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Symmetric α-stable distribution

X follows SαS distribution (0 < α ≤ 2) with scale parameter σ > 0
(
denoted

by X ∼ SαS(σ)
)
if

E(eiθX) = e−σ
α|θ|α .

α = 2 ⇒ X ∼ Normal.

α = 1 ⇒ X ∼ Cauchy.

Assume: 0 < α < 2 ⇒ P (|X| > x) ∼ c x−α as x→∞.

In particular, E(|X|p) <∞ if and only if p < α.
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Stationary SαS random �elds

Let (G, .) be a countable (possibly noncommutative) group with identity
element e.

{Xt}t∈G is called an SαS random �eld if for all k ≥ 1, for all t1, t2, . . . , tk ∈ G
and for all c1, c2, . . . , ck ∈ R,

k∑
i=1

ciXti ∼ SαS.

An SαS random �eld {Xt}t∈G is (left) stationary if for all s ∈ G,

{Xs.t}t∈G
L
= {Xt}t∈G.

Three most important cases: G = Z, G = Zd (d > 1), G = Fd.
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Nonsingular G-action

Let (G, ·) be a countable group with identity element e. {φt}t∈G is called a
nonsingular (also known as quasi-invariant) G-action on a σ-�nite standard
measure space (S,S, µ) if

φt : S → S is a measurable map for each t ∈ G,

φe(s) = s for all s ∈ S,

φt1.t2 = φt2 ◦ φt1 for all t1, t2 ∈ G,

µ ◦ φt ∼ µ for all t ∈ G.
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Rosinski representation of a stationary SαS random �eld

Rosinski (1995, 2000), Sarkar and R. (2018): {Xt}t∈G induces a nonsingular
G-action (and vice-versa) through an integral representation:

Xt
L
=

∫
S

±f ◦ φt(s)
(
dµ ◦ φt
dµ

(s)

)1/α

︸ ︷︷ ︸M(ds), t ∈ G (1)

ft(s)

M is an SαS random measure on a standard Borel space (S,S) with a
σ-�nite control measure µ,

f ∈ Lα(S, µ) ⇒ ft ∈ Lα(S, µ) for each t ∈ G,
{φt}t∈G is a nonsingular G-action on (S,S, µ).

(1) is a fancy way of saying that each
∑k
i=1 ciXti ∼ SαS

(
‖
∑k
i=1 cifti‖α

)
.
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A Crash Course on von Neumann Algebras
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Topologies on operators

B(H) := tsoa bdd linear operators on a separable Hilbert space H over C.

Norm topology (metrizable): Tα → T in NT i�
‖Tα − T‖ := sup‖ξ‖≤1 ‖(Tα − T )ξ‖ → 0.

I Too strong and restrictive.
I B(H) may not be separable.
I Di�cult to carry out sophisticated analysis.

Strong operator topology (not metrizable): Tα → T in SOT i�
‖(Tα − T )ξ‖ → 0 for all ξ ∈ H. [Topology of pointwise convergence on
(H, inner-product topology).]

Weak operator topology (not metrizable): Tα → T in SOT i�
〈(Tα − T )ξ, η〉 → 0 for all ξ, η ∈ H. [Topology of pointwise convergence on
(H, weak topology).]
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Relation between these topologies

Conv in NT ⇐⇒ sup‖ξ‖≤1 ‖(Tα − T )ξ‖ → 0.

⇓ 6⇑

Conv in SOT ⇐⇒ ‖(Tα − T )ξ‖ → 0 for all ξ ∈ H.

⇓ 6⇑

Conv in WOT ⇐⇒ 〈(Tα − T )ξ, η〉 → 0 for all ξ, η ∈ H.

WOT < SOT < NT.

(Here �<� means strictly weaker topology.)
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Bicommutant theorem of von Neumann

Theorem (von Neumann)

Suppose M is a ∗-subalgebra of B(H) containing 1, the identity operator. Then
the following are equivalent:

1 M is closed in weak operator topology.

2 M is closed in strong operator topology.

3 M = (M ′)′ =: M ′′.

Here M ′ := {T ∈ B(H) : TA = AT for all A ∈M} is the commutant of M .

The �rst two are analytic/topological properties while the third one is an
algebraic one.

De�nition

A unital ∗-subalgebra of B(H) satisfying one (and hence all) of the above
equivalent conditions is called a von Neumann algebra.
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The central decomposition

Note that if M is a von Neumann algebra, then so is M ′. We now de�ne a
very important class (building blocks) of von Neumann algebras.

De�nition

A von Neumann algebra M is called a factor if Z(M) := M ∩M ′ :=
{T ∈M : TA = AT for all A ∈M} = C1 (i.e., the centre is trivial).

Theorem (von Neumann)

Any von Neumann algebra can be decomposed as a direct sum (or more
generally, �direct integral�) of factors: there exists a measure space (Y,Y, ρ)
such that

M =

∫
Y

My ρ(dy) (direct integral; see Knudby (2011)),

where My is a factor for ρ-almost all y ∈ Y .

Enough (for a von Neumann algebraist) to study and classify factors.
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Classi�cation of factors

Factors can be classi�ed into various types based on (roughly speaking)
the number of distinct sizes of projections they contain and whether (or
not) they admit a normalized trace.

Major breakthrough in von Neumann algebra and had immense
contribution even in ergodic theory (thanks to Krieger (1969)).

Many stalwarts (e.g., Connes, Dye, Feldman, Krieger, Weiss, etc.)
developed ergodic theory and von Neumann algebra together in 70's - 90's.

This connection is still a cutting edge research area (because of eminent
mathematicians like Ioana, Popa, Vaes, etc. + their students and
post-docs).

Our work simply encashes this interplay and produces results for
stationary SαS random �elds.
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Type II1 factors

�De�nition�
A factor is of type II1 if M contains uncountably many projections of distinct
sizes (in some sense) and it admits a normalized trace.

De�nition
A von Neumann algebra M is said to admit no II1 factor in its central
decomposition if M has a central decomposition

M =

∫
Y

My ρ(dy) (direct integral),

such that for ρ-almost all y ∈ Y , My is not a factor of type II1.

If Y is countable with ρ being the counting measure, then the direct integral
becomes a direct sum (M = ⊕y∈YMy) of factors. In this special case, the
above de�nition is equivalent to saying no My is a type II1 factor.
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An easy example

H = Cn

⇒ B(H) =Mn(C) = tsoa n× n matrices with complex entries.

East to show: Z(Mn(C)) = C1 = tsoa scalar matrices ⇒ Mn(C) is a
factor.

It does admit a trace but it has projections of ��nitely many distinct sizes
0 < 1 < 2 < · · · < n�. Hence it is not a type II1 factor.

In particular, B(Cn) =Mn(C) admits no II1 factor in its central
decomposition.
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Nonsingular G-action

Let (G, ·) be a countable group with identity element e. {φt}t∈G is called a
nonsingular (also known as quasi-invariant) G-action on a σ-�nite standard
measure space (S,S, µ) if

φt : S → S is a measurable map for each t ∈ G,

φe(s) = s for all s ∈ S,

φt1.t2 = φt2 ◦ φt1 for all t1, t2 ∈ G,

µ ◦ φt ∼ µ for all t ∈ G.
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�Group measure space construction�

(G, ·) is a countable group with identity element e.

(S,S, µ) is a σ-�nite standard measure space

{φt}t∈G is a nonsingular G-action on (S,S, µ)

�De�nition�

Following/extending the work of Murray and von Neumann (1936) (in the
measure-preserving case), one can construct a von Neumann algebra (as a
subalgebra of B(`2C(G)⊗L2

C(S, µ))) that �encodes the ergodic theoretic features�
of {φt}t∈G by internalizing a crossed product relation that normalizes
L∞C (S, µ) inside B(L2

C(S, µ)) through the Koopman representation. This von
Neumann algebra is called group measure space construction.

Notation: L∞C (S, µ) o{φt} G or simply L∞C (S, µ) oG.
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A (slightly) di�cult example

De�nition

A nonsingular action {φt}t∈G on (S, µ) is called free if for all t ∈ G \ {e},
φt(s) 6= s for µ-almost all s ∈ S (i.e., only e �xes anything signi�cant (mod
µ)).

De�nition

A nonsingular action {φt}t∈G on (S, µ) is called ergodic if φt(A) = A (mod µ)
for all t ∈ G implies either µ(A) = 0 or µ(Ac) = 0 (i.e., the σ-�eld of
{φt}-invariant sets is µ-trivial).

Take a measure-preserving, free and ergodic action {φt}t∈G on a �nite
standard measure space (S,S, µ) (e.g., irrational rotation of circle).

It can be shown (nontrivial): L∞C (S, µ) oG is a type II1 factor.
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Ergodic theory and von Neumann algebra

Theorem

Suppose {φt}t∈G is a nonsingular action of a countable group G on a σ-�nite
standard measure space (S,S, µ). Then the following hold:

1 If the action {φt}t∈G is free and ergodic, then L∞C (S, µ) oG is a factor.

2 Conversely, if L∞C (S, µ) oG is a factor, then the {φt}t∈G is ergodic but
not necessarily free.
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Main Results
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How good is the connection?
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The minimal group measure space construction

Theorem (R. (2018?))

Suppose {Xt}t∈G is a (left) stationary SαS random �eld indexed by a

countable group G. Let {φ(1)t }t∈G and {φ(2)t }t∈G be two nonsingular G-actions
(on (S(1), µ(1)) and (S(2), µ(2)), respectively) obtained from two minimal (and
hence Rosinski) representations. Then

L∞C (S(1), µ(1)) oG ∼= L∞C (S(2), µ(2)) oG

as von Neumann algebras. In particular, group measure space construction is
an invariant for any minimal representation of a �xed stationary SαS random
�eld.

Sketch of proof.

{φ(1)t } ∼= {φ
(2)
t } as group actions (extension of Theorem 3.6 of Rosinski (1995))

⇒ they are �orbit equivalent� ⇒ L∞C (S(1), µ(1))oG ∼= L∞C (S(2), µ(2))oG.
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What about any Rosinski representation?

Since any Rosinski representation �can be written in terms of� any
minimal representation, we conjecture that many von Neumann algebraic
aspects of the corresponding group measure space construction will
become invariants as well.

We have exhibited one such instance in this work when G = Zd.

From now on G = Zd (unless mentioned otherwise).
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Ergodicity of Zd-indexed stable �elds

Recall that any left-stationary SαS random �eld X = {Xt}t∈Zd induces a

measure-preserving left-shift action (of Zd) on
(
RZd ,PX

)
, where

PX = law of X := P
({
ω ∈ Ω :

(
Xt(ω) : t ∈ Zd

)
∈ ·
})
.

De�nition

{Xt}t∈Zd is called ergodic if the above shift action is so.

Question: When is {Xt}t∈Zd ergodic?

Ensures use of multiparameter ergodic theorem and increases the
mathematical tractability of various probabilistic and statistical aspects:
limit theorems (talk of Andreas), large deviations, statistical inference, etc.

d = 1: Samorodnitsky (2005): the underlying action has no positive part.

d ≥ 1: Wang, R. and Stoev (2013) extended the above work.

This work: Characterization using group measure space construction.
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von Neumann algebraic characterization of ergodicty

Theorem (R. (2018?))

Suppose {Xt}t∈Zd is a stationary SαS random �eld generated by a free
nonsingular action {φt}t∈Zd . Then {Xt}t∈Zd is ergodic if and only if the
corresponding group measure space construction admits no II1 factor in its
central decomposition.

Corollary

�Admitting no II1 factor in the central decomposition� is an invariant for any
�free Rosinski representation�.

Corollary

Ergodicity of a stationary SαS random �elds is preserved under �orbit
equivalence� of the underlying free nonsingular Zd-actions.
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Sketch of proof

Can we prove it when the action {φt}t∈Zd is also ergodic? Yes we can.
Thanks to

I a fact from von Neumann Algebras: if {φt}t∈G is free and ergodic, then the

factor L∞
C (S, µ)oG is of type II1 if and only if there exists a

{φt}-invariant �nite measure ν ∼ µ, and
I Theorem 4.1 of Wang, R. and Stoev (2013).

What about the general case? Use

I ergodic decomposition for a nonsingular action on a standard measure
space (Corollary 6.9 in Schmidt (1976)), and

I its canonical connection to the central decomposition of the corresponding

group measure space construction (Bratteli and Robinson (1979), Ch 4).

From the proof, it transpires that
I �free� can be replaced by �ergodically free� everywhere;
I if the action is positive (talk of Olivier Durieu), then (almost) all the

factors will be of type II1;
I same characterization of ergodicity holds for max-stable �elds.
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I Theorem 4.1 of Wang, R. and Stoev (2013).

What about the general case? Use

I ergodic decomposition for a nonsingular action on a standard measure
space (Corollary 6.9 in Schmidt (1976)), and

I its canonical connection to the central decomposition of the corresponding

group measure space construction (Bratteli and Robinson (1979), Ch 4).

From the proof, it transpires that
I �free� can be replaced by �ergodically free� everywhere;

I if the action is positive (talk of Olivier Durieu), then (almost) all the
factors will be of type II1;
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Open problems and future directions

Ergodicity for stationary SαS random �elds indexed by G 6= Zd?

When will a stationary SαS random �eld be mixing? Connection to
Dombry and Kabluchko (2016) (for max-stable �elds).

We have also calibrated the increments of SSSI SαS processes introduced
by Cohen and Samorodnitsky (2006) (known to be ergodic) wrt our
results - all the factors in the central decomposition is of type III. What
about the ones obtained as limit by Dombry and Guillotin-Plantard
(2009) and Owada and Samorodnitsky (2015)?
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Thank You Very Much
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