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Partially observed Markov models

Definition (Partially observed Markov model (POMM))

A partially observed Markov model with latent space (X,X ) and
observation space (Y,Y) is a pairwise homogeneous Markov chain
((Y n,X n),Fn)n>0 with kernel Kθ, θ ∈ Θ, generally described as

Y k |Fk−1,X k ∼ G θ(X k−1,Y k−1,X k ; ·) ,
X k+1|Fk ∼ Qθ(X k ,Y k ; ·) ,

(1)

and such that only the {Y k}′s are observed .
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Yk+1Yk

Q

G

4 / 30



Two important examples

Xk Xk+1

Yk+1Yk

Q
G

Xk Xk+1

Yk+1Yk

Q
G

Hidden Markov models (HMM) Obs.-Driv. models (ODM)

. In both cases, {X k} is a Markov chain.

. An ODM moreover requires that

Qθ(Xk ,Yk ; ·) = δψθYk
(Xk )

,

where δx denotes the Dirac mass at point x and, for all y ∈ Y,

ψθ : Y×X→ X

(y , x) 7→ ψθy (x) .
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General-order ODM

For m 6 n, denote Zm:n := (Zm,Zm+1, . . . ,Zn).

Definition (ODM(p, q))

Let p, q > 1 and, for all θ ∈ Θ,

ψθ : Yp ×Xq → X

(y, x) 7→ ψθy(x) .

An ODM of order (p, q) with link function ψθ and observation
kernel G θ satisfies, for all k ∈ N,

Xk+1 = ψθY (−p+1+k):k

(
X (−q+1+k):k

)
,

Yk+1|Fk ,Xk+1 ∼ G θ (Xk+1; ·) .
(2)

where Fk = σ(Y−p+1, . . . ,Yk , X−q+1, . . . ,Xk).
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Linear ODM

Definition (Linear ODM (LODM))

A linear ODM (LODM) is an ODM

. with parameters θ = (ϑ, ϕ) with ϑ = (ω, a1:p, b1:q) ∈ R1+p+q,

. with X ⊆ R and link functions of the form

ψθ : Yp ×Xq → X

(y1:p, x1:q) 7→ ψθy(x) = ω +

p∑
k=1

akυ(yk) +

q∑
k=1

bkxk , (3)

where υ : Y → R.

If X = R+, set (ω, a1:p, b1:q) ∈ R1+p+q
+ and υ : Y → R+.
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Examples of LODM

. GARCH(p, q), Bollerslev [1986]:

X = R+ , G
θ(x ; ·) = N (0, x) and υ(y) = y2 .

. In-GARCH, Davis, Dunsmuir, and Streett [2003]:

X = R+ , G
θ(x ; ·) = Poi(x) and υ(y) = y .

. NBINGARCH(p, q), Zhu [2011]:

X = R+ , G
θ(x ; ·) = NB

(
r ,

1

1 + x

)
and υ(y) = y .

. Log-In-GARCH, Fokianos and Tjøstheim [2011]:

X = R , G θ(x ; ·) = Poi(exp x) and υ(y) = ln(1 + y) .

Note that, transforming the observations, we can take υ(y) = y ,
but it modifies the definition of G θ.
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Domination

. In contrast to HMMs, ODMs are not fully dominated:
Kθ(x , ·) is not dominated by (µ⊗ ν) for σ-finite measures µ
and ν on X and Y, resp.

. We always assume that the ODM is partially dominated:
there is a σ-finite measure ν on Y such that, for all θ ∈ Θ and
x ∈ X, G θ(x , ·) is dominated by ν, and, moreover, the density
gθ(x ; ·) = dG θ(x , ·)/dν satisfies, for all y ∈ Y,

gθ(x ; y) > 0 ,

. To avoid a trivial case, ν is supposed to be non-degenerate,
that is, its support contains at least two points.

. For LODMs, we assume the push measure ν ◦ υ−1 to be
non-degenerate.
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Embedding in an ODM(1,1)

Define Z = Yp−1×Xq and for all k ∈ N,

Z k =
(
Y (k−p+1):(k−1),X (k−q+1):k

)
∈ Z .

. Then (Y k ,Z k)k>0 is an ODM(1,1) with link function

Ψθ : Y×Z→ Z(
y , z
)
7→ Ψθ

y (z) = ψθ(y,y)(x) where z = (y, x) .

. Given an initial distribution η on Z, we denote by Pθη the
distribution of {X k , k > −q, Y `, ` > −p} when(

Y (−p+1):−1,X (−q+1):0

)
∼ η .
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Likelihood

. For any m ∈ N and y0:m−1 ∈ Ym, define

Ψθ〈y0:m−1〉 = Ψθ
ym−1

◦ · · · ◦Ψθ
y0

: Z→ Z , (4)

ψθ〈y0:m−1〉 = Πp+q−1 ◦Ψθ〈y0:m−1〉 : Z→ X , (5)

where Πj : Z→ Y or X denotes the projection over the j-th
coordinate.

. Then, for any arbitrary z(i) ∈ Z and observations Y 0:n, the
(conditional) log-likelihood (given Z 0 = z(i)) reads

Lθ
z(i),n

:=
n∑

k=0

ln gθ
(
ψθ〈Y 0:(k−1)〉(z(i));Y k

)
. (6)

. Hence the log-likelihood, as well as its derivatives, can easily
be computed using O(n) operations.

11 / 30



Likelihood

. For any m ∈ N and y0:m−1 ∈ Ym, define

Ψθ〈y0:m−1〉 = Ψθ
ym−1

◦ · · · ◦Ψθ
y0

: Z→ Z , (4)

ψθ〈y0:m−1〉 = Πp+q−1 ◦Ψθ〈y0:m−1〉 : Z→ X , (5)

where Πj : Z→ Y or X denotes the projection over the j-th
coordinate.

. Then, for any arbitrary z(i) ∈ Z and observations Y 0:n, the
(conditional) log-likelihood (given Z 0 = z(i)) reads

Lθ
z(i),n

:=
n∑

k=0

ln gθ
(
ψθ〈Y 0:(k−1)〉(z(i));Y k

)
. (6)

. Hence the log-likelihood, as well as its derivatives, can easily
be computed using O(n) operations.

11 / 30



Likelihood

. For any m ∈ N and y0:m−1 ∈ Ym, define

Ψθ〈y0:m−1〉 = Ψθ
ym−1

◦ · · · ◦Ψθ
y0

: Z→ Z , (4)

ψθ〈y0:m−1〉 = Πp+q−1 ◦Ψθ〈y0:m−1〉 : Z→ X , (5)

where Πj : Z→ Y or X denotes the projection over the j-th
coordinate.

. Then, for any arbitrary z(i) ∈ Z and observations Y 0:n, the
(conditional) log-likelihood (given Z 0 = z(i)) reads

Lθ
z(i),n

:=
n∑

k=0

ln gθ
(
ψθ〈Y 0:(k−1)〉(z(i));Y k

)
. (6)

. Hence the log-likelihood, as well as its derivatives, can easily
be computed using O(n) operations.

11 / 30



Stationary distribution

. The existence and uniqueness of stationary solutions for the
standard GARCH(p, q) equation can be treated in the
framework of stochastic linear equation, see Bougerol and
Picard [1992].

. For general ODM’s, the ergodicity of the Markov chain
(Y k ,Z k) is equivalent to that of the Markov chain (Z k).

. Integer valued ODM’s are not φ-irreducible and require
particular attention.

. Existence: Weak Feller + geometric Drift condition, see
Tweedie [1988].

. Uniqueness: coupling argument based on technical
assumptions on G θ, see Douc, Doukhan, and Moulines
[2013].

. A similar coupling argument yields β mixing properties for
(Y k), see Doukhan and Neumann [2017].
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Notation

Recall that, for all θ ∈ Θ and initial distribution η on (Z,Z), Pθη
denotes the distribution of {Y k ,X ` : k > −p, ` > −q} for
Z 0 ∼ η.

If the model is ergodic, i.e. there exists a unique probability
measure η such that Pθη is shift-invariant, we denote

. the stationary distribution extended on(
(Y×X)Z, (X ⊗ Y)⊗Z

)
by Pθ ,

. the marginalization of Pθ on
(
YZ,Y⊗Z

)
by P̃θ .

Remark : when establishing ergodicity through a drift condition,
we obtain some minimal finite moment condition, referred to as
(M) in the following, for X 0 (and Y 0) under the stationary
distribution.
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Statistical inference

. The Maximum Likelihood Estimator (MLE) θ̂z(i),n is defined as

θ̂z(i),n ∈ argmax
{

Lθ
z(i),n

: θ ∈ Θ
}

(7)

for some arbitrary initial point z(i) ∈ Z.

. In well-specified models, a standard consistency result consists
in showing that

lim
n→∞

θ̂η,n = θ? , Pθ?-a.s. (8)

. and asymptotic normality consists in showing that

√
n(θ̂z(i),n − θ?)

Pθ?
=⇒ N (0,J −1(θ?)) (9)

where J (θ?) is a nonsingular d × d-matrix.
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Asymptotic behavior of the likelihood

To fulfill this program, an essential ingredient is to study the
asymptotic behavior of the likelihood (6).

In particular, we need a stationary approximation of

ψθ〈Y 0:(k−1)〉(z(i)) , k > 0 .

This is done by approximating Y 0:(k−1) by Y−∞:(k−1), defined, in

the case k = 1 by the backward limit

lim
j→−∞

ψθ〈Y j :0〉(z(i)) .

Let (X, δX) and (Z, δZ) be complete metric spaces in such a way
that Πp+q+1 : Z→ X is 1-Lipschitz.
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Uniform Lipschitz condition

By (4) and (5), δX
(
ψθ〈Y i :0〉(z(i)), ψθ〈Y i+1:0〉(z(i))

)
is bounded

from above by(
sup

y∈Yi ,z,z ′

δZ
(
Ψθ〈y〉(z),Ψθ〈y〉(z ′)

)
δZ
(
z , z ′

) )
δZ
(
Ψθ〈Y i+1〉(z(i)), z(i)

)
.

where we used a uniform Lipschitz constant of the i- iterate of the
link function.

Define for all i ∈ N∗,

Lipθi = sup

{
δZ
(
ψθ〈y〉(z), ψθ〈y〉(z ′)

)
δZ
(
z , z ′

) : y ∈ Yi , z , z ′ ∈ Z

}
.

We use the following condition:

(A-1) For all θ ∈ Θ, we have Lipθ0 <∞ and Lipθn → 0 as n→∞,
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Asymptotic behavior of the likelihood (cont.)

Under (A-1)+ (M), for all θ ∈ Θ, there exists a measurable
function ψθ〈·〉 : YZ− → X such that for all θ, θ? ∈ Θ,

X 1 = ψθ〈Y−∞:0〉 Pθ-a.s.

ψθ〈Y−∞:0〉 = lim
n→∞

ψθ〈Y−n:0〉(z(i)) P̃θ?-a.s.

Note that, under P̃θ? , we have that

. y 7→ pθ(y | Y−∞:0) := gθ
(
ψθ〈Y−∞:0〉; y

)
is a density w.r.t. ν

. y 7→ pθ?(y | Y−∞:0) is the conditional density of Y 1 given
Y−∞:0.

Moreover, with some continuity conditions, for n large,

Lθ
z(i),n
≈

n∑
k=0

ln pθ(Y k | Y−∞:(k−1)) P̃θ?-a.s. (10)
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Under (A-1)+ (M), for all θ ∈ Θ, there exists a measurable
function ψθ〈·〉 : YZ− → X such that for all θ, θ? ∈ Θ,

X 1 = ψθ〈Y−∞:0〉 Pθ-a.s.

ψθ〈Y−∞:0〉 = lim
n→∞

ψθ〈Y−n:0〉(z(i)) P̃θ?-a.s.

Note that, under P̃θ? , we have that

. y 7→ pθ(y | Y−∞:0) := gθ
(
ψθ〈Y−∞:0〉; y

)
is a density w.r.t. ν

. y 7→ pθ?(y | Y−∞:0) is the conditional density of Y 1 given
Y−∞:0.

Moreover, with some continuity conditions, for n large,

Lθ
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The steps to the CLT for the MLE

Using ergodicity +(M) :

. Approximate the likelihood as above;

. Prove consistency: lim
n→∞

θ̂z(i),n = θ?, P̃θ?-a.s.,

. Taylor expansion of the score function

Sn(θ) =
n∑

k=0

∂θ ln pθ(Y k | Y−∞:(k−1))

around θ?;

. CLT for the martingale Sn(θ?) (under P̃θ?),

. A.s. convergence for the Hessian.

All theses steps can be carried out for the previously mentioned
models, with some restrictions on the parameter set Θ, sometimes
appearing in technical conditions.
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Consistency: missing steps

From the approximation in (10), we only get that

lim
n→∞

∆
(
θ̂z(i),n,Θ

?
)

= 0 P̃θ?-a.s. , (11)

where ∆ is the metric on Θ and the limit maximizing set Θ? is
defined for all θ? by

Θ? = argmax
{
Ẽθ? [ln pθ(Y1 | Y−∞:0)] : θ ∈ Θ

}
To prove consistency, it remains to go through
two additional steps :

. we need to show that (see Douc, Roueff, and Sim [2016] for
any POMM)

Θ? = [θ?] :=
{
θ ∈ Θ : P̃θ = P̃θ?

}
.

Then, with (11), we get equivalence class consistency (as
introduced by Leroux [1992]).

. To conclude, find conditions to have that [θ?] = {θ?}. (So
that the model restricted to these θ?s is identifiable).
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Identifiability: basic assumption on the observation kernel

We suppose that the observation kernel satisfies:

(A-2) We can write θ? = (ϑ?, ϕ?) and, for all θ = (ϑ, ϕ) in Θ and
x , x ′ ∈ X,

G θ(x ; ·) = G θ?(x ′; ·) if and only if ϕ = ϕ? and x = x ′ .

(i.e. ϕ is the part of the parameter θ that can be identified directly
from the conditional distribution of one observation)

Denote by [θ?] the equivalence class:

[θ?] =
{
θ ∈ Θ : P̃θ = P̃θ?

}
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Identifiability: a general result

We have the following result.

Theorem

Consider an ergodic ODM(p, q) satisfying (A-2). Suppose that, for
all θ ∈ Θ, there exists ψθ〈·〉 : YZ− → X such that

X 1 = ψθ〈Y−∞:0〉 Pθ-a.s. (12)

Then [θ?] coincides with the set of all θ = (ϑ, ϕ?) ∈ Θ such that

ψθ〈Y−∞:0〉 = ψθ?〈Y−∞:0〉 P̃θ?-a.s. ,

ψθ〈Y−∞:0〉 = ψθY (−p+1):0

((
ψθ〈Y−∞:j〉

)
−q6j6−1

)
P̃θ?-a.s.

Recall that (12) follows from (A-1)+(M), see likelihood approx.
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Uniform Lipschitz assumption: the linear case.

For a linear link function (3) with υ(y) = y ,
Ass. (A-1) is equivalent to

(L-1) For all θ = (ϑ, ϕ) ∈ Θ with ϑ = (ω, a1:p, b1:q), we have
b1:q ∈ Sq,

where

Sq :=

{
c1:q ∈ Rq : ∀z ∈ C, |z | 6 1 implies 1−

q∑
k=1

ckz
k 6= 0

}
.
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Identifiability: the linear case.

We have the following result.

Theorem

Consider an ergodic ODM(p, q) satisfying (L-1) and (A-2)+(M).
Then, for any θ? = (ω?, a?1:p, b

?
1:q, ϕ

?) in the interior of Θ,

[θ?] = {θ?} if and only if

(L-2) The polynomials Pp(·; a?1:p) and Qq(·; b?1:q) have no
common complex roots,

where we defined

Pp(z ; a1:p) =

p−1∑
k=0

ak+1 zp−1−k

Qq(z ; b1:q) = zq −
q∑

k=1

bkz
q−k .
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Concluding remarks

. Details can be found in the thesis of Sim [2016] and in a
forthcoming paper.

. The steps leading to consistency and asymptotic normality are
standard for all POMMs, some of which can be treated in a
very general fashion.

. The initial step is in fact to prove ergodicity of the complete
Markov chain, and define Θ accordingly (the integer valued
case being of special interest).

. The same identifiability condition is valid in the general case
of LODMs.

. Open question : GARCH(p, q) processes are known to be
regularly varying. How can this be extended to integer valued
cases ?
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