Group measure space construction, ergodicity and stable random fields

Parthanil Roy, Indian Statistical Institute
Ongoing work

June 22, 2018

What is this work about?

What is this work about?

What is this work about?

A Crash Course on Stable Random Fields

Symmetric α-stable distribution

Symmetric α-stable distribution

X follows $S \alpha S$ distribution $(0<\alpha \leq 2)$ with scale parameter $\sigma>0$ (denoted by $X \sim S \alpha S(\sigma))$ if

$$
E\left(e^{i \theta X}\right)=e^{-\sigma^{\alpha}|\theta|^{\alpha}} .
$$

Symmetric α-stable distribution

X follows $S \alpha S$ distribution $(0<\alpha \leq 2)$ with scale parameter $\sigma>0$ (denoted by $X \sim S \alpha S(\sigma))$ if

$$
E\left(e^{i \theta X}\right)=e^{-\sigma^{\alpha}|\theta|^{\alpha}} .
$$

- $\alpha=2 \Rightarrow X \sim$ Normal.

Symmetric α-stable distribution

X follows $S \alpha S$ distribution $(0<\alpha \leq 2)$ with scale parameter $\sigma>0$ (denoted by $X \sim S \alpha S(\sigma))$ if

$$
E\left(e^{i \theta X}\right)=e^{-\sigma^{\alpha}|\theta|^{\alpha}} .
$$

- $\alpha=2 \Rightarrow X \sim$ Normal.
- $\alpha=1 \Rightarrow X \sim$ Cauchy.

Symmetric α-stable distribution

X follows $S \alpha S$ distribution $(0<\alpha \leq 2)$ with scale parameter $\sigma>0$ (denoted by $X \sim S \alpha S(\sigma))$ if

$$
E\left(e^{i \theta X}\right)=e^{-\sigma^{\alpha}|\theta|^{\alpha}} .
$$

- $\alpha=2 \Rightarrow X \sim$ Normal.
- $\alpha=1 \Rightarrow X \sim$ Cauchy.
- Assume: $0<\alpha<2$

Symmetric α-stable distribution

X follows $S \alpha S$ distribution $(0<\alpha \leq 2)$ with scale parameter $\sigma>0$ (denoted by $X \sim S \alpha S(\sigma))$ if

$$
E\left(e^{i \theta X}\right)=e^{-\sigma^{\alpha}|\theta|^{\alpha}} .
$$

- $\alpha=2 \Rightarrow X \sim$ Normal.
- $\alpha=1 \Rightarrow X \sim$ Cauchy.
- Assume: $0<\alpha<2 \Rightarrow P(|X|>x) \sim c x^{-\alpha}$ as $x \rightarrow \infty$.

Symmetric α-stable distribution

X follows $S \alpha S$ distribution $(0<\alpha \leq 2)$ with scale parameter $\sigma>0$ (denoted by $X \sim S \alpha S(\sigma))$ if

$$
E\left(e^{i \theta X}\right)=e^{-\sigma^{\alpha}|\theta|^{\alpha}} .
$$

- $\alpha=2 \Rightarrow X \sim$ Normal.
- $\alpha=1 \Rightarrow X \sim$ Cauchy.
- Assume: $0<\alpha<2 \Rightarrow P(|X|>x) \sim c x^{-\alpha}$ as $x \rightarrow \infty$.
- In particular, $E\left(|X|^{p}\right)<\infty$ if and only if $p<\alpha$.

Stationary $S \alpha S$ random fields

Stationary $S \alpha S$ random fields

Let $(G,$.$) be a countable (possibly noncommutative) group with identity$ element e.

Stationary $S \alpha S$ random fields

Let ($G,$. .) be a countable (possibly noncommutative) group with identity element e.
$\left\{X_{t}\right\}_{t \in G}$ is called an $S \alpha S$ random field if for all $k \geq 1$, for all $t_{1}, t_{2}, \ldots, t_{k} \in G$ and for all $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R}$,

$$
\sum_{i=1}^{k} c_{i} X_{t_{i}} \sim S \alpha S
$$

Stationary $S \alpha S$ random fields

Let (G,.) be a countable (possibly noncommutative) group with identity element e.
$\left\{X_{t}\right\}_{t \in G}$ is called an $S \alpha S$ random field if for all $k \geq 1$, for all $t_{1}, t_{2}, \ldots, t_{k} \in G$ and for all $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R}$,

$$
\sum_{i=1}^{k} c_{i} X_{t_{i}} \sim S \alpha S
$$

An $S \alpha S$ random field $\left\{X_{t}\right\}_{t \in G}$ is (left) stationary if for all $s \in G$,

$$
\left\{X_{s . t}\right\}_{t \in G} \stackrel{\mathcal{L}}{=}\left\{X_{t}\right\}_{t \in G} .
$$

Stationary $S \alpha S$ random fields

Let (G,.) be a countable (possibly noncommutative) group with identity element e.
$\left\{X_{t}\right\}_{t \in G}$ is called an $S \alpha S$ random field if for all $k \geq 1$, for all $t_{1}, t_{2}, \ldots, t_{k} \in G$ and for all $c_{1}, c_{2}, \ldots, c_{k} \in \mathbb{R}$,

$$
\sum_{i=1}^{k} c_{i} X_{t_{i}} \sim S \alpha S
$$

An $S \alpha S$ random field $\left\{X_{t}\right\}_{t \in G}$ is (left) stationary if for all $s \in G$,

$$
\left\{X_{s . t}\right\}_{t \in G} \stackrel{\mathcal{L}}{=}\left\{X_{t}\right\}_{t \in G} .
$$

Three most important cases: $G=\mathbb{Z}, G=\mathbb{Z}^{d}(d>1), G=F_{d}$.

Nonsingular G-action

Nonsingular G-action

Let (G, \cdot) be a countable group with identity element $e .\left\{\phi_{t}\right\}_{t \in G}$ is called a nonsingular (also known as quasi-invariant) G-action on a σ-finite standard measure space (S, \mathcal{S}, μ) if

Nonsingular G-action

Let (G, \cdot) be a countable group with identity element $e .\left\{\phi_{t}\right\}_{t \in G}$ is called a nonsingular (also known as quasi-invariant) G-action on a σ-finite standard measure space (S, \mathcal{S}, μ) if

- $\phi_{t}: S \rightarrow S$ is a measurable map for each $t \in G$,
- $\phi_{e}(s)=s$ for all $s \in S$,
- $\phi_{t_{1} . t_{2}}=\phi_{t_{2}} \circ \phi_{t_{1}}$ for all $t_{1}, t_{2} \in G$,

Nonsingular G-action

Let (G, \cdot) be a countable group with identity element $e .\left\{\phi_{t}\right\}_{t \in G}$ is called a nonsingular (also known as quasi-invariant) G-action on a σ-finite standard measure space (S, \mathcal{S}, μ) if

- $\phi_{t}: S \rightarrow S$ is a measurable map for each $t \in G$,
- $\phi_{e}(s)=s$ for all $s \in S$,
- $\phi_{t_{1} . t_{2}}=\phi_{t_{2}} \circ \phi_{t_{1}}$ for all $t_{1}, t_{2} \in G$,
- $\mu \circ \phi_{t} \sim \mu$ for all $t \in G$.

Rosinski representation of a stationary $S \alpha S$ random field

Rosinski (1995, 2000), Sarkar and R. (2018): $\left\{X_{t}\right\}_{t \in G}$ induces a nonsingular G-action (and vice-versa) through an integral representation:

Rosinski representation of a stationary $S \alpha S$ random field

Rosinski (1995, 2000), Sarkar and R. (2018): $\left\{X_{t}\right\}_{t \in G}$ induces a nonsingular G-action (and vice-versa) through an integral representation:

$$
\begin{equation*}
X_{t} \stackrel{\mathcal{L}}{=} \int_{S} \underbrace{ \pm f \circ \phi_{t}(s)\left(\frac{d \mu \circ \phi_{t}}{d \mu}(s)\right)^{1 / \alpha}}_{f_{t}(s)} M(d s), \quad t \in G \tag{1}
\end{equation*}
$$

Rosinski representation of a stationary $S \alpha S$ random field

Rosinski (1995, 2000), Sarkar and R. (2018): $\left\{X_{t}\right\}_{t \in G}$ induces a nonsingular G-action (and vice-versa) through an integral representation:

$$
\begin{equation*}
X_{t} \stackrel{\mathcal{L}}{=} \int_{S} \underbrace{ \pm f \circ \phi_{t}(s)\left(\frac{d \mu \circ \phi_{t}}{d \mu}(s)\right)^{1 / \alpha}}_{f_{t}(s)} M(d s), \quad t \in G \tag{1}
\end{equation*}
$$

- M is an $S \alpha S$ random measure on a standard Borel space (S, \mathcal{S}) with a σ-finite control measure μ,
- $f \in \mathcal{L}^{\alpha}(S, \mu) \Rightarrow f_{t} \in \mathcal{L}^{\alpha}(S, \mu)$ for each $t \in G$,
- $\left\{\phi_{t}\right\}_{t \in G}$ is a nonsingular G-action on (S, \mathcal{S}, μ).

Rosinski representation of a stationary $S \alpha S$ random field

Rosinski (1995, 2000), Sarkar and R. (2018): $\left\{X_{t}\right\}_{t \in G}$ induces a nonsingular G-action (and vice-versa) through an integral representation:

$$
\begin{equation*}
X_{t} \stackrel{\mathcal{L}}{=} \int_{S} \underbrace{ \pm f \circ \phi_{t}(s)\left(\frac{d \mu \circ \phi_{t}}{d \mu}(s)\right)^{1 / \alpha}}_{f_{t}(s)} M(d s), \quad t \in G \tag{1}
\end{equation*}
$$

- M is an $S \alpha S$ random measure on a standard Borel space (S, \mathcal{S}) with a σ-finite control measure μ,
- $f \in \mathcal{L}^{\alpha}(S, \mu) \Rightarrow f_{t} \in \mathcal{L}^{\alpha}(S, \mu)$ for each $t \in G$,
- $\left\{\phi_{t}\right\}_{t \in G}$ is a nonsingular G-action on (S, \mathcal{S}, μ).
(1) is a fancy way of saying that each $\sum_{i=1}^{k} c_{i} X_{t_{i}} \sim S \alpha S\left(\left\|\sum_{i=1}^{k} c_{i} f_{t_{i}}\right\|_{\alpha}\right)$.

A Crash Course on von Neumann Algebras

Topologies on operators

$\mathcal{B}(\mathcal{H}):=$ tsoa bdd linear operators on a separable Hilbert space \mathcal{H} over \mathbb{C}.

Topologies on operators

$\mathcal{B}(\mathcal{H}):=$ tsoa bdd linear operators on a separable Hilbert space \mathcal{H} over \mathbb{C}.

- Norm topology (metrizable): $T_{\alpha} \rightarrow T$ in NT iff $\left\|T_{\alpha}-T\right\|:=\sup _{\|\xi\| \leq 1}\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$.

Topologies on operators

$\mathcal{B}(\mathcal{H}):=$ tsoa bdd linear operators on a separable Hilbert space \mathcal{H} over \mathbb{C}.

- Norm topology (metrizable): $T_{\alpha} \rightarrow T$ in NT iff $\left\|T_{\alpha}-T\right\|:=\sup _{\|\xi\| \leq 1}\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$.
- Too strong and restrictive.

Topologies on operators

$\mathcal{B}(\mathcal{H}):=$ tsoa bdd linear operators on a separable Hilbert space \mathcal{H} over \mathbb{C}.

- Norm topology (metrizable): $T_{\alpha} \rightarrow T$ in NT iff $\left\|T_{\alpha}-T\right\|:=\sup _{\|\xi\| \leq 1}\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$.
- Too strong and restrictive.
- $\mathcal{B}(\mathcal{H})$ may not be separable.

Topologies on operators

$\mathcal{B}(\mathcal{H}):=$ tsoa bdd linear operators on a separable Hilbert space \mathcal{H} over \mathbb{C}.

- Norm topology (metrizable): $T_{\alpha} \rightarrow T$ in NT iff $\left\|T_{\alpha}-T\right\|:=\sup _{\|\xi\| \leq 1}\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$.
- Too strong and restrictive.
- $\mathcal{B}(\mathcal{H})$ may not be separable.
- Difficult to carry out sophisticated analysis.

Topologies on operators

$\mathcal{B}(\mathcal{H}):=$ tsoa bdd linear operators on a separable Hilbert space \mathcal{H} over \mathbb{C}.

- Norm topology (metrizable): $T_{\alpha} \rightarrow T$ in NT iff $\left\|T_{\alpha}-T\right\|:=\sup _{\|\xi\| \leq 1}\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$.
- Too strong and restrictive.
- $\mathcal{B}(\mathcal{H})$ may not be separable.
- Difficult to carry out sophisticated analysis.
- Strong operator topology (not metrizable): $T_{\alpha} \rightarrow T$ in SOT iff $\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$ for all $\xi \in \mathcal{H}$.

Topologies on operators

$\mathcal{B}(\mathcal{H}):=$ tsoa bdd linear operators on a separable Hilbert space \mathcal{H} over \mathbb{C}.

- Norm topology (metrizable): $T_{\alpha} \rightarrow T$ in NT iff $\left\|T_{\alpha}-T\right\|:=\sup _{\|\xi\| \leq 1}\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$.
- Too strong and restrictive.
- $\mathcal{B}(\mathcal{H})$ may not be separable.
- Difficult to carry out sophisticated analysis.
- Strong operator topology (not metrizable): $T_{\alpha} \rightarrow T$ in SOT iff $\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$ for all $\xi \in \mathcal{H}$. [Topology of pointwise convergence on (\mathcal{H}, inner-product topology).]

Topologies on operators

$\mathcal{B}(\mathcal{H}):=$ tsoa bdd linear operators on a separable Hilbert space \mathcal{H} over \mathbb{C}.

- Norm topology (metrizable): $T_{\alpha} \rightarrow T$ in NT iff $\left\|T_{\alpha}-T\right\|:=\sup _{\|\xi\| \leq 1}\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$.
- Too strong and restrictive.
- $\mathcal{B}(\mathcal{H})$ may not be separable.
- Difficult to carry out sophisticated analysis.
- Strong operator topology (not metrizable): $T_{\alpha} \rightarrow T$ in SOT iff $\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$ for all $\xi \in \mathcal{H}$. [Topology of pointwise convergence on (\mathcal{H}, inner-product topology).]
- Weak operator topology (not metrizable): $T_{\alpha} \rightarrow T$ in SOT iff $\left\langle\left(T_{\alpha}-T\right) \xi, \eta\right\rangle \rightarrow 0$ for all $\xi, \eta \in \mathcal{H}$.

Topologies on operators

$\mathcal{B}(\mathcal{H}):=$ tsoa bdd linear operators on a separable Hilbert space \mathcal{H} over \mathbb{C}.

- Norm topology (metrizable): $T_{\alpha} \rightarrow T$ in NT iff $\left\|T_{\alpha}-T\right\|:=\sup _{\|\xi\| \leq 1}\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$.
- Too strong and restrictive.
- $\mathcal{B}(\mathcal{H})$ may not be separable.
- Difficult to carry out sophisticated analysis.
- Strong operator topology (not metrizable): $T_{\alpha} \rightarrow T$ in SOT iff $\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$ for all $\xi \in \mathcal{H}$. [Topology of pointwise convergence on (\mathcal{H}, inner-product topology).]
- Weak operator topology (not metrizable): $T_{\alpha} \rightarrow T$ in SOT iff $\left\langle\left(T_{\alpha}-T\right) \xi, \eta\right\rangle \rightarrow 0$ for all $\xi, \eta \in \mathcal{H}$. [Topology of pointwise convergence on (\mathcal{H}, weak topology).]

Relation between these topologies

Relation between these topologies

Conv in NT $\Longleftrightarrow \sup _{\|\xi\| \leq 1}\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$.

Relation between these topologies

Conv in NT $\Longleftrightarrow \sup _{\|\xi\| \leq 1}\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$.
$\Downarrow \not \approx$
Conv in SOT $\Longleftrightarrow\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$ for all $\xi \in \mathcal{H}$.

Relation between these topologies

Conv in NT $\Longleftrightarrow \sup _{\|\xi\| \leq 1}\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$.
$\Downarrow \psi$
Conv in SOT $\Longleftrightarrow\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$ for all $\xi \in \mathcal{H}$.
$\Downarrow \not \approx$
Conv in WOT $\Longleftrightarrow\left\langle\left(T_{\alpha}-T\right) \xi, \eta\right\rangle \rightarrow 0$ for all $\xi, \eta \in \mathcal{H}$.

Relation between these topologies

Conv in NT $\Longleftrightarrow \sup _{\|\xi\| \leq 1}\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$.

$$
\Downarrow \not \approx
$$

Conv in SOT $\Longleftrightarrow\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$ for all $\xi \in \mathcal{H}$.

$\Downarrow \not \approx$

Conv in WOT $\Longleftrightarrow\left\langle\left(T_{\alpha}-T\right) \xi, \eta\right\rangle \rightarrow 0$ for all $\xi, \eta \in \mathcal{H}$.
WOT < SOT < NT.

Relation between these topologies

Conv in NT $\Longleftrightarrow \sup _{\|\xi\| \leq 1}\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$.

Conv in SOT $\Longleftrightarrow\left\|\left(T_{\alpha}-T\right) \xi\right\| \rightarrow 0$ for all $\xi \in \mathcal{H}$.
$\Downarrow \not \approx$
Conv in WOT $\Longleftrightarrow\left\langle\left(T_{\alpha}-T\right) \xi, \eta\right\rangle \rightarrow 0$ for all $\xi, \eta \in \mathcal{H}$.
WOT < SOT < NT.
(Here "<" means strictly weaker topology.)

Bicommutant theorem of von Neumann

Theorem (von Neumann)

Suppose M is a *-subalgebra of $\mathcal{B}(\mathcal{H})$ containing 1 , the identity operator. Then the following are equivalent:
(1) M is closed in weak operator topology.
(3) M is closed in strong operator topology.
(3) $M=\left(M^{\prime}\right)^{\prime}=: M^{\prime \prime}$.

Here $M^{\prime}:=\{T \in \mathcal{B}(\mathcal{H}): T A=A T$ for all $A \in M\}$ is the commutant of M.

Bicommutant theorem of von Neumann

Theorem (von Neumann)

Suppose M is a *-subalgebra of $\mathcal{B}(\mathcal{H})$ containing 1 , the identity operator. Then the following are equivalent:
(1) M is closed in weak operator topology.
(3) M is closed in strong operator topology.
(3) $M=\left(M^{\prime}\right)^{\prime}=: M^{\prime \prime}$.

Here $M^{\prime}:=\{T \in \mathcal{B}(\mathcal{H}): T A=A T$ for all $A \in M\}$ is the commutant of M.

The first two are analytic/topological properties while the third one is an algebraic one.

Bicommutant theorem of von Neumann

Theorem (von Neumann)

Suppose M is a *-subalgebra of $\mathcal{B}(\mathcal{H})$ containing 1 , the identity operator. Then the following are equivalent:
(1) M is closed in weak operator topology.
(2) M is closed in strong operator topology.
(3) $M=\left(M^{\prime}\right)^{\prime}=: M^{\prime \prime}$.

Here $M^{\prime}:=\{T \in \mathcal{B}(\mathcal{H}): T A=A T$ for all $A \in M\}$ is the commutant of M.

The first two are analytic/topological properties while the third one is an algebraic one.

Definition

A unital $*$-subalgebra of $\mathcal{B}(\mathcal{H})$ satisfying one (and hence all) of the above equivalent conditions is called a von Neumann algebra.

The central decomposition

Note that if M is a von Neumann algebra, then so is M^{\prime}. We now define a very important class (building blocks) of von Neumann algebras.

Definition

A von Neumann algebra M is called a factor if $Z(M):=M \cap M^{\prime}:=$ $\{T \in M: T A=A T$ for all $A \in M\}=\mathbb{C} 1$ (i.e., the centre is trivial).

The central decomposition

Note that if M is a von Neumann algebra, then so is M^{\prime}. We now define a very important class (building blocks) of von Neumann algebras.

Definition

A von Neumann algebra M is called a factor if $Z(M):=M \cap M^{\prime}:=$ $\{T \in M: T A=A T$ for all $A \in M\}=\mathbb{C} 1$ (i.e., the centre is trivial).

Theorem (von Neumann)

Any von Neumann algebra can be decomposed as a direct sum (or more generally, "direct integral") of factors: there exists a measure space (Y, \mathcal{Y}, ρ) such that

$$
M=\int_{Y} M_{y} \rho(d y) \text { (direct integral; see Knudby (2011)), }
$$

where M_{y} is a factor for ρ-almost all $y \in Y$.

The central decomposition

Note that if M is a von Neumann algebra, then so is M^{\prime}. We now define a very important class (building blocks) of von Neumann algebras.

Definition

A von Neumann algebra M is called a factor if $Z(M):=M \cap M^{\prime}:=$ $\{T \in M: T A=A T$ for all $A \in M\}=\mathbb{C} 1$ (i.e., the centre is trivial).

Theorem (von Neumann)

Any von Neumann algebra can be decomposed as a direct sum (or more generally, "direct integral") of factors: there exists a measure space (Y, \mathcal{Y}, ρ) such that

$$
M=\int_{Y} M_{y} \rho(d y) \text { (direct integral; see Knudby (2011)), }
$$

where M_{y} is a factor for ρ-almost all $y \in Y$.
Enough (for a von Neumann algebraist) to study and classify factors.

Classification of factors

Classification of factors

- Factors can be classified into various types based on (roughly speaking) the number of distinct sizes of projections they contain and whether (or not) they admit a normalized trace.

Classification of factors

- Factors can be classified into various types based on (roughly speaking) the number of distinct sizes of projections they contain and whether (or not) they admit a normalized trace.
- Major breakthrough in von Neumann algebra and had immense contribution even in ergodic theory (thanks to Krieger (1969)).

Classification of factors

- Factors can be classified into various types based on (roughly speaking) the number of distinct sizes of projections they contain and whether (or not) they admit a normalized trace.
- Major breakthrough in von Neumann algebra and had immense contribution even in ergodic theory (thanks to Krieger (1969)).
- Many stalwarts (e.g., Connes, Dye, Feldman, Krieger, Weiss, etc.) developed ergodic theory and von Neumann algebra together in 70's - 90's.

Classification of factors

- Factors can be classified into various types based on (roughly speaking) the number of distinct sizes of projections they contain and whether (or not) they admit a normalized trace.
- Major breakthrough in von Neumann algebra and had immense contribution even in ergodic theory (thanks to Krieger (1969)).
- Many stalwarts (e.g., Connes, Dye, Feldman, Krieger, Weiss, etc.) developed ergodic theory and von Neumann algebra together in 70's - 90's.
- This connection is still a cutting edge research area (because of eminent mathematicians like Ioana, Popa, Vaes, etc. + their students and post-docs).

Classification of factors

- Factors can be classified into various types based on (roughly speaking) the number of distinct sizes of projections they contain and whether (or not) they admit a normalized trace.
- Major breakthrough in von Neumann algebra and had immense contribution even in ergodic theory (thanks to Krieger (1969)).
- Many stalwarts (e.g., Connes, Dye, Feldman, Krieger, Weiss, etc.) developed ergodic theory and von Neumann algebra together in 70's - 90's.
- This connection is still a cutting edge research area (because of eminent mathematicians like Ioana, Popa, Vaes, etc. + their students and post-docs).
- Our work simply encashes this interplay and produces results for stationary $\mathrm{S} \alpha \mathrm{S}$ random fields.

Type $I I_{1}$ factors

"Definition"

A factor is of type $I I_{1}$ if M contains uncountably many projections of distinct sizes (in some sense) and it admits a normalized trace.

Type $I I_{1}$ factors

"Definition"

A factor is of type $I I_{1}$ if M contains uncountably many projections of distinct sizes (in some sense) and it admits a normalized trace.

Definition

A von Neumann algebra M is said to admit no $I I_{1}$ factor in its central decomposition if M has a central decomposition

$$
M=\int_{Y} M_{y} \rho(d y) \quad(\text { direct integral })
$$

such that for ρ-almost all $y \in Y, M_{y}$ is not a factor of type $I I_{1}$.

Type $I I_{1}$ factors

"Definition"

A factor is of type $I I_{1}$ if M contains uncountably many projections of distinct sizes (in some sense) and it admits a normalized trace.

Definition

A von Neumann algebra M is said to admit no $I I_{1}$ factor in its central decomposition if M has a central decomposition

$$
M=\int_{Y} M_{y} \rho(d y) \quad(\text { direct integral })
$$

such that for ρ-almost all $y \in Y, M_{y}$ is not a factor of type $I I_{1}$.
If Y is countable with ρ being the counting measure, then the direct integral becomes a direct sum $\left(M=\oplus_{y \in Y} M_{y}\right)$ of factors.

Type $I I_{1}$ factors

"Definition"

A factor is of type $I I_{1}$ if M contains uncountably many projections of distinct sizes (in some sense) and it admits a normalized trace.

Definition

A von Neumann algebra M is said to admit no $I I_{1}$ factor in its central decomposition if M has a central decomposition

$$
M=\int_{Y} M_{y} \rho(d y) \quad(\text { direct integral })
$$

such that for ρ-almost all $y \in Y, M_{y}$ is not a factor of type $I I_{1}$.

If Y is countable with ρ being the counting measure, then the direct integral becomes a direct sum $\left(M=\oplus_{y \in Y} M_{y}\right)$ of factors. In this special case, the above definition is equivalent to saying no M_{y} is a type $I I_{1}$ factor.

An easy example

$$
\mathcal{H}=\mathbb{C}^{n}
$$

An easy example

$$
\mathcal{H}=\mathbb{C}^{n} \Rightarrow \mathcal{B}(\mathcal{H})=\mathcal{M}_{n}(\mathbb{C})
$$

An easy example

$\mathcal{H}=\mathbb{C}^{n} \Rightarrow \mathcal{B}(\mathcal{H})=\mathcal{M}_{n}(\mathbb{C})=$ tsoa $n \times n$ matrices with complex entries.

An easy example

$\mathcal{H}=\mathbb{C}^{n} \Rightarrow \mathcal{B}(\mathcal{H})=\mathcal{M}_{n}(\mathbb{C})=$ tsoa $n \times n$ matrices with complex entries.

East to show: $Z\left(\mathcal{M}_{n}(\mathbb{C})\right)=\mathbb{C} 1=$ tsoa scalar matrices

An easy example

$\mathcal{H}=\mathbb{C}^{n} \Rightarrow \mathcal{B}(\mathcal{H})=\mathcal{M}_{n}(\mathbb{C})=$ tsoa $n \times n$ matrices with complex entries.

East to show: $Z\left(\mathcal{M}_{n}(\mathbb{C})\right)=\mathbb{C} 1=$ tsoa scalar matrices $\Rightarrow \mathcal{M}_{n}(\mathbb{C})$ is a factor.

An easy example

$\mathcal{H}=\mathbb{C}^{n} \Rightarrow \mathcal{B}(\mathcal{H})=\mathcal{M}_{n}(\mathbb{C})=$ tsoa $n \times n$ matrices with complex entries.

East to show: $Z\left(\mathcal{M}_{n}(\mathbb{C})\right)=\mathbb{C} 1=$ tsoa scalar matrices $\Rightarrow \mathcal{M}_{n}(\mathbb{C})$ is a factor.

It does admit a trace

An easy example

$\mathcal{H}=\mathbb{C}^{n} \Rightarrow \mathcal{B}(\mathcal{H})=\mathcal{M}_{n}(\mathbb{C})=$ tsoa $n \times n$ matrices with complex entries.

East to show: $Z\left(\mathcal{M}_{n}(\mathbb{C})\right)=\mathbb{C} 1=$ tsoa scalar matrices $\Rightarrow \mathcal{M}_{n}(\mathbb{C})$ is a factor.

It does admit a trace but it has projections of "finitely many distinct sizes $0<1<2<\cdots<n$ ".

An easy example

$\mathcal{H}=\mathbb{C}^{n} \Rightarrow \mathcal{B}(\mathcal{H})=\mathcal{M}_{n}(\mathbb{C})=$ tsoa $n \times n$ matrices with complex entries.

East to show: $Z\left(\mathcal{M}_{n}(\mathbb{C})\right)=\mathbb{C} 1=$ tsoa scalar matrices $\Rightarrow \mathcal{M}_{n}(\mathbb{C})$ is a factor.

It does admit a trace but it has projections of "finitely many distinct sizes $0<1<2<\cdots<n "$. Hence it is not a type $I I_{1}$ factor.

An easy example

$\mathcal{H}=\mathbb{C}^{n} \Rightarrow \mathcal{B}(\mathcal{H})=\mathcal{M}_{n}(\mathbb{C})=$ tsoa $n \times n$ matrices with complex entries.

East to show: $Z\left(\mathcal{M}_{n}(\mathbb{C})\right)=\mathbb{C} 1=$ tsoa scalar matrices $\Rightarrow \mathcal{M}_{n}(\mathbb{C})$ is a factor.

It does admit a trace but it has projections of "finitely many distinct sizes $0<1<2<\cdots<n "$. Hence it is not a type $I I_{1}$ factor.

In particular, $\mathcal{B}\left(\mathbb{C}^{n}\right)=\mathcal{M}_{n}(\mathbb{C})$ admits no $I I_{1}$ factor in its central decomposition.

Nonsingular G-action

Nonsingular G-action

Let (G, \cdot) be a countable group with identity element $e .\left\{\phi_{t}\right\}_{t \in G}$ is called a nonsingular (also known as quasi-invariant) G-action on a σ-finite standard measure space (S, \mathcal{S}, μ) if

Nonsingular G-action

Let (G, \cdot) be a countable group with identity element $e .\left\{\phi_{t}\right\}_{t \in G}$ is called a nonsingular (also known as quasi-invariant) G-action on a σ-finite standard measure space (S, \mathcal{S}, μ) if

- $\phi_{t}: S \rightarrow S$ is a measurable map for each $t \in G$,
- $\phi_{e}(s)=s$ for all $s \in S$,
- $\phi_{t_{1} . t_{2}}=\phi_{t_{2}} \circ \phi_{t_{1}}$ for all $t_{1}, t_{2} \in G$,

Nonsingular G-action

Let (G, \cdot) be a countable group with identity element $e .\left\{\phi_{t}\right\}_{t \in G}$ is called a nonsingular (also known as quasi-invariant) G-action on a σ-finite standard measure space (S, \mathcal{S}, μ) if

- $\phi_{t}: S \rightarrow S$ is a measurable map for each $t \in G$,
- $\phi_{e}(s)=s$ for all $s \in S$,
- $\phi_{t_{1} . t_{2}}=\phi_{t_{2}} \circ \phi_{t_{1}}$ for all $t_{1}, t_{2} \in G$,
- $\mu \circ \phi_{t} \sim \mu$ for all $t \in G$.

"Group measure space construction"

- ($G, \cdot)$ is a countable group with identity element e.
- (S, \mathcal{S}, μ) is a σ-finite standard measure space
- $\left\{\phi_{t}\right\}_{t \in G}$ is a nonsingular G-action on (S, \mathcal{S}, μ)

"Group measure space construction"

- (G, \cdot) is a countable group with identity element e.
- (S, \mathcal{S}, μ) is a σ-finite standard measure space
- $\left\{\phi_{t}\right\}_{t \in G}$ is a nonsingular G-action on (S, \mathcal{S}, μ)

"Definition"

Following/extending the work of Murray and von Neumann (1936) (in the measure-preserving case), one can construct a von Neumann algebra (as a subalgebra of $\mathcal{B}\left(\ell_{\mathbb{C}}^{2}(G) \otimes \mathcal{L}_{\mathbb{C}}^{2}(S, \mu)\right)$) that "encodes the ergodic theoretic features" of $\left\{\phi_{t}\right\}_{t \in G}$ by internalizing a crossed product relation that normalizes $\mathcal{L}_{\mathbb{C}}^{\infty}(S, \mu)$ inside $\mathcal{B}\left(\mathcal{L}_{\mathbb{C}}^{2}(S, \mu)\right)$ through the Koopman representation. This von Neumann algebra is called group measure space construction.

"Group measure space construction"

- (G, \cdot) is a countable group with identity element e.
- (S, \mathcal{S}, μ) is a σ-finite standard measure space
- $\left\{\phi_{t}\right\}_{t \in G}$ is a nonsingular G-action on (S, \mathcal{S}, μ)

"Definition"

Following/extending the work of Murray and von Neumann (1936) (in the measure-preserving case), one can construct a von Neumann algebra (as a subalgebra of $\mathcal{B}\left(\ell_{\mathbb{C}}^{2}(G) \otimes \mathcal{L}_{\mathbb{C}}^{2}(S, \mu)\right)$) that "encodes the ergodic theoretic features" of $\left\{\phi_{t}\right\}_{t \in G}$ by internalizing a crossed product relation that normalizes $\mathcal{L}_{\mathbb{C}}^{\infty}(S, \mu)$ inside $\mathcal{B}\left(\mathcal{L}_{\mathbb{C}}^{2}(S, \mu)\right)$ through the Koopman representation. This von Neumann algebra is called group measure space construction.

Notation: $\mathcal{L}_{\mathbb{C}}^{\infty}(S, \mu) \rtimes_{\left\{\phi_{t}\right\}} G \quad$ or simply $\quad \mathcal{L}_{\mathbb{C}}^{\infty}(S, \mu) \rtimes G$.

A (slightly) difficult example

A (slightly) difficult example

```
Definition
A nonsingular action {\mp@subsup{\phi}{t}{}\mp@subsup{}}{t\inG}{}\mathrm{ on (S, })\mathrm{ is called free if for all t }\inG\{e}\mathrm{ ,}
\mp@subsup{\phi}{t}{}(s)}\not=s\mathrm{ for }\mu\mathrm{ -almost all }s\inS\mathrm{ (i.e., only e fixes anything significant (mod
\mu)).
```


A (slightly) difficult example

Definition

A nonsingular action $\left\{\phi_{t}\right\}_{t \in G}$ on (S, μ) is called free if for all $t \in G \backslash\{e\}$, $\phi_{t}(s) \neq s$ for μ-almost all $s \in S$ (i.e., only e fixes anything significant (mod $\mu)$).

Definition

A nonsingular action $\left\{\phi_{t}\right\}_{t \in G}$ on (S, μ) is called ergodic if $\phi_{t}(A)=A(\bmod \mu)$ for all $t \in G$ implies either $\mu(A)=0$ or $\mu\left(A^{c}\right)=0$ (i.e., the σ-field of $\left\{\phi_{t}\right\}$-invariant sets is μ-trivial).

A (slightly) difficult example

Definition

A nonsingular action $\left\{\phi_{t}\right\}_{t \in G}$ on (S, μ) is called free if for all $t \in G \backslash\{e\}$, $\phi_{t}(s) \neq s$ for μ-almost all $s \in S$ (i.e., only e fixes anything significant (mod $\mu)$).

Definition

A nonsingular action $\left\{\phi_{t}\right\}_{t \in G}$ on (S, μ) is called ergodic if $\phi_{t}(A)=A(\bmod \mu)$ for all $t \in G$ implies either $\mu(A)=0$ or $\mu\left(A^{c}\right)=0$ (i.e., the σ-field of $\left\{\phi_{t}\right\}$-invariant sets is μ-trivial).

Take a measure-preserving, free and ergodic action $\left\{\phi_{t}\right\}_{t \in G}$ on a finite standard measure space (S, \mathcal{S}, μ)

A (slightly) difficult example

Definition

A nonsingular action $\left\{\phi_{t}\right\}_{t \in G}$ on (S, μ) is called free if for all $t \in G \backslash\{e\}$, $\phi_{t}(s) \neq s$ for μ-almost all $s \in S$ (i.e., only e fixes anything significant (mod $\mu)$).

Definition

A nonsingular action $\left\{\phi_{t}\right\}_{t \in G}$ on (S, μ) is called ergodic if $\phi_{t}(A)=A(\bmod \mu)$ for all $t \in G$ implies either $\mu(A)=0$ or $\mu\left(A^{c}\right)=0$ (i.e., the σ-field of $\left\{\phi_{t}\right\}$-invariant sets is μ-trivial).

Take a measure-preserving, free and ergodic action $\left\{\phi_{t}\right\}_{t \in G}$ on a finite standard measure space (S, \mathcal{S}, μ) (e.g., irrational rotation of circle).

A (slightly) difficult example

Definition

A nonsingular action $\left\{\phi_{t}\right\}_{t \in G}$ on (S, μ) is called free if for all $t \in G \backslash\{e\}$, $\phi_{t}(s) \neq s$ for μ-almost all $s \in S$ (i.e., only e fixes anything significant (mod $\mu)$).

Definition

A nonsingular action $\left\{\phi_{t}\right\}_{t \in G}$ on (S, μ) is called ergodic if $\phi_{t}(A)=A(\bmod \mu)$ for all $t \in G$ implies either $\mu(A)=0$ or $\mu\left(A^{c}\right)=0$ (i.e., the σ-field of $\left\{\phi_{t}\right\}$-invariant sets is μ-trivial).

Take a measure-preserving, free and ergodic action $\left\{\phi_{t}\right\}_{t \in G}$ on a finite standard measure space (S, \mathcal{S}, μ) (e.g., irrational rotation of circle).

It can be shown (nontrivial): $\mathcal{L}_{\mathbb{C}}^{\infty}(S, \mu) \rtimes G$ is a type $I I_{1}$ factor.

Ergodic theory and von Neumann algebra

Theorem

Suppose $\left\{\phi_{t}\right\}_{t \in G}$ is a nonsingular action of a countable group G on a σ-finite standard measure space (S, \mathcal{S}, μ). Then the following hold:
(1) If the action $\left\{\phi_{t}\right\}_{t \in G}$ is free and ergodic, then $\mathcal{L}_{\mathbb{C}}^{\infty}(S, \mu) \rtimes G$ is a factor.
(2) Conversely, if $\mathcal{L}_{\mathbb{C}}^{\infty}(S, \mu) \rtimes G$ is a factor, then the $\left\{\phi_{t}\right\}_{t \in G}$ is ergodic but not necessarily free.

Main Results

How good is the connection?

The minimal group measure space construction

Theorem (R. (2018?))

Suppose $\left\{X_{t}\right\}_{t \in G}$ is a (left) stationary SaS random field indexed by a countable group G. Let $\left\{\phi_{t}^{(1)}\right\}_{t \in G}$ and $\left\{\phi_{t}^{(2)}\right\}_{t \in G}$ be two nonsingular G-actions (on $\left(S^{(1)}, \mu^{(1)}\right)$ and $\left(S^{(2)}, \mu^{(2)}\right)$, respectively) obtained from two minimal (and hence Rosinski) representations. Then

$$
\mathcal{L}_{\mathbb{C}}^{\infty}\left(S^{(1)}, \mu^{(1)}\right) \rtimes G \cong \mathcal{L}_{\mathbb{C}}^{\infty}\left(S^{(2)}, \mu^{(2)}\right) \rtimes G
$$

as von Neumann algebras. In particular, group measure space construction is an invariant for any minimal representation of a fixed stationary $S \alpha S$ random field.

The minimal group measure space construction

Theorem (R. (2018?))

Suppose $\left\{X_{t}\right\}_{t \in G}$ is a (left) stationary S α S random field indexed by a countable group G. Let $\left\{\phi_{t}^{(1)}\right\}_{t \in G}$ and $\left\{\phi_{t}^{(2)}\right\}_{t \in G}$ be two nonsingular G-actions (on $\left(S^{(1)}, \mu^{(1)}\right)$ and $\left(S^{(2)}, \mu^{(2)}\right)$, respectively) obtained from two minimal (and hence Rosinski) representations. Then

$$
\mathcal{L}_{\mathbb{C}}^{\infty}\left(S^{(1)}, \mu^{(1)}\right) \rtimes G \cong \mathcal{L}_{\mathbb{C}}^{\infty}\left(S^{(2)}, \mu^{(2)}\right) \rtimes G
$$

as von Neumann algebras. In particular, group measure space construction is an invariant for any minimal representation of a fixed stationary $S \alpha S$ random field.

Sketch of proof.

The minimal group measure space construction

Theorem (R. (2018?))

Suppose $\left\{X_{t}\right\}_{t \in G}$ is a (left) stationary S α S random field indexed by a countable group G. Let $\left\{\phi_{t}^{(1)}\right\}_{t \in G}$ and $\left\{\phi_{t}^{(2)}\right\}_{t \in G}$ be two nonsingular G-actions (on $\left(S^{(1)}, \mu^{(1)}\right)$ and $\left(S^{(2)}, \mu^{(2)}\right)$, respectively) obtained from two minimal (and hence Rosinski) representations. Then

$$
\mathcal{L}_{\mathbb{C}}^{\infty}\left(S^{(1)}, \mu^{(1)}\right) \rtimes G \cong \mathcal{L}_{\mathbb{C}}^{\infty}\left(S^{(2)}, \mu^{(2)}\right) \rtimes G
$$

as von Neumann algebras. In particular, group measure space construction is an invariant for any minimal representation of a fixed stationary $S \alpha S$ random field.

Sketch of proof.

$\left\{\phi_{t}^{(1)}\right\} \cong\left\{\phi_{t}^{(2)}\right\}$ as group actions (extension of Theorem 3.6 of Rosinski (1995))

The minimal group measure space construction

Theorem (R. (2018?))

Suppose $\left\{X_{t}\right\}_{t \in G}$ is a (left) stationary S α S random field indexed by a countable group G. Let $\left\{\phi_{t}^{(1)}\right\}_{t \in G}$ and $\left\{\phi_{t}^{(2)}\right\}_{t \in G}$ be two nonsingular G-actions (on $\left(S^{(1)}, \mu^{(1)}\right)$ and $\left(S^{(2)}, \mu^{(2)}\right)$, respectively) obtained from two minimal (and hence Rosinski) representations. Then

$$
\mathcal{L}_{\mathbb{C}}^{\infty}\left(S^{(1)}, \mu^{(1)}\right) \rtimes G \cong \mathcal{L}_{\mathbb{C}}^{\infty}\left(S^{(2)}, \mu^{(2)}\right) \rtimes G
$$

as von Neumann algebras. In particular, group measure space construction is an invariant for any minimal representation of a fixed stationary S α S random field.

Sketch of proof.

$\left\{\phi_{t}^{(1)}\right\} \cong\left\{\phi_{t}^{(2)}\right\}$ as group actions (extension of Theorem 3.6 of Rosinski (1995)) \Rightarrow they are "orbit equivalent"

The minimal group measure space construction

Theorem (R. (2018?))

Suppose $\left\{X_{t}\right\}_{t \in G}$ is a (left) stationary S α S random field indexed by a countable group G. Let $\left\{\phi_{t}^{(1)}\right\}_{t \in G}$ and $\left\{\phi_{t}^{(2)}\right\}_{t \in G}$ be two nonsingular G-actions (on $\left(S^{(1)}, \mu^{(1)}\right)$ and $\left(S^{(2)}, \mu^{(2)}\right)$, respectively) obtained from two minimal (and hence Rosinski) representations. Then

$$
\mathcal{L}_{\mathbb{C}}^{\infty}\left(S^{(1)}, \mu^{(1)}\right) \rtimes G \cong \mathcal{L}_{\mathbb{C}}^{\infty}\left(S^{(2)}, \mu^{(2)}\right) \rtimes G
$$

as von Neumann algebras. In particular, group measure space construction is an invariant for any minimal representation of a fixed stationary $S \alpha S$ random field.

Sketch of proof.

$\left\{\phi_{t}^{(1)}\right\} \cong\left\{\phi_{t}^{(2)}\right\}$ as group actions (extension of Theorem 3.6 of Rosinski (1995)) \Rightarrow they are "orbit equivalent" $\Rightarrow \mathcal{L}_{\mathbb{C}}^{\infty}\left(S^{(1)}, \mu^{(1)}\right) \rtimes G \cong \mathcal{L}_{\mathbb{C}}^{\infty}\left(S^{(2)}, \mu^{(2)}\right) \rtimes G$.

What about any Rosinski representation?

What about any Rosinski representation?

- Since any Rosinski representation "can be written in terms of" any minimal representation, we conjecture that many von Neumann algebraic aspects of the corresponding group measure space construction will become invariants as well.

What about any Rosinski representation?

- Since any Rosinski representation "can be written in terms of" any minimal representation, we conjecture that many von Neumann algebraic aspects of the corresponding group measure space construction will become invariants as well.
- We have exhibited one such instance in this work when $G=\mathbb{Z}^{d}$.

What about any Rosinski representation?

- Since any Rosinski representation "can be written in terms of" any minimal representation, we conjecture that many von Neumann algebraic aspects of the corresponding group measure space construction will become invariants as well.
- We have exhibited one such instance in this work when $G=\mathbb{Z}^{d}$.
- From now on $G=\mathbb{Z}^{d}$ (unless mentioned otherwise).

Ergodicity of \mathbb{Z}^{d}-indexed stable fields

Recall that any left-stationary $\mathrm{S} \alpha$ S random field $\mathbf{X}=\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ induces a measure-preserving left-shift action (of $\left.\mathbb{Z}^{d}\right)$ on $\left(\mathbb{R}^{\mathbb{Z}^{d}}, \mathbb{P}_{\mathbf{X}}\right)$, where

$$
\mathbb{P}_{\mathbf{X}}=\text { law of } \mathbf{X}:=\mathbb{P}\left(\left\{\omega \in \Omega:\left(X_{t}(\omega): t \in \mathbb{Z}^{d}\right) \in \cdot\right\}\right)
$$

Ergodicity of \mathbb{Z}^{d}-indexed stable fields

Recall that any left-stationary $\mathrm{S} \alpha$ S random field $\mathbf{X}=\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ induces a measure-preserving left-shift action (of $\left.\mathbb{Z}^{d}\right)$ on $\left(\mathbb{R}^{\mathbb{Z}^{d}}, \mathbb{P} \mathbf{X}\right.$), where

$$
\mathbb{P}_{\mathbf{X}}=\text { law of } \mathbf{X}:=\mathbb{P}\left(\left\{\omega \in \Omega:\left(X_{t}(\omega): t \in \mathbb{Z}^{d}\right) \in \cdot\right\}\right) .
$$

Definition

$\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is called ergodic if the above shift action is so.

Ergodicity of \mathbb{Z}^{d}-indexed stable fields

Recall that any left-stationary $\mathrm{S} \alpha$ S random field $\mathbf{X}=\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ induces a measure-preserving left-shift action (of $\left.\mathbb{Z}^{d}\right)$ on $\left(\mathbb{R}^{\mathbb{Z}^{d}}, \mathbb{P}_{\mathbf{X}}\right)$, where

$$
\mathbb{P}_{\mathbf{X}}=\text { law of } \mathbf{X}:=\mathbb{P}\left(\left\{\omega \in \Omega:\left(X_{t}(\omega): t \in \mathbb{Z}^{d}\right) \in \cdot\right\}\right) .
$$

Definition

$\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is called ergodic if the above shift action is so.
Question: When is $\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ ergodic?

Ergodicity of \mathbb{Z}^{d}-indexed stable fields

Recall that any left-stationary $\mathrm{S} \alpha$ S random field $\mathbf{X}=\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ induces a measure-preserving left-shift action (of $\left.\mathbb{Z}^{d}\right)$ on $\left(\mathbb{R}^{\mathbb{Z}^{d}}, \mathbb{P}_{\mathbf{X}}\right)$, where

$$
\mathbb{P}_{\mathbf{X}}=\text { law of } \mathbf{X}:=\mathbb{P}\left(\left\{\omega \in \Omega:\left(X_{t}(\omega): t \in \mathbb{Z}^{d}\right) \in \cdot\right\}\right)
$$

Definition

$\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is called ergodic if the above shift action is so.
Question: When is $\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ ergodic?

- Ensures use of multiparameter ergodic theorem and increases the mathematical tractability of various probabilistic and statistical aspects: limit theorems (talk of Andreas), large deviations, statistical inference, etc.

Ergodicity of \mathbb{Z}^{d}-indexed stable fields

Recall that any left-stationary $\mathrm{S} \alpha$ S random field $\mathbf{X}=\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ induces a measure-preserving left-shift action (of $\left.\mathbb{Z}^{d}\right)$ on $\left(\mathbb{R}^{\mathbb{Z}^{d}}, \mathbb{P}_{\mathbf{X}}\right)$, where

$$
\mathbb{P}_{\mathbf{X}}=\text { law of } \mathbf{X}:=\mathbb{P}\left(\left\{\omega \in \Omega:\left(X_{t}(\omega): t \in \mathbb{Z}^{d}\right) \in \cdot\right\}\right) .
$$

Definition

$\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is called ergodic if the above shift action is so.
Question: When is $\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ ergodic?

- Ensures use of multiparameter ergodic theorem and increases the mathematical tractability of various probabilistic and statistical aspects: limit theorems (talk of Andreas), large deviations, statistical inference, etc.
- $d=1$: Samorodnitsky (2005): the underlying action has no positive part.

Ergodicity of \mathbb{Z}^{d}-indexed stable fields

Recall that any left-stationary $\mathrm{S} \alpha$ random field $\mathbf{X}=\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ induces a measure-preserving left-shift action (of $\left.\mathbb{Z}^{d}\right)$ on $\left(\mathbb{R}^{\mathbb{Z}^{d}}, \mathbb{P}_{\mathbf{X}}\right)$, where

$$
\mathbb{P}_{\mathbf{X}}=\text { law of } \mathbf{X}:=\mathbb{P}\left(\left\{\omega \in \Omega:\left(X_{t}(\omega): t \in \mathbb{Z}^{d}\right) \in \cdot\right\}\right) .
$$

Definition

$\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is called ergodic if the above shift action is so.
Question: When is $\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ ergodic?

- Ensures use of multiparameter ergodic theorem and increases the mathematical tractability of various probabilistic and statistical aspects: limit theorems (talk of Andreas), large deviations, statistical inference, etc.
- $d=1$: Samorodnitsky (2005): the underlying action has no positive part.
- $d \geq$ 1: Wang, R. and Stoev (2013) extended the above work.

Ergodicity of \mathbb{Z}^{d}-indexed stable fields

Recall that any left-stationary $\mathrm{S} \alpha$ random field $\mathbf{X}=\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ induces a measure-preserving left-shift action (of $\left.\mathbb{Z}^{d}\right)$ on $\left(\mathbb{R}^{\mathbb{Z}^{d}}, \mathbb{P}_{\mathbf{X}}\right)$, where

$$
\mathbb{P}_{\mathbf{X}}=\text { law of } \mathbf{X}:=\mathbb{P}\left(\left\{\omega \in \Omega:\left(X_{t}(\omega): t \in \mathbb{Z}^{d}\right) \in \cdot\right\}\right)
$$

Definition

$\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is called ergodic if the above shift action is so.
Question: When is $\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ ergodic?

- Ensures use of multiparameter ergodic theorem and increases the mathematical tractability of various probabilistic and statistical aspects: limit theorems (talk of Andreas), large deviations, statistical inference, etc.
- $d=1$: Samorodnitsky (2005): the underlying action has no positive part.
- $d \geq$ 1: Wang, R. and Stoev (2013) extended the above work.
- This work: Characterization using group measure space construction.

von Neumann algebraic characterization of ergodicty

Theorem (R. (2018?))

Suppose $\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is a stationary $S \alpha S$ random field generated by a free nonsingular action $\left\{\phi_{t}\right\}_{t \in \mathbb{Z}^{d}}$. Then $\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is ergodic if and only if the corresponding group measure space construction admits no $I I_{1}$ factor in its central decomposition.

von Neumann algebraic characterization of ergodicty

Theorem (R. (2018?))

Suppose $\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is a stationary $S \alpha S$ random field generated by a free nonsingular action $\left\{\phi_{t}\right\}_{t \in \mathbb{Z}^{d}}$. Then $\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is ergodic if and only if the corresponding group measure space construction admits no $I I_{1}$ factor in its central decomposition.

Corollary

"Admitting no $I I_{1}$ factor in the central decomposition" is an invariant for any "free Rosinski representation".

von Neumann algebraic characterization of ergodicty

Theorem (R. (2018?))

Suppose $\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is a stationary $S \alpha S$ random field generated by a free nonsingular action $\left\{\phi_{t}\right\}_{t \in \mathbb{Z}^{d}}$. Then $\left\{X_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is ergodic if and only if the corresponding group measure space construction admits no $I I_{1}$ factor in its central decomposition.

Corollary

"Admitting no $I I_{1}$ factor in the central decomposition" is an invariant for any "free Rosinski representation".

Corollary

Ergodicity of a stationary S S S random fields is preserved under "orbit equivalence" of the underlying free nonsingular \mathbb{Z}^{d}-actions.

Sketch of proof

Sketch of proof

- Can we prove it when the action $\left\{\phi_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is also ergodic?

Sketch of proof

- Can we prove it when the action $\left\{\phi_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is also ergodic? Yes we can.

Sketch of proof

- Can we prove it when the action $\left\{\phi_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is also ergodic? Yes we can. Thanks to

Sketch of proof

- Can we prove it when the action $\left\{\phi_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is also ergodic? Yes we can. Thanks to
- a fact from von Neumann Algebras: if $\left\{\phi_{t}\right\}_{t \in G}$ is free and ergodic, then the factor $\mathcal{L}_{\mathbb{C}}^{\infty}(S, \mu) \rtimes G$ is of type $I I_{1}$ if and only if there exists a $\left\{\phi_{t}\right\}$-invariant finite measure $\nu \sim \mu$,

Sketch of proof

- Can we prove it when the action $\left\{\phi_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is also ergodic? Yes we can. Thanks to
- a fact from von Neumann Algebras: if $\left\{\phi_{t}\right\}_{t \in G}$ is free and ergodic, then the factor $\mathcal{L}_{\mathbb{C}}^{\infty}(S, \mu) \rtimes G$ is of type $I I_{1}$ if and only if there exists a $\left\{\phi_{t}\right\}$-invariant finite measure $\nu \sim \mu$, and
- Theorem 4.1 of Wang, R. and Stoev (2013).

Sketch of proof

- Can we prove it when the action $\left\{\phi_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is also ergodic? Yes we can. Thanks to
- a fact from von Neumann Algebras: if $\left\{\phi_{t}\right\}_{t \in G}$ is free and ergodic, then the factor $\mathcal{L}_{\mathbb{C}}^{\infty}(S, \mu) \rtimes G$ is of type $I I_{1}$ if and only if there exists a $\left\{\phi_{t}\right\}$-invariant finite measure $\nu \sim \mu$, and
- Theorem 4.1 of Wang, R. and Stoev (2013).
- What about the general case? Use

Sketch of proof

- Can we prove it when the action $\left\{\phi_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is also ergodic? Yes we can. Thanks to
- a fact from von Neumann Algebras: if $\left\{\phi_{t}\right\}_{t \in G}$ is free and ergodic, then the factor $\mathcal{L}_{\mathbb{C}}^{\infty}(S, \mu) \rtimes G$ is of type $I I_{1}$ if and only if there exists a $\left\{\phi_{t}\right\}$-invariant finite measure $\nu \sim \mu$, and
- Theorem 4.1 of Wang, R. and Stoev (2013).
- What about the general case? Use
- ergodic decomposition for a nonsingular action on a standard measure space (Corollary 6.9 in Schmidt (1976)),

Sketch of proof

- Can we prove it when the action $\left\{\phi_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is also ergodic? Yes we can. Thanks to
- a fact from von Neumann Algebras: if $\left\{\phi_{t}\right\}_{t \in G}$ is free and ergodic, then the factor $\mathcal{L}_{\mathbb{C}}^{\infty}(S, \mu) \rtimes G$ is of type $I I_{1}$ if and only if there exists a $\left\{\phi_{t}\right\}$-invariant finite measure $\nu \sim \mu$, and
- Theorem 4.1 of Wang, R. and Stoev (2013).
- What about the general case? Use
- ergodic decomposition for a nonsingular action on a standard measure space (Corollary 6.9 in Schmidt (1976)), and
- its canonical connection to the central decomposition of the corresponding group measure space construction (Bratteli and Robinson (1979), Ch 4).

Sketch of proof

- Can we prove it when the action $\left\{\phi_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is also ergodic? Yes we can. Thanks to
- a fact from von Neumann Algebras: if $\left\{\phi_{t}\right\}_{t \in G}$ is free and ergodic, then the factor $\mathcal{L}_{\mathbb{C}}^{\infty}(S, \mu) \rtimes G$ is of type $I I_{1}$ if and only if there exists a $\left\{\phi_{t}\right\}$-invariant finite measure $\nu \sim \mu$, and
- Theorem 4.1 of Wang, R. and Stoev (2013).
- What about the general case? Use
- ergodic decomposition for a nonsingular action on a standard measure space (Corollary 6.9 in Schmidt (1976)), and
- its canonical connection to the central decomposition of the corresponding group measure space construction (Bratteli and Robinson (1979), Ch 4).
- From the proof, it transpires that

Sketch of proof

- Can we prove it when the action $\left\{\phi_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is also ergodic? Yes we can. Thanks to
- a fact from von Neumann Algebras: if $\left\{\phi_{t}\right\}_{t \in G}$ is free and ergodic, then the factor $\mathcal{L}_{\mathbb{C}}^{\infty}(S, \mu) \rtimes G$ is of type $I I_{1}$ if and only if there exists a $\left\{\phi_{t}\right\}$-invariant finite measure $\nu \sim \mu$, and
- Theorem 4.1 of Wang, R. and Stoev (2013).
- What about the general case? Use
- ergodic decomposition for a nonsingular action on a standard measure space (Corollary 6.9 in Schmidt (1976)), and
- its canonical connection to the central decomposition of the corresponding group measure space construction (Bratteli and Robinson (1979), Ch 4).
- From the proof, it transpires that
- "free" can be replaced by "ergodically free" everywhere;

Sketch of proof

- Can we prove it when the action $\left\{\phi_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is also ergodic? Yes we can. Thanks to
- a fact from von Neumann Algebras: if $\left\{\phi_{t}\right\}_{t \in G}$ is free and ergodic, then the factor $\mathcal{L}_{\mathbb{C}}^{\infty}(S, \mu) \rtimes G$ is of type $I I_{1}$ if and only if there exists a $\left\{\phi_{t}\right\}$-invariant finite measure $\nu \sim \mu$, and
- Theorem 4.1 of Wang, R. and Stoev (2013).
- What about the general case? Use
- ergodic decomposition for a nonsingular action on a standard measure space (Corollary 6.9 in Schmidt (1976)), and
- its canonical connection to the central decomposition of the corresponding group measure space construction (Bratteli and Robinson (1979), Ch 4).
- From the proof, it transpires that
- "free" can be replaced by "ergodically free" everywhere;

Sketch of proof

- Can we prove it when the action $\left\{\phi_{t}\right\}_{t \in \mathbb{Z}^{d}}$ is also ergodic? Yes we can. Thanks to
- a fact from von Neumann Algebras: if $\left\{\phi_{t}\right\}_{t \in G}$ is free and ergodic, then the factor $\mathcal{L}_{\mathbb{C}}^{\infty}(S, \mu) \rtimes G$ is of type $I I_{1}$ if and only if there exists a $\left\{\phi_{t}\right\}$-invariant finite measure $\nu \sim \mu$, and
- Theorem 4.1 of Wang, R. and Stoev (2013).
- What about the general case? Use
- ergodic decomposition for a nonsingular action on a standard measure space (Corollary 6.9 in Schmidt (1976)), and
- its canonical connection to the central decomposition of the corresponding group measure space construction (Bratteli and Robinson (1979), Ch 4).
- From the proof, it transpires that
- "free" can be replaced by "ergodically free" everywhere;
- if the action is positive (talk of Olivier Durieu), then (almost) all the factors will be of type $I I_{1}$;
- same characterization of ergodicity holds for max-stable fields.

Open problems and future directions

Open problems and future directions

- Ergodicity for stationary $S \alpha S$ random fields indexed by $G \neq \mathbb{Z}^{d}$?

Open problems and future directions

- Ergodicity for stationary $S \alpha S$ random fields indexed by $G \neq \mathbb{Z}^{d}$.
- When will a stationary $S \alpha S$ random field be mixing? Connection to Dombry and Kabluchko (2016) (for max-stable fields).

Open problems and future directions

- Ergodicity for stationary $S \alpha S$ random fields indexed by $G \neq \mathbb{Z}^{d}$?
- When will a stationary $S \alpha S$ random field be mixing? Connection to Dombry and Kabluchko (2016) (for max-stable fields).
- We have also calibrated the increments of SSSI S α S processes introduced by Cohen and Samorodnitsky (2006) (known to be ergodic) wrt our results

Open problems and future directions

- Ergodicity for stationary $S \alpha S$ random fields indexed by $G \neq \mathbb{Z}^{d}$?
- When will a stationary $S \alpha S$ random field be mixing? Connection to Dombry and Kabluchko (2016) (for max-stable fields).
- We have also calibrated the increments of SSSI S α S processes introduced by Cohen and Samorodnitsky (2006) (known to be ergodic) wrt our results - all the factors in the central decomposition is of type III.

Open problems and future directions

- Ergodicity for stationary $S \alpha S$ random fields indexed by $G \neq \mathbb{Z}^{d}$?
- When will a stationary $S \alpha S$ random field be mixing? Connection to Dombry and Kabluchko (2016) (for max-stable fields).
- We have also calibrated the increments of SSSI S α S processes introduced by Cohen and Samorodnitsky (2006) (known to be ergodic) wrt our results - all the factors in the central decomposition is of type III. What about the ones obtained as limit by Dombry and Guillotin-Plantard (2009) and Owada and Samorodnitsky (2015)?

Thank You Very Much

