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Introduction
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Connection to max-stable processes
Statistical application

The tail process of a time series

The (spectral) tail process

We can describe the extremal behavior of multivariate time series
by looking at the tail process (Yt)t∈Z

lim
u→∞

L
((

X−m
u

, . . . ,
Xn

u

)∣∣∣∣‖X0‖ > u

)
=: L((Y−m, . . . ,Yn)), m, n ∈ N.

Decomposition of the tail process - Basrak & Segers (2009)

Existence of (non-degenerate) (Yt)t∈Z is equivalent to

1 ‖X0‖ is regularly varying with some index α > 0

2 lim
u→∞

L
((

X−m
‖X0‖

, . . . ,
Xn

‖X0‖

)∣∣∣∣‖X0‖ > u

)
=: L((Θ−m, . . . ,Θn))

for spectral tail process (Θt)t∈Z. Then

(Yt)t∈Z
d
= Y · (Θt)t∈Z,

for Y ∼ Par(α), independent of (Θt)t∈Z.
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The tail process of a time series

The meaning of (Θt)t∈Z

L(Θ0) describes extremal dependence between components:

L(Θ0) = lim
u→∞

L
(

X0

‖X0‖

∣∣∣∣‖X0‖ > u

)
.

L((Θt)t∈Z) the development of extremal events over time.

Applications of the (spectral) tail process

Looking at ((Θt)t∈Z) is a way to distinguish between different
models with regard to extremal properties

Extremal characteristics like extremal index, extremal
coefficient, etc. can be determined from L((Θt)t∈Z) and α

L((Θt)t∈Z) determines asymptotic variance and dependence
structure of extremal estimators (Drees and Rootzén (2010)
and others)

Note: No information in case of asymptotic independence.
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Implication of stationarity
A new interpretation of the time change formula

(Non-)Stationarity properties of the spectral tail process

If the underlying process (Xt)t∈Z is stationary, the corresponding
(spectral) tail process is in general not stationary (due to
conditioning on event at time 0).
Instead, the following relation holds:

“Time change formula” (Basrak & Segers (2009))

Let (Θt)t∈Z be the spectral tail process of a stationary underlying
process. Then, for each bounded, measurable f : (Rd)t−s+1 → R
such that f (xs , . . . , xt) = 0, whenever x0 = 0, we have

E (f (Θs−i , . . . ,Θt−i )) = E

(
f

(
Θs

‖Θi‖
, . . . ,

Θt

‖Θi‖

)
‖Θi‖α

)
,

s ≤ 0 ≤ t, i ∈ Z.
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Characterization and Interpretation

E (f (Θs−i , . . . ,Θt−i )) = E

(
f

(
Θs

‖Θi‖
, . . . ,

Θt

‖Θi‖

)
‖Θi‖α

)
,

“Time change formula” follows from limit description and a
few manipulations or directly from tail measure (see Clement’s
talk).

⇒ Is there also a probabilistic interpretation of this formula?

TCF completely characterizes the class of spectral tail
processes of stationary time series (Dombry et al. (2017),
Janßen (2017), Planinić & Soulier (2017))

⇒ How can we construct a process with given spectral tail
process (as explicitly as possible)?
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Another interpretation - A few definitions first

”Time change formula” - Property (TCF)

We say that a process (Ψt)t∈Z with Ψt ∈ Rd satisfies Property
(TCF) if it satisfies the time change formula and ‖Ψ0‖ = 1 a.s.

Summability assumption - Property (SC)

We say that a process (Ψt)t∈Z with Ψt ∈ Rd satisfies Property
(SC) if

0 <
∑
i∈Z
‖Ψi‖α <∞ a.s..

If Property (TCF) holds, then Property (SC) is satisfied for many
processes. In particular, this follows already from ‖Ψt‖ → 0 a.s.
for |t| → ∞ ⇒ (Janßen (2017), Planinić & Soulier (2017))

Anja Janßen Spectral tail processes of stationary time series 8 / 27



Introduction
The time change formula and the RS process

Connection to max-stable processes
Statistical application

Implication of stationarity
A new interpretation of the time change formula

Another interpretation - A few definitions first

”Time change formula” - Property (TCF)

We say that a process (Ψt)t∈Z with Ψt ∈ Rd satisfies Property
(TCF) if it satisfies the time change formula and ‖Ψ0‖ = 1 a.s.

Summability assumption - Property (SC)

We say that a process (Ψt)t∈Z with Ψt ∈ Rd satisfies Property
(SC) if

0 <
∑
i∈Z
‖Ψi‖α <∞ a.s..

If Property (TCF) holds, then Property (SC) is satisfied for many
processes. In particular, this follows already from ‖Ψt‖ → 0 a.s.
for |t| → ∞ ⇒ (Janßen (2017), Planinić & Soulier (2017))
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The ”RS process”

Definition: The “RS process” of (Ψt)t∈Z (random shift, rescaled)

Let (Ψt)t∈Z be a process which satisfies Property (SC). The
corresponding RS process is the process for which

(ΨRS
t )t∈Z

d
=

(
Ψt+K(Ψ)

‖ΨK(Ψ)‖

)
t∈Z

,

where
P(K (Ψ) = k |(Ψt)t∈Z) =

‖Ψk‖α∑
i∈Z ‖Ψi‖α

, k ∈ Z.
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Implication of stationarity
A new interpretation of the time change formula

A closer look at the definition

The distribution of (ΨRS
t )t∈Z does not change if we multiply

(Ψt)t∈Z with a (random) scalar or apply a (random) shift in
time. Thereby, it only depends on the “patterns” that we see
in (Ψt)t∈Z (see Basrak et al. (2016)). Below is a bivariate
process, first component in red and second in black.

Anja Janßen Spectral tail processes of stationary time series 10 / 27



Introduction
The time change formula and the RS process

Connection to max-stable processes
Statistical application

Implication of stationarity
A new interpretation of the time change formula

A closer look at the definition

The distribution of (ΨRS
t )t∈Z does not change if we multiply

(Ψt)t∈Z with a (random) scalar or apply a (random) shift in
time. Thereby, it only depends on the “patterns” that we see
in (Ψt)t∈Z (see Basrak et al. (2016)). Below is a bivariate
process, first component in red and second in black.

Anja Janßen Spectral tail processes of stationary time series 10 / 27



Introduction
The time change formula and the RS process

Connection to max-stable processes
Statistical application

Implication of stationarity
A new interpretation of the time change formula

A closer look at the definition

The distribution of (ΨRS
t )t∈Z does not change if we multiply

(Ψt)t∈Z with a (random) scalar or apply a (random) shift in
time. Thereby, it only depends on the “patterns” that we see
in (Ψt)t∈Z (see Basrak et al. (2016)). Below is a bivariate
process, first component in red and second in black.

Corresponding probabilities for α = 1:

1

1 + 1.2 + 1
=

5

16
,

1.2

1 + 1.2 + 1
=

3

8
,

1

1 + 1.2 + 1
=

5

16
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Implication of stationarity
A new interpretation of the time change formula

An equivalent statement of the time change formula

Theorem (J. (2017))

Let (Θt)t∈Z satisfy Property (SC). Then the following two
statements are equivalent:

1 (Θt)t∈Z satisfies Property (TCF) (i.e. the “time change
formula” + ‖Θ0‖ = 1 a.s.).

2 (ΘRS
t )t∈Z

d
= (Θt)t∈Z.

Corollary - How to generate a spectral tail process?

Let (Θt)t∈Z satisfy Property (SC). Then (ΘRS
t )t∈Z satisfies

property (TCF).
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Max-stable processes

Generation of max-stable process from Poisson point processes:

Let (Ui ,Ti )i∈N be an enumeration of points from a Poisson point
process with intensity

αu−α−1du ⊗ Count(dt)

(Count is counting measure on Z) and (S i
t)t∈Z be i.i.d. copies

from a non-negative process that satisfies property (SC),
independent of (Ui ,Ti )i∈N. Then,

(Xt)t∈Z :=

(
max
i∈N

Ui

S i
t+Ti

(
∑

z∈Z ‖Sz‖α)1/α

)
t∈Z

is a stationary max-stable process and (SRS
t )t∈Z is the

corresponding spectral tail process.

Cf. Engelke et al. (2014) for a related result in a similar context.
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Max-stable processes: Example

Generation of max-stable process from Poisson point processes:

(Xt)t∈Z :=

(
max
i∈N

Ui

S i
t+Ti

(
∑

z∈Z ‖Sz‖α)1/α

)
t∈Z

The example for our previous RS-process:
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Construction of max-stable process without Property (SC)

Let (Θt)t∈Z with values in [0,∞)d be a stochastic process which
satisfies Property (TCF).

For j ∈ N0 let (U
(j)
i , (Θ

(j ,i)
t )t∈Z)i∈N be point from a PPP with

intensity
αu−α−1du ⊗ P(Θt)t∈Z(dθ)

(independent of each other for different values of j).

Then the stochastic process

=

(∨
i∈N

U
()
i Θ(,i)

)

is a stationary and max-stable process with corresponding forward
spectral tail process (Θt)t∈N0 .
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Two complementary views on extremal behavior

Under stationarity, if we know extremal behavior given exceedance
at time 0...

Corresponding probabilities:

1

1 + 1.2 + 1
=

5

16
,

1.2

1 + 1.2 + 1
=

3

8
,

1

1 + 1.2 + 1
=

5

16

Anja Janßen Spectral tail processes of stationary time series 16 / 27



Introduction
The time change formula and the RS process

Connection to max-stable processes
Statistical application

Construction of underlying max-stable process
Two complementary views on extremal behavior

Two complementary views on extremal behavior

... then we also know “global” behavior as approximated by
max-stable process
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Multivariate clusterwise maxima?
An idea to discuss: Clusterbased estimators

Statistical application

How is extremal dependence best reflected in estimators?

Assume we are interested in inference for Θ0, for example
estimator for P(Θ0 ∈ A), A set on unit sphere.

For estimator construction, one can use all observations with
norm over given threshold, variance is influenced by extremal
dependence.

In univariate extreme value theory it was suggested by
Davison and Smith (1990) to use clusterwise maxima as
approximately i.i.d. realisations for GPD-fitting.

However, extending this concept to the multivariate setting
will introduce a bias, since we then infer about cluster
maximum 6= Θ0.
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Cluster maximum vs. Θ0

In a way, the cluster maximum is still “the best guess” given the
following theorem...

Conditional law of (Θt)t∈Z given its ”pattern”, J. (2017)

Assume (Θt)t∈Z satisfies Property (SC) and (TCF) and set

‖Θ∗‖ = sup
t∈Z
‖Θt‖, T ∗ = inf{t ∈ Z : ‖Θt‖ = ‖Θ∗‖}.

Then,

L
(

(Θt)t∈Z

∣∣∣∣(ΘT∗+t

‖Θ∗‖

)
t∈Z

)
=
∑
k∈Z

‖ΘT∗+k‖α∑
s∈Z ‖Θs‖α

δ(ΘT∗+k+t
‖ΘT∗+k‖

)
t∈Z

,

where δx denotes the Dirac measure in x ∈ (Rd)Z.

Short: Conditional distribution is RS-process of observed pattern.
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General idea for estimator

Conditional distribution of Θ0

... which gives

P

(
Θ0 ∈ A

∣∣∣∣(ΘT∗+t

‖Θ∗‖

)
t∈Z

)
=

∑
k∈Z

‖ΘT∗+k‖α∑
s∈Z ‖Θs‖α
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(
Θk
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)
(1)

and the highest weight is attained at cluster maximum.
Idea: Try to identify clusters (that is an i.i.d. sample from the
distribution of (ΘT∗+t/‖Θ∗‖)t∈Z) and use (1) for estimator
construction.
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But how to identify “clusters”?

Very simple approach: Split time series into blocks of size c .

Estimate α and take the (Xkic+1, . . . ,X(ki+1)c), i = 1, . . . ,m

with largest values of
∑(ki+1)c

s=kic+1 ‖Xs‖α̂ as manifestations of
patterns.

Apply

P̂ki (Θ0 ∈ A) =

(ki+1)c∑
j=kic+1

‖Xj‖α̂∑(ki+1)c
s=kic+1 ‖Xs‖α̂

1A

(
Xj

‖Xj‖

)
.

to each of largest blocks and take the mean

P̂(Θ0 ∈ A) =
1

m

m∑
i=1

P̂ki .
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Does this work?

Example 1: Max-stable process from before.

Recipe from before with deterministic spectral process

. . . ,

(
0
0

)
,

(
0
1

3.2

)
,

(
1.2
3.2
0

)
,

(
0
1

3.2

)
,

(
0
0

)
, . . .

Want to estimate P(]Θ0 ∈ [0.4π, 0.6π]).

Anja Janßen Spectral tail processes of stationary time series 22 / 27



Introduction
The time change formula and the RS process

Connection to max-stable processes
Statistical application

Multivariate clusterwise maxima?
An idea to discuss: Clusterbased estimators

Does this work?

RMSE from 1000 simulations of a time series of length 1000.

Blue: All observations with norm over corresponding quantile
Red: As previously explained, cluster length 10, α̂ is Hill estimator for norms at
90% quantile.
Quantiles at x-axes are correct for old estimator, and adjusted by extremal
index for cluster based estimator, such that approximately the same number of
extremal observations is used for vertically aligned dots.
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Does this work?

Example 2: Random Difference Equation

Xt = Z

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
Xt−1 + Y

(
0
1

)
where Xt−1 ∈ R2, Z ∼ N (0, 1), θ ∼ U [0, 2π],Y ∼ Par(3) all
independent.
Then, ]Θ0 ∼ U [0, 2π], α = 2.
Estimate again P(]Θ0 ∈ [0.4π, 0.6π]).
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Does this work?

RMSE from 1000 simulations of a time series of length 10000.

Blue: All observations with norm over corresponding quantile
Red: As previously explained, cluster length 10, α̂ is Hill estimator for norms at
90% quantile.
Quantiles at x-axes are correct for old estimator, and adjusted by extremal
index for cluster based estimator, such that approximately the same number of
extremal observations is used for vertically aligned dots.
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Summary

The time change formula can be expressed in terms of
invariance under the RS-transformation (for summable tail
processes).

Furthermore, RS-process relates spectral functions of
max-stable process and the corresponding tail process.

Perhaps a better understanding of cluster behavior can even
lead to improved estimators for multivariate quantities?

Anja Janßen Spectral tail processes of stationary time series 26 / 27



Introduction
The time change formula and the RS process

Connection to max-stable processes
Statistical application

Multivariate clusterwise maxima?
An idea to discuss: Clusterbased estimators

Thank you for your attention!
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