
Plan

PA Model

MRV & PA

Calibration

Why Hill estimation?

Concluding

Title Page

JJ II

J I

Page 1 of 34

Go Back

Full Screen

Close

Quit

The Linear Preferential Attachment

Model for Social Network Growth

Sidney Resnick
School of Operations Research and Information Engineering

Rhodes Hall, Cornell University
Ithaca NY 14853 USA

http://people.orie.cornell.edu/sid
http://www.orie.cornell.edu/research/groups/multheavytail

sir1@cornell.edu

BIRS Oaxaca

June 15, 2018

MURI: R. Davis, P. Wan (Columbia); T. Wang, S. Resnick,
G. Samorodnitsky (Cornell)

http://www.orie.cornell.edu/research/groups/multheavytail


Plan

PA Model

MRV & PA

Calibration

Why Hill estimation?

Concluding

Title Page

JJ II

J I

Page 2 of 34

Go Back

Full Screen

Close

Quit

1. Preferential Attachment Outline:

• Describe a 5 (really 4) parameter preferential attachment (PA)
model.

• Highlight some relevant mathematical properties.

• Think about calibrating (fitting) the model to simulated and real
data.

• Compare statistical approaches: MLE, SN and EV.

– MLE: Is it naive or useful (or both) to fit a 5-parameter model
to 1.5 million data?

– How do asymptotic EVT or HT methods compare with SN
or MLE:

∗ assuming the model is correct;

∗ assuming data corruption;

∗ assuming model error–data simulated from different model.

– Conclusions: MLE efficient but usually more sensitive to model
error or data corruption.

• What can we learn by trying to fit?

• Why does everyone use the Hill estimator?



Plan

PA Model

MRV & PA

Calibration

Why Hill estimation?

Concluding

Title Page

JJ II

J I

Page 3 of 34

Go Back

Full Screen

Close

Quit

2. A growing preferential attachment network model

See Bollobás, Borgs, Chayes, and Riordan (2003) and Krapivsky and
Redner (2001).

2.1. Model description

• Model parameters:

– Flip a three-sided coin corresponding to three scenarios : 1,3,2,
with probabilities α, γ, β,, with α + β + γ = 1.

∗ Alternatively consider iid multinomial variables {Jn} with
cells 1,3,2.

∗ (Data suggests you may need a 5-sided coin.)

– δin ≥ 0, δout ≥ 0. (MLE inference requires these to be strictly
positive.)

• G(n) = (Vn, En) is a directed random graph with n edges.

• Node set of G(n) is Vn; so |Vn| = N(n).

• Set of edges of G(n) is En = {(u, v) ∈ Vn × Vn : (u, v) ∈ En}.

• In-degree of v in G(n) is D
(n)
in (v); out-degree of v is D

(n)
out(v).

• Obtain G(n) from G(n− 1) in Markovian construction as follows:
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1. With probability α, append to G(n−1)
a new node v /∈ Vn−1 and create directed
edge v 7→ w ∈ Vn−1 with probability

D
(n−1)
in (w) + δin

n− 1 + δinN(n− 1)
.

w	  

v	  

3. With probability γ, append to G(n− 1)
a new node v /∈ Vn−1 and create directed
edge w ∈ Vn−1 7→ v /∈ Vn−1 with probabil-
ity

D
(n−1)
out (w) + δout

n− 1 + δoutN(n− 1)
.

w	  

v	  

2. With probability β, create new directed
edge between existing nodes

v ∈ Vn−1 7→ w ∈ Vn−1

with probability( D
(n−1)
out (v) + δout

n− 1 + δoutN(n− 1)

)( D
(n−1)
in (w) + δin

n− 1 + δinN(n− 1)

)
.

w	  

v
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2.2. Background: What’s known.

Notation:

N(n) = # nodes in Vn. Binomial rv with success prob α + γ.

n = # edges in En.

Nij(n) = # nodes with in-degree=i and out-degree=j in G(n).

Then (eg, Bollobás, Borgs, Chayes, and Riordan (2003)) the limiting
proportion of nodes with in-degree=i and out-degree=j is

lim
n→∞

Nij(n)

N(n)
= pij = a prob mass function.

Marginally, the limiting degree frequency (pij) has power-law tails: For
some finite positive constants Cin and Cout,

pi(in) :=
∞∑
j=0

pij ∼ Cini
−ιin as i→∞, as long as αδin + γ > 0,

pj(out) :=
∞∑
i=0

pij ∼ Coutj
−ιout as j →∞, as long as γδout + α > 0,

where

ιin = 1 +
1 + δin(α + γ)

α + β
, ιout = 1 +

1 + δout(α + γ)

γ + β
.
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Conclude that ιin > 1, ιout > 1, and manufacture random pair (I, O)
with

(I, 0) ∼ {pij}.
Then

P [I = i] ∼ Cini
−ιin , i→∞;

P [O = j] ∼ Coutj
−ιout , j →∞.

So,

P [I > x] ∼ kinx
−(ιin−1), P [O > x] ∼ koutx

−(ιout−1). (x→∞).

Note: First we let n→∞ and then i, j →∞.

Question: Does(I, O) have a joint heavy tail? That is, is the distribu-
tion multivariate regularly varying?

Yes:
But1: it’s non-standard regular variation; in general ιin 6= ιout.
But2: We have already let n→∞.
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3. Multivariate regular variation and preferential at-
tachment

3.1. One answer: Regular variation of measures.

Samorodnitsky, Resnick, Towsley, Davis, Willis, and Wan (2016),
Resnick and Samorodnitsky (2015)
Theorem. Set c1 = 1/(ιin − 1), c2 = 1/(ιout − 1). The random vector(
I, O) with joint mass function {pij} satisfies as t→∞,

tP

[( I

t1/(ιin−1)
,

O

t1/(ιout−1)

)
∈ ·

]
v→ γ

α + γ
ν1(·) +

α

α + γ
ν2(·),

vaguely in M+([0,∞]2 \{0}) and ν1 and ν2 concentrate on (0,∞)2 and
have Lebesgue densities f1, f2 given by,

f1(x, y) =c−11

(
Γ(δin + 1)Γ(δout)

)−1
xδinyδout−1

×
∫ ∞
0

z−(2+1/c1+δin+aδout)e−(x/z+y/z
a) dz,

and

f2(x, y) =c−11

(
Γ(δin)Γ(δout + 1)

)−1
xδin−1yδout

×
∫ ∞
0

z−(1+a+1/c1+δin+aδout)e−(x/z+y/z
a) dz .
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3.2. Another answer: Regular variation of the mass function
{pij}.

Wang and Resnick (2016) Based on form of the generating function of

pi,j = p(i, j) and recalling the representation of

(I, O) ∼ pi,j.

we get regular variation of the mass functions:

lim
n→∞

p([nc1x], [nc2y])

n−(1+c1+c2)
=

γ

α + γ
f1(x, y) +

α

α + γ
f2(x, y)

=
γ

α + γ

xδinyδout−1

c1Γ(δin + 1)Γ(δout)

∫ ∞
0

z−(2+1/c1+δin+aδout)e−(x
z
+ y

za )dz

+
α

α + γ

xδin−1yδout
c1Γ(δin)Γ(δout + 1)

∫ ∞
0

z−(1+a+1/c1+λ+aδout)e−(x
z
+ y

za )dz.

Note:

• Regular variation of the measure does not always imply regular
variation of the mass function.

• More surprising: variation of the mass function does not always
imply regular variation of the measure (though this is true in 1-
dimension). Need a regularity condition.
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4. Model Calibration/Fitting/Estimation

Wan, Wang, Davis, and Resnick (2017a,b)

It is ambitious to fit the model to real data (as opposed to simulated
data)!

4.1. Issues, approaches, thoughts:

4.1.1. Asymptotic EVT methods vs MLE applied to fully parameterized model?

• Do we trust such a simple model?

– Probably not. Rule of thumb: The larger the dataset, the
more likely you reject a model.

– Perhaps we learn something from discrepancies between the
model and the data.
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• Should we use extreme value (EV) or heavy tail asymptotics to
do estimation or full parametric MLE? For certain network esti-
mation problems,

– EV methods may be more robust against

∗ inevitable model error or,

∗ data corruption,

– but definitely suffer in accuracy compared to model based
estimation when the model is correct (ie simulated).

– Both MLE and EV implemented.
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• The limit density of regular variation f(x, y;θ) has parameter

θ = (α, β, γ, δin, δout).

But recall f(x, y;θ) results from essentially a double limit:

– Taking limn→∞Nn(i, j)/N(n) to get p(i, j).

– Letting i → ∞ and j → ∞ in a controlled way to get the
limit density.

Hence, the asymptotic EV method requires two levels of pretend:

– Pretend n =∞ or Nn(i, j)/N(n) = pij.

– Pretend i, j large so that pij ≈ f(x, y).

• To fit this particular five-parameter model, asymptotics philoso-
phy can be implemented and requires using f(x, y;θ). Use Hill
estimator to get

– ιin;

– ιout;

and then estimate remaining paramters from the profile likelihood
corresponding to f(x, y;θ).

• The data does not result from repeated sampling. We followed
tradition and avoided this issue. But some progress.
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4.2. What data is available?

• Do we have the full history of edge creation with time stamps?

– Available when simulate network (Atwood, Ribeiro, and Towsley
(2015), J. Roy, P. Wan)

– Sometimes available with real data (SNAP, KONECT); time
stamps reliable? See Kunegis (2013).

– Full MLE methodology implemented and works beautifully
when model is correct (simulated).

∗ Construct the likelihood

L(α, β, δin, δout;G(t), et, (etc), t = n0, . . . , n)︸ ︷︷ ︸
observables

Express as product of observables and parameters.

∗ Differentiate likelihood to get score function; check ∃ unique
max at “true” parameter values. Check MLE is strongly
consistent.

∗ Efficient: using MG CLT applied to the score function:
Let

θ̂
MLE

n = (α̂MLE, β̂MLE, δ̂MLE
in , δ̂MLE

out ).

be the MLE estimator for θ, the parameter vector of the
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preferential attachment model. Then

√
n(θ̂

MLE

n − θ)⇒ N (0,Σ(θ)) ,

where

Σ−1(θ) = I(θ) =


1−β

α(1−α−β)
1

1−α−β 0 0
1

1−α−β
1−α

β(1−α−β) 0 0

0 0 Iin 0
0 0 0 Iout

 ,
with

Iin =
∞∑
i=0

pin>i
(i+ δin)2

− γ

δ2in
− (α + β)(1− β)2

(1 + δin(1− β))2
, (1)

Iout =
∞∑
j=0

pout>j

(j + δout)2
− α

δ2out
− (γ + β)(1− β)2

(1 + δout(1− β))2
.

pin>i =
∑
k>i,j

pkj, pout>j =
∑
k,l>j

pkl.
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4.2.1. Data available? One snapshot (SN) method.

• Fixed time snapshot of the network; effectively observe at time n
and NOT at times 1, . . . , n.

– MLE (approximate) still works well; estimators appear to be
CAN but unsurprisingly there is noticeable loss of efficiency
compared to MLE on full history.
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4.3. EV method

• Use Hill (or comparable method) to estimate ιin, ιout based on the
data consisting of degrees of each node.

Hill estimator Hill (1975): Suppose Xn, n ≥ 1 are iid (!!!) rv’s
and

P [X1 > x] ∼ x−α.

Suppose order statistics in sample of size n is X(1) ≥ · · · ≥ X(n).
Then the Hill estimator of α based on k-upper order statistics is
α̂ = H−1k,n where

Hk,n =
1

k

k∑
i=1

log(X(i)/X(k)).

This is consistent and usually asymptotically normal.

• If you trust the model, use asymptotic density to estimate re-
maining parameters by maximizing a profile likelihood assuming
ι̂in, ˆιout.
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4.4. Example: MLE applied to Dutch Wiki talk network (KONECT)

KONECT: Kunegis (2013); from University of Koblenz-Landau.

• 225,749 nodes: registered users of Dutch Wikipedia.

• 1,554,699 edges from A to B means node A wrote a message on
the “talk page” of user B.

• Edges recorded with time stamps.

• Group broadcasts exist and must be cleaned; deleted 37 senders
of >40 messages on the assumption that this did not constitute
normal social network behavior. Deleted dead nodes: nodes with
in-degree 0. After cleaning, refer to the data as the reduced data.

• Additional edge formation scenarios in the data:

– Jn = 4 with probability ξ means two new nodes (v, w) arrive
simultaneously with an edge (v, w).

– Jn = 5 with probability ρ means new node arrives with self-
loop.

• Estimate α, β, γ, ξ with scenario frequencies. Estimate δin, δout
with approximate MLE estimating equations (replace scenario
probabilities by scenario frequencies).
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Figure 1: In- and out-degree frequencies of the reduced Wiki talk network (red)
and 20 simulated fitted linear preferential attachment networks with constant pa-
rameters (green).
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Another issue:

• ∃ evidence the parameter vector is not constant over time.

• Some success fitting using parameters that are piecewise constant
over time. Need more systematic investigation of change points.
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Figure 2: Local parameter estimates of linear PA model for the full
and reduced Wiki talk network. Upper left: (δ̂in, ˆδout) for full network.

Upper right, lower left, lower right: (δ̂in, ˆδout), (β̂, γ̂), (α̂, ξ̂, ρ̂) for the
reduced network, respectively.
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4.5. Comparison of methods.

On simulated data where we know correct answers, compare:

• EV: extreme value asymptotic methods,

• SN: one snapshot method;

• MLE: Full MLE knowing history of edge formation.

For meaningful comparison of SN, EV, MLE, allow:

• Data corruption: simulated data with randomly added or deleted
edges.

• Model error:

– simulate superstar (Lady Gaga) model where fixed proportion
of new nodes attach to the superstar; rest obey linear PA.

– estimate parameters while pretending data from ordinary PA.

Broad conclusions:

• If there is either model error or data corruption, EV methods hold
their own and are a useful supplementary technique.

• Unsurprisingly, if there is no model error or data corruption (hah!)

EV < SN=one snapshot < full MLE.
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4.5.1. No model error or data corruption

• Hold (β, δin, δout) = (0.4, 1, 1) fixed and α ∈ {0.1, 0.2, 0.3, 0.4}.

• Simulate 200 networks with 105 edges.

• Estimate α, ιin, ιout for each replication.

• Compute boxplots for biases of 200 estimates

(α̂EV , ι̂in
EV , ˆιout

EV ), (α̂SN , ι̂in
SN , ˆιout

SN), (α̂MLE, ι̂in
MLE, ˆιout

MLE).

• Conclusion: EV more biased and variable than SN or MLE for
uncorrupted data from correct model.
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α = 0.1, 0.2. Fix (β, δin, δout) = (0.4, 1, 1).
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4.5.2. Model error: random edge additions

• To get G(n) from G(n− 1),

– Flip a coin; with prob pa sequentially pick 2 nodes at random
and wire an edge from first to 2nd.

– Otherwise, with prob 1− pa construct using PA rules. (inter-
polate between PA and Erdos-Renyi.)

• Use this mechanism to generate 200 graphs with 105 edges and

(α, β, γ, δin, δout) = (0.3, 0.4, 0.3, 1, 1),

pa ∈ {0.025, 0.05, 0.075, 0.1, 0.125, 0.15}.

• Pretend data from linear PA.

• Display mean estimates and 2.5% and 97.5% empirical quantiles
of (a) δin; (b) δout; (c) α; (d) γ; (e) ιin; (f) ιout, using MLE (black),
SN (red) and EV (blue) methods over 200 replications

• Dotted line=true values.

• For some parameters, EV much better and never worse.
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4.5.3. Model error: Simulate superstar model but don’t tell the statistician.

• Simulate the superstar model:

– To get from G(n− 1) to G(n), flip a coin: With prob p a new
node appears and attaches to the superstar. Otherwise, with
prob 1− p do linear PA.

– Use:

(α, β, γ, δin, δout, n, p) = (0.3, 0.4, 0.3, 1, 1, 105, 0.25).

• Don’t tell the MLE estimator it’s the wrong model.

• Compute empirical in- and out-degree frequencies from simulated
data (green next page).

• Compute estimates Θ̂EV , Θ̂MLE using EV, MLE applied to linear
PA.

• Simulate 20 linear PA networks using Θ̂EV and 20 using Θ̂MLE.

• Overlay empirical frequencies.
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5. Why Hill estimation?

KONECT > Networks > DNC emails

DNC emails

About this network
This is the directed network of emails in the 2016 Democratic National Committee email leak. The Democratic National Committee
(DNC) is the formal governing body for the United States Democratic Party. A dump of emails of the DNC was leaked in 2016. Nodes
in the network correspond to persons in the dataset. A directed edge in the dataset denotes that a person has sent an email to another
person. Since an email can have any number of recipients, a single email is mapped to multiple edges in this dataset, resulting in the
number of edges in this network being about twice the number of emails in the dump.

Network info
Code DNc
Category ⬤ Communication

Data source http://www.rene-pickhardt.de/extracting-2-social-network-graphs-from-the-democratic-national-
committee-email-corpus-on-wikileaks/

Vertex type Person
Edge type Email
Format  Directed
Edge weights  Multiple unweighted
Metadata  Loop  Timestamps
Size 2,029 vertices (persons)
Volume 39,264 edges (emails)
Unique volume 5,598 edges (emails)
Average degree (overall) 38.703 edges / vertex
Fill 0.0015655 edges / vertex2

Maximum degree 5,813 edges
Reciprocity 41.9%
Size of LCC 1,833 vertices
Size of LSCC 520 vertices
Wedge count 317,905
Claw count 59,899,010
Triangle count 9,431
Square count 209,206
4-tour count 2,954,036
Power law exponent
(estimated) with dmin

2.0110 (dmin = 1)

Gini coefficient 91.1%
Relative edge distribution
entropy 79.0%

Assortativity –0.30655
Clustering coefficient 8.90%
Diameter 8 edges
90-percentile effective
diameter 3.98 edges

Mean shortest path length 3.38 edges
Spectral norm 1566.5
Algebraic connectivity 0.047945
Preferential attachment
exponent 1.1837 (ε = 3.1275)

Home Networks Statistics Plots Search Downloads Software Publications License About Help

Custom SearchKONECT

Highlight
Power law exponent(estimated) with dmin2.0110 (dmin = 1)

Line
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Why does Hill work?

Wang and Resnick (2017), Wang and Resnick (201∞).
Progress: Cases where Hill is provably consistent:

• Undirected model Wang and Resnick (2017).

• Directed model with β = 0.

• Results constrained by the methods which are not sufficiently ro-
bust: Embed in birth or BI or switched BI processes.
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6. Concluding remarks

6.1. What would we like to know?

• Reciprocity? Cliques? Neighborhoods? Nothing analytical to
report.

• Change point methods? Can we identify regimes where the pa-
rameters change and hence uncover evidence of interference in
normal social behavior (intrusion, bot or admin behavior).

• Fragility of methods.

• Allow models to have a node attaching simultaneously to multiple
other nodes. Do this without introducing a gazillion parameters.

• Models that allow participants to leave the social network?
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