian process with spectral density $f_{\theta}$. Whittle estimator:$$
\widehat{\theta}_{n}=\underset{\theta}{\operatorname{argmin}} \sum_{k, l=1}^{n} a_{\theta}(k-l) Z_{k} Z_{l}
$$

where $a_{\theta}(n)=\int_{-\pi}^{\pi} \frac{e^{\text {in }}}{g_{\theta}(\lambda)} d \lambda, g_{\theta}(\lambda) \propto f_{\theta}(\lambda), \int_{-\pi}^{\pi} \ln g_{\theta}(\lambda) d \lambda=0$.
Fox \& Taqqu (1986) and Giraitis \& Surgailis (1990):

$$
\begin{equation*}
\sqrt{n}\left(\widehat{\theta}_{n}-\theta\right) \xrightarrow{\mathcal{L}} N\left(0, \sigma_{1}^{2}\right) . \tag{1}
\end{equation*}
$$

Achieving i.i.d. parametric rate $n^{-1 / 2}$ despite of having long memory.
Giraitis \& Taqqu (1999):
Nice function $G$ satisfying $\mathbb{E} G\left(Z_{0}\right)=0$,

$$
\rho_{1}:=\sum_{n \in \mathbb{Z}} \mathbb{E}\left[G^{\prime}\left(Z_{n}\right) G\left(Z_{0}\right)\right] \frac{\partial}{\partial \theta} a_{\theta}(n) .
$$

If $G(x)=x$, then $\rho_{1}=0$. Departing from $G(x)=x$ likely yields $\rho_{1} \neq 0$ (not by shift).
If Gaussian $Z_{k}$ is replaced by $G\left(Z_{k}\right)$, and $\rho_{1} \neq 0$, then

$$
n^{\beta_{0} / 2}\left(\widehat{\theta}_{n}-\theta\right) \xrightarrow{\mathcal{L}} N\left(0, \sigma_{2}^{2}\right)
$$

## What Should One Do?

- Issue: asymptotics developed based on "rank theory" may not be reliable.

An ad hoc solution: assume "rank $=1$ " always:
Stick to convergence rate $n^{-\beta_{0} / 2}$ and asymptotic normality no matter what.
Problem: may not approximate well the situation of "near-higher-order-rank".

- Reformulate issue: uncertainty in normalization order and in asymptotic distribution.
- Prescription: Resampling (self-adaptive to normalization/self-normalization).


## Basic Notation and Setup for Inference

Sample block: $\mathbf{X}_{p}^{q}=\left(X_{p}, \ldots, X_{q}\right)$.
Unknown parameter of interest: $\theta$.
$T_{n}(\cdot ; \theta): \mathbb{R}^{n} \rightarrow \mathbb{R}$ a function of $n$ samples designed for inference of $\theta$, which satisfies:

$$
T_{n}\left(\mathbf{X}_{1}^{n} ; \theta\right) \xrightarrow{\mathcal{L}} T \quad \text { as } n \rightarrow \infty,
$$

for some non-degenerate $T$.
If distribution of $T$ is known (no nuisance parameter), can use it for inference directly.

## Example: Inference of Mean

$$
\theta=\mu, \quad T_{n}\left(X_{1}^{n} ; \theta\right)=\frac{\bar{X}_{n}-\mu}{D_{n}}, \quad D_{n}=D_{n}\left(\mathbf{X}_{1}^{n}\right): \text { a normalizer to ensure } T_{n} \xrightarrow{\mathcal{L}} T .
$$

- When $\left(X_{n}\right)$ is i.i.d. with finite variance $\sigma^{2}$, use sample standard deviation:
$D_{n}=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}} \xrightarrow{p} \sigma . T \stackrel{\mathcal{L}}{=} N(0,1)$.
- When $\left(X_{n}\right)$ has short memory, use consistent estimate of long-run standard deviation:
$D_{n}=\sqrt{\sum_{k} w(k / h) \widehat{\gamma}(k)} \xrightarrow{p} \sqrt{\sum_{k} \gamma(k)}, \gamma(k):=\operatorname{Cov}\left[X_{k}, X_{0}\right] . T \stackrel{\mathcal{L}}{=} N(0,1)$. $w$ : window function, $h=h_{n}$ : bandwidth parameter.
- A self-adaptive normalizer for short/long memory, light/heavy tails, Shao (2010):
$D_{n}=\sqrt{\frac{1}{n^{3}} \sum_{k=1}^{n}\left[\sum_{i=1}^{k} X_{i}-k \bar{X}_{n}\right]^{2}}$.

$$
\text { If } \frac{1}{n^{H}} \sum_{i=1}^{[n s]}\left(X_{i}-\mu\right) \Rightarrow \nu Z(s), \quad \text { then } \quad \frac{\bar{X}_{n}-\mu}{D_{n}} \xrightarrow{\mathcal{L}} T=\frac{Z(1)}{\sqrt{\int_{0}^{1}[Z(s)-s Z(1)]^{2} d s}}
$$

E.g. $Z(s)=$ Brownian motion, Hermite process, stable process, etc.

## Resampling Under Dependence

- Block Bootstrap (Kunsch 1989).

1. Estimate $\theta$ by a consistent estimator $\widehat{\theta}_{n}=\widehat{\theta}_{n}\left(\mathbf{X}_{1}^{n}\right)$.
2. Choose a block size $b$. Form $n-b+1$ successive blocks (with overlap)

$$
\mathbf{X}_{1}^{b}, \mathbf{X}_{2}^{b+1}, \ldots, \mathbf{X}_{n-b+1}^{n} .
$$

3. Sample randomly with replacement $[n / b]$ blocks. Paste them into $\mathbf{X}^{*}$ of length $b \times[n / b] \approx n$.
Obtain $T^{*}:=T_{b[n / b]}\left(\mathbf{X}^{*} ; \hat{\theta}_{n}\right)$ on the bootstrapped sample $\mathbf{X}^{*}$.
4. Repeat the last step $N$ times getting bootstrapped copies: $T_{1}^{*}, \ldots, T_{N}^{*}$.
5. Use the empirical distribution of $\left\{\bar{T}_{i}^{*}\right\}$ to approximate the distribution of $T_{n}\left(\mathbf{X}_{1}^{n} ; \theta\right)$.

Does NOT work under long-memory Gaussian subordination model. Lahiri (1993).
Idea for remedy: keep the order (no artificial pasting) $\Rightarrow$ reduce sample size.

- Subsampling (Politis Romano Wolf 1999) or called block sampling, sampling window.


## Subsampling

- General procedure:

1. Estimate $\theta$ by $\widehat{\theta}_{n}=\widehat{\theta}_{n}\left(\mathbf{X}_{1}^{n}\right)$.
2. Choose a block size $b$ and form blocks $\mathbf{X}_{1}^{b}, \mathbf{X}_{2}^{b+1}, \ldots, \mathbf{X}_{n-b+1}^{n}$.
3. Compute $T_{b}\left(\mathbf{X}_{1}^{b} ; \hat{\theta}_{n}\right), T_{b}\left(\mathbf{X}_{2}^{b+1} ; \widehat{\theta}_{n}\right), \ldots, T_{b}\left(\mathbf{X}_{n-b+1}^{b} ; \widehat{\theta}_{n}\right)$.
4. Use the empirical distribution $\widehat{F}_{n, b}(x)$ of $\left\{T_{b}\left(\mathbf{X}_{i}^{i+b-1} ; \widehat{\theta}_{n}\right)\right\}$ to approximate the distribution of $T_{n}\left(\mathbf{X}_{1}^{n} ; \theta\right)$.

- Example: Inference of $\theta=\mathbb{E} X_{i}=\mu$.

$$
T_{n}(\mathbf{x} ; \mu)=\frac{\frac{1}{n} \sum_{i=1}^{n} x_{i}-\mu}{D_{n}(\mathbf{x})}, \quad D_{n}(\mathbf{x})=\sqrt{\frac{1}{n^{3}} \sum_{k=1}^{n}\left[\sum_{i=1}^{k} x_{i}-\frac{k}{n} \sum_{i=1}^{n} x_{i}\right]^{2}} .
$$

Procedure for constructing a two-sided $(1-\alpha)$-confidence interval for $\mu$ :

1. Estimate $\mu$ by $\bar{X}_{n}$.
2. Choose a block size $b$ and form blocks $\mathbf{X}_{1}^{b}, \mathbf{X}_{2}^{b+1}, \ldots, \mathbf{X}_{n-b+1}^{n}$.
3. Obtain the empirical distribution $\widehat{F}_{n, b}(x)$ of $\left\{T_{b}\left(\mathbf{X}_{i}^{b+i-1} ; \bar{X}_{n}\right), i=1, \ldots, n-b+1\right\}$.
4. Obtain the lower and upper $\alpha / 2$ quantiles $L_{\alpha / 2}$ and $U_{\alpha / 2}$ of $\widehat{F}_{n, b}(x)$.
5. A $(1-\alpha)$-level confidence interval for the mean is given by

$$
\left[\bar{X}_{n}-U_{\alpha / 2} D_{n}\left(\mathbf{X}_{1}^{n}\right), \bar{X}_{n}-L_{\alpha / 2} D_{n}\left(\mathbf{X}_{1}^{n}\right)\right] .
$$

## Asymptotic Validity of Subsampling

$$
\widehat{F}_{n, b}(x)=\frac{1}{n-b+1} \sum_{i=1}^{n-b+1} 1\left\{T_{b}\left(\mathbf{X}_{i}^{b+i-1} ; \widehat{\theta}_{n}\right) \leq x\right\}
$$

When the sample size $n$ and the block size $b$ are reasonably large,

$$
T_{n}\left(\mathbf{X}_{1}^{n} ; \theta\right) \stackrel{\mathcal{L}}{\approx} T \stackrel{\mathcal{L}}{\approx} T_{b}\left(\mathbf{X}_{1}^{b} ; \theta\right) \stackrel{\mathcal{L}}{\approx} T_{b}\left(\mathbf{X}_{1}^{b} ; \widehat{\theta}_{n}\right) \underset{\text { subsampling }}{\mathcal{L}} \widehat{F}_{n, b}(x)
$$

## Consistency Result:

A 1 Gaussian subordination model: $\left\{X_{i}=G\left(Z_{i}\right)\right\}$,
The long-memory Gaussian $\left\{Z_{i}\right\}$ satisfies some regularity conditions.
A $2 T_{n}\left(\mathbf{X}_{1}^{n} ; \theta\right) \xrightarrow{\mathcal{L}} T$.
A $3 T_{b}\left(\cdot ; \widehat{\theta}_{n}\right)$ is asymptotically replaceable by $T_{b}(\cdot ; \theta)$ in $\widehat{F}_{n, b}(x)$.
(E.g., holds for the common form $T_{n}\left(\mathbf{X}_{1}^{n} ; \theta\right)=\frac{\widehat{\theta}_{n}-\theta}{D_{n}}$ ).

Theorem (Consistency of subsampling, Betken \& Wenlder (2017), Bai \& Taqqu (2017))

Suppose the sample size $n \rightarrow \infty$, the block size $b=b_{n} \rightarrow \infty$ and $b_{n}=o(n)$. Then

$$
\left|\widehat{F}_{n, b_{n}}(x)-P\left(T_{n}\left(\mathbf{X}_{1}^{n} ; \theta\right) \leq x\right)\right| \xrightarrow{p} 0
$$

at any continuity point $x$ of the cdf of $T$.

## Simulation Example

Data:

$$
X_{i}=H_{m}\left(Z_{i}\right) \quad \theta=\mu=\mathbb{E} X_{i}=0
$$

$\left\{Z_{i}\right\}$ : standardized fractional Gaussian noise $\left(\operatorname{Cov}\left(Z_{0}, Z_{k}\right) \sim k^{-\beta_{0}}\right)$.
$H_{m}(x)$ : Hermite polynomials. $H_{1}(x)=x, H_{2}(x)=x^{2}-1, H_{3}(x)=x^{3}-3 x$.
Dichotomy:

$$
\begin{gathered}
\frac{1}{n^{H}} \sum_{i=1}^{[n t]} X_{i} \Rightarrow Y(t) \quad \begin{cases}\text { If } 2 d-1=\left(2 d_{0}-1\right) m<-1, Y(t)=\sigma B(t), & H=1 / 2 \\
\text { If } \beta=\beta_{0} m<1, Y(t)=\nu Z_{\beta_{0}, m}(t),\end{cases} \\
T_{n}(\mathbf{x} ; \mu)=\frac{\frac{1}{n} \sum_{i=1}^{n} x_{i}-\mu}{D_{n}(\mathbf{x})}, \quad D_{n}(\mathbf{x})=\sqrt{\frac{1}{n^{3}} \sum_{k=1}^{n}\left[\sum_{i=1}^{k} x_{i}-\frac{k}{n} \sum_{i=1}^{n} x_{i}\right]^{2}} .
\end{gathered}
$$

| $m$ | 0.6 | 0.4 | 0.2 |
| :---: | :---: | :---: | :---: |
| 1 | 86 vs 82 | 83 vs 39 | 76 vs 25 |
| 2 | 90 vs 84 | 91 vs 71 | 86 vs 41 |
| 3 | 86 vs 86 | 90 vs 83 | 89 vs 58 |

Monte-Carlo evaluation of coverage percentage.
Sample size=500.

Nominal Level=90\%.
Subsampling vs Block Bootstrap.
Block size: $\lfloor\sqrt{500}\rfloor=22$.
Red: $\beta_{0} m<1$ (long memory regime)


Figure: The running $90 \%$ confidence interval for a sample path of $\left\{X_{i}\right\} . \square \beta_{0}=0.2, m=3, \equiv \beta=0.6$.

## Thank You!

## Precise Statement of Main Result

Long-memory Gaussian $\left(X_{n}\right), \operatorname{Cov}\left[X_{n}, X_{0}\right] \sim n^{-\beta}, \beta \in(0,1)$. Assume the spectral density of $\left(X_{n}\right)$ is given by

$$
f(\lambda)=f_{\beta}(\lambda) f_{0}(\lambda)
$$

where $f_{\beta}(\lambda)$ is the $\operatorname{FARIMA}\left(0, d=\frac{1-\beta}{2}, 0\right)$ spectrum:

$$
f_{\beta}(\lambda)=\left|1-e^{i \lambda}\right|^{\beta-1}
$$

and $f_{0}(\lambda)$ satisfies short memory conditions $\left(\gamma_{0}(n)\right.$ is the covariance of $\left.f_{0}(\lambda)\right)$ :
(a) $\inf _{\lambda} f_{0}(\lambda)>0$;
(b) $\gamma_{0}(n)=O\left(n^{-\alpha}\right), \alpha>1$.

Then $\forall \lambda>0, \exists 0<c \leq C$

$$
c\left(\frac{b}{k}\right)^{\beta} \leq \alpha_{k, b} \leq C\left(\frac{b}{k}\right)^{\beta}+\underset{\text { if } \alpha>1+\beta}{O\left(k^{-\alpha+1}\right)}, \quad \text { for all } 1 \leq b \leq \lambda k
$$

- Time-domain interpretation: Let $d=\frac{1-\beta}{2}$, FARIMA model: $\Delta^{d} X_{n}=\epsilon_{n},\left(\epsilon_{n}\right)$ has $f_{0}(\lambda)$.
- Examples: $\operatorname{FARIMA}\left(p, d=\frac{1-\beta}{2}, q\right)$, fractional Gaussian noise $H=1-\beta / 2>1 / 2$.


## Idea of Proof

Goal:

$$
\left|\widehat{F}_{n, b_{n}}(x)-P\left(T_{n}\left(\mathbf{X}_{1}^{n} ; \theta\right) \leq x\right)\right| \xrightarrow{p} 0 .
$$

From Assumption 3, replace

$$
\widehat{F}_{n, b}(x)=\frac{1}{n-b+1} \sum_{i=1}^{n-b+1} 1\left\{T_{b}\left(\mathbf{X}_{i}^{b+i-1} ; \widehat{\theta}_{n}\right) \leq x\right\}
$$

by

$$
\widehat{F}_{n, b}^{*}(x)=\frac{1}{n-b+1} \sum_{i=1}^{n-b+1} 1\left\{T_{b}\left(\mathbf{X}_{i}^{b+i-1} ; \theta\right) \leq x\right\}
$$

Suffices to show

$$
\left|\widehat{F}_{n, b_{n}}^{*}(x)-P\left(T_{n}\left(\mathbf{X}_{1}^{n} ; \theta\right) \leq x\right)\right| \xrightarrow{p} 0 .
$$

Bias-variance decomposition of mean-square error:
$\mathbb{E}\left[\widehat{F}_{n, b}^{*}(x)-P\left(T_{n}\left(\mathbf{X}_{1}^{n} ; \theta\right) \leq x\right)\right]^{2}=[\underbrace{P\left(T_{b}\left(\mathbf{X}_{1}^{b} ; \theta\right) \leq x\right)-P\left(T_{n}\left(\mathbf{X}_{1}^{n} ; \theta\right) \leq x\right)}_{\text {Bias }}]^{2}+\underbrace{\operatorname{Var}\left[\widehat{F}_{n, b}^{*}(x)\right]}_{\text {Variance }}$
Bias $\rightarrow 0$ since by Assumption 2, both $T_{n}\left(\mathbf{X}_{1}^{n} ; \theta\right)$ and $\left.T_{b}\left(\mathbf{X}_{1}^{b} ; \theta\right)\right) \xrightarrow{\mathcal{L}} T$ as $n, b \rightarrow \infty$.
How about the Variance term?

## Control Variance Term

Recall $\widehat{F}_{n, b}^{*}(x):=\frac{1}{n-b+1} \sum_{i=1}^{n-b+1} 1\left\{T_{b}\left(\mathbf{X}_{i}^{i+b-1} ; \theta\right) \leq x\right\}$. and want to show

$$
\operatorname{Var}\left[\widehat{F}_{n, b}^{*}(x)\right] \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

By a standard computation using stationarity of $\left(X_{n}\right)$,

$$
\begin{aligned}
\operatorname{Var}\left[\widehat{F}_{n, b}^{*}(x)\right] & \leq \frac{2}{n-b+1} \sum_{k=1}^{n-b+1}\left|\operatorname{Cov}\left[1\left\{T_{b}\left(\mathbf{X}_{1}^{b} ; \theta\right) \leq x\right\}, 1\left\{T_{b}\left(\mathbf{X}_{k}^{k+b-1} ; \theta\right) \leq x\right\}\right]\right| \\
& \left.\leq \frac{2}{n-b+1} \sum_{k=1}^{n} \alpha_{k, b}, \quad \text { (the reason of replacing } \widehat{\theta}_{n} \text { by } \theta .\right)
\end{aligned}
$$

where $\alpha_{k, b}$ is the between-block mixing coefficient:

$$
\alpha_{k, b}=\sup \left\{\left|\operatorname{Cov}\left[1_{A}, 1_{B}\right]\right|, A \in \sigma\left(\mathbf{X}_{1}^{b}\right), B \in \sigma\left(\mathbf{X}_{k+1}^{k+b}\right)\right\} .
$$

Hence under $b_{n}=o(n)$,

$$
\sum_{k=1}^{n} \alpha_{k, b_{n}}=o(n) \Rightarrow \operatorname{Var}\left[\widehat{F}_{n, b}^{*}(x)\right] \rightarrow 0
$$

which was mentioned before.

