Extremal (in)dependence structures of copulas with multiplicative constructions

Sebastian Engelke (University of Geneva)

Thomas Opitz (INRA, Avignon), Jenny Wadsworth (Lancaster University)

June 19, 2018

Self-similarity, Long-range dependence, and Extremes Casa Matématica Oaxaca, Mexico

《曰》 《聞》 《臣》 《臣》 三臣 …

$$(\mathbf{X}_1, \mathbf{X}_2) = \mathbf{R}(\mathbf{W}_1, \mathbf{W}_2), \qquad R \perp (W_1, W_2)$$

$$(\mathbf{X}_1, \mathbf{X}_2) = \mathbf{R}(\mathbf{W}_1, \mathbf{W}_2), \qquad R \perp (W_1, W_2)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

$$(\mathbf{X}_1, \mathbf{X}_2) = \mathbf{R}(\mathbf{W}_1, \mathbf{W}_2), \qquad R \perp (W_1, W_2)$$

◆□ → ◆□ → ◆三 → ◆三 → ◆□ →

$$(\mathbf{X}_1, \mathbf{X}_2) = \mathbf{R}(\mathbf{W}_1, \mathbf{W}_2), \qquad R \perp (W_1, W_2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$(\mathsf{X}_1,\mathsf{X}_2) = \mathsf{R}(\mathsf{W}_1,\mathsf{W}_2), \qquad R \perp (W_1,W_2)$$

Why is this model important?

- Archimedean/Liouville copulas
- (Scale mixtures of) Gaussian copulas
- Student-t copulas
- Elliptical copulas
- Pareto copulas, includes all extreme value dependence structures

etc.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Tail dependence coefficient
$$\chi_X \in [0, 1]$$

$$\chi_X = \lim_{q \to 1} \mathsf{P}\{F_1(X_1) > q \mid F_2(X_2) > q\}$$

・ロト ・聞ト ・ヨト ・ヨト

æ

Tail dependence coefficient
$$\chi_X \in [0, 1]$$

$$\chi_X = \lim_{q \to 1} \mathsf{P}\{F_1(X_1) > q, F_2(X_2) > q\}/(1-q)$$

・ロト ・聞ト ・ヨト ・ヨト

æ

► χ_X > 0: Asymptotic dependence (Pareto, student-t,...)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Tail dependence coefficient $\chi_X \in [0, 1]$ $\chi_X = \lim_{q \to 1} \mathsf{P}\{F_1(X_1) > q, F_2(X_2) > q\}/(1-q)$

- ► χ_X > 0: Asymptotic dependence (Pareto, student-t,...)
- χ_X = 0: Asymptotic independence (Gaussian copula,...)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

イロト イポト イヨト イヨト

э

Residual tail dependence coefficient $\eta_X \in [0, 1]$

$$\mathsf{P}\{\mathsf{F}_1(X_1) > q, \mathsf{F}_2(X_2) > q\} = \ell(1-q)\mathsf{P}\{\mathsf{F}_1(X_1) > q\}^{1/\eta_X}$$

where ℓ is slowly varying.

Copula

- $\eta_X \in (1/2, 1]$: Positive association.
- $\eta_X \in [0, 1/2)$: Negative association.

Asymp. dep.: $\eta_X = 1$ Independence: $\eta_X = 1/2$ Gaussian: $\eta_X = (1 + \rho_X)/2$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Asymptotic dependence or independence?

Pre-asymptotic tail dependence coefficient $\chi_X(q)={\sf P}\{F_1(X_1)>q,F_2(X_2)>q\}/(1-q)$ for finite levels $q\in(0,1).$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Asymptotic dependence or independence?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Asymptotic dependence or independence?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Extreme Value Theory and Statistics

- Rare events do happen!
- Impact on various risks (health, environment, economy,...)
- Often result of simultaneous events
- Joint exceedance estimates drastically differ between AD and AI models

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 - の Q ()・

$(\mathbf{X}_1, \mathbf{X}_2) = \mathbf{R}(\mathbf{W}_1, \mathbf{W}_2), \qquad R \perp (W_1, W_2)$

In this project, we want to

▶ systematically characterize extremal dependence in (X_1, X_2) , in terms of

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- the tail heaviness of R and (W_1, W_2) ;
- the extremal dependence χ_W and η_W of (W_1, W_2) ;

$(\mathbf{X}_1, \mathbf{X}_2) = \mathbf{R}(\mathbf{W}_1, \mathbf{W}_2), \qquad R \perp (W_1, W_2)$

In this project, we want to

▶ systematically characterize extremal dependence in (X_1, X_2) , in terms of

- the tail heaviness of R and (W₁, W₂);
- the extremal dependence χ_W and η_W of (W₁, W₂);
- compute the dependence coefficients χ_X and η_X ;

$(\mathbf{X}_1, \mathbf{X}_2) = \mathbf{R}(\mathbf{W}_1, \mathbf{W}_2), \qquad R \perp (W_1, W_2)$

In this project, we want to

▶ systematically characterize extremal dependence in (X_1, X_2) , in terms of

- the tail heaviness of R and (W₁, W₂);
- the extremal dependence χ_W and η_W of (W₁, W₂);
- compute the dependence coefficients χ_X and η_X ;
- unify existing theory and models;

$(\mathbf{X}_1, \mathbf{X}_2) = \mathbf{R}(\mathbf{W}_1, \mathbf{W}_2), \qquad R \perp (W_1, W_2)$

In this project, we want to

▶ systematically characterize extremal dependence in (X_1, X_2) , in terms of

- the tail heaviness of R and (W₁, W₂);
- the extremal dependence χ_W and η_W of (W₁, W₂);
- compute the dependence coefficients χ_X and η_X ;
- unify existing theory and models;
- build new statistical models with desirable properties.

For $R \ge 0$: There exists $\xi \in \mathbb{R}$ and a function b(t) > 0 s.t.

$$\lim_{t \to r^*} \mathsf{P}(R > t + r/b(t) \mid R > t) = (1 + \xi r)_+^{-1/\xi}, \qquad r \ge 0.$$

where $r^* = \sup\{r : F_R(r) < 1\}$ is upper endpoint; cf. Embrechts et al. (1997).

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For $R \ge 0$: There exists $\xi \in \mathbb{R}$ and a function b(t) > 0 s.t.

$$\lim_{t \to r^*} \mathsf{P}(R > t + r/b(t) \mid R > t) = (1 + \xi r)_+^{-1/\xi}, \qquad r \ge 0.$$

where $r^* = \sup\{r : F_R(r) < 1\}$ is upper endpoint; cf. Embrechts et al. (1997).

Tail heaviness of R increases with shape ξ :

1. $\xi < 0$: *R* has upper endpoint and is in negative Weibull MDA;

2. $\xi = 0$: *R* light tailed \Rightarrow MDA of Gumbel distribution;

3. $\xi > 0$: *R* regularly varying \Rightarrow MDA of Fréchet distribution.

For $R \ge 0$: There exists $\xi \in \mathbb{R}$ and a function b(t) > 0 s.t.

$$\lim_{t \to r^*} \mathsf{P}(R > t + r/b(t) \mid R > t) = (1 + \xi r)_+^{-1/\xi}, \qquad r \ge 0,$$

where $r^* = \sup\{r : F_R(r) < 1\}$ is upper endpoint; cf. Embrechts et al. (1997).

Tail heaviness of R increases with shape ξ :

1. $\xi < 0$: *R* has upper endpoint and is in negative Weibull MDA;

2. $\xi = 0$: *R* light tailed \Rightarrow MDA of Gumbel distribution;

- 3. $\xi > 0$: *R* regularly varying \Rightarrow MDA of Fréchet distribution.
- 4. $\xi = \infty$: *R* is superheavy-tailed \Rightarrow not in any MDA.

For $R \ge 0$: There exists $\xi \in \mathbb{R}$ and a function b(t) > 0 s.t.

$$\lim_{t \to r^*} \mathsf{P}(R > t + r/b(t) \mid R > t) = (1 + \xi r)_+^{-1/\xi}, \qquad r \ge 0.$$

where $r^* = \sup\{r : F_R(r) < 1\}$ is upper endpoint; cf. Embrechts et al. (1997).

Tail heaviness of R increases with shape ξ :

1. $\xi < 0$: *R* has upper endpoint and is in negative Weibull MDA;

2. $\xi = 0$: *R* light tailed \Rightarrow MDA of Gumbel distribution;

- 3. $\xi > 0$: *R* regularly varying \Rightarrow MDA of Fréchet distribution.
- 4. $\xi = \infty$: *R* is superheavy-tailed \Rightarrow not in any MDA.

For $(W_1, W_2) \in \mathbb{R}^2$: $W_1 \stackrel{d}{=} W_2 \stackrel{d}{=} W \ge 0$ and same range of tail decays as R.

<u>Notation</u>: χ_W and η_W are tail dependence and residual tail dependence coefficient of (W_1, W_2) .

Some intuition: the "Independence Model"

$(\textbf{X}_1,\textbf{X}_2) = \textbf{R} \ (\textbf{W}_1,\textbf{W}_2), \qquad \textit{R} \perp \perp \textit{W}_1 \perp \perp \textit{W}_2$

Simple model: R, W_1 and W_2 independent, i.e., $\chi_W = 0$, $\eta_W = 1/2$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Some intuition: the "Independence Model"

$(\mathsf{X}_1,\mathsf{X}_2) = \mathsf{R}_{\xi}(\mathsf{W}_1,\mathsf{W}_2), \qquad R \perp \!\!\!\perp W_1 \perp \!\!\!\perp W_2$

- Simple model: R_{ξ} , W_1 and W_2 independent, i.e., $\chi_W = 0$, $\eta_W = 1/2$.
- ▶ Let W₁, W₂ ~ Unif[0, 1].
- ▶ Let $R_{\xi} = F_{R_{\varepsilon}}^{-1}(U)$, with $U \sim \text{Unif}[0, 1]$, shape $\xi \in \mathbb{R}$ and

$$F_{R_{\xi}}(r) = 1 - (1 + \xi r)_{+}^{-1/\xi}, \qquad r \geq 0.$$

Tail decays for R and (W_1, W_2)

Angle W	Super-heavy	Reg. varying	Weibull	Neg. Weibull
Radius R				
Super-heavy				
Reg. varying				
Weibull				
Neg. Weibull				

 $Y \in SHT$: exp (λx) P $(\log Y > x) \rightarrow \infty$ as $x \rightarrow \infty$, for any $\lambda > 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 $Y \in SHT: \exp(\lambda x) \mathsf{P}(\log Y > x) \to \infty \text{ as } x \to \infty, \text{ for any } \lambda > 0$

Proposition

1. $R \in SHT$ and $\overline{F}_W(x) \sim c\overline{F}_R(x)$, $c \in [0, \infty)$. Then $\eta_X = 1$ and

$$\chi_X = \frac{1+c\,\chi_W}{1+c}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$Y \in SHT$$
: $\exp(\lambda x) \mathsf{P}(\log Y > x) \to \infty$ as $x \to \infty$, for any $\lambda > 0$

Proposition

- 1. $R \in \text{SHT}$ and $\overline{F}_W(x) \sim c\overline{F}_R(x)$, $c \in [0, \infty)$. Then $\eta_X = 1$ and $\chi_X = \frac{1 + c \chi_W}{1 + c}$.
- 2. $W \in SHT$ and $\overline{F}_R = o(\overline{F}_W)$. Then $\chi_X = \chi_W$. If $\chi_W = 0$ and

$$\overline{F}_R = O(\overline{F}_{\min(W_1, W_2)}), \text{ then } \eta_X = \eta_W;$$

• $\overline{F}_{\min(W_1, W_2)} = o(\overline{F}_R)$, then, if the limit exists,

$$\eta_X = \lim_{x \to \infty} \log \overline{F}_R(x) / \log \overline{F}_W(x)$$

$$Y \in SHT$$
: $\exp(\lambda x) \mathsf{P}(\log Y > x) \to \infty$ as $x \to \infty$, for any $\lambda > 0$

Proposition

- 1. $R \in \text{SHT}$ and $\overline{F}_W(x) \sim c\overline{F}_R(x)$, $c \in [0, \infty)$. Then $\eta_X = 1$ and $\chi_X = \frac{1 + c \chi_W}{1 + c}$.
- 2. $W \in \text{SHT}$ and $\overline{F}_R = o(\overline{F}_W)$. Then $\chi_X = \chi_W$. If $\chi_W = 0$ and

•
$$\overline{F}_R = O(\overline{F}_{\min(W_1, W_2)})$$
, then $\eta_X = \eta_W$;
• $\overline{F}_{\min(W_1, W_2)} = o(\overline{F}_R)$, then, if the limit exists,

$$\eta_X = \lim_{x \to \infty} \log \overline{F}_R(x) / \log \overline{F}_W(x)$$

Example (*R*, *W*₁, *W*₂ independent) $\overline{F}_{\min(W_1, W_2)} = (\overline{F}_W)^2$, $\chi_W = 0$, $\eta_W = 1/2$. 1. $R \in \text{SHT}$: $\chi_X = 1/(1+c)$ 2. $W \in \text{SHT}$, *R* lighter: $\chi_X = 0$ and $\eta_X = 1/2$

The "Independence model"

Angle <i>W</i> Radius <i>R</i>	Super-heavy	Reg. varying	Weibull	Neg. Weibull
	1			
Super-heavy	$\chi_X = \frac{1}{1+c}$	$\chi_X = 1$	$\chi_X = 1$	$\chi_X = 1$
Reg. varying	*			
0,0				
	4			
VVeibull	*			
Neg. Weibull	*			
U				

Table : Values of χ_X and η_X for $(X_1, X_2) = R(W_1, W_2)$ with $W_1, W_2 \stackrel{d}{=} W$ independent. The *'s indicate $\chi_X = \chi_W = 0$ and $\eta_X = \eta_W = 1/2$.

 $Y \in \mathsf{RV}_{-lpha}$: $\mathsf{P}(Y > x) \sim \ell(x) x^{-lpha}$ with lpha > 0, ℓ slowly varying

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$Y \in \mathsf{RV}_{-\alpha}$$
: $\mathsf{P}(Y > x) \sim \ell(x)x^{-\alpha}$ with $\alpha > 0$, ℓ slowly varying

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition

1.
$$R \in RV_{-\alpha_R}$$
, $W \in RV_{-\alpha_W}$ with $\alpha_W \in (\alpha_R, \infty]$, then

$$\chi_X = E\left[\min\left\{\frac{W_1^{\alpha_R}}{E(W_1^{\alpha_R})}, \frac{W_2^{\alpha_R}}{E(W_2^{\alpha_R})}\right\}\right].$$

$$Y \in \mathsf{RV}_{-\alpha}$$
: $\mathsf{P}(Y > x) \sim \ell(x)x^{-\alpha}$ with $\alpha > 0$, ℓ slowly varying

Proposition

1.
$$R \in RV_{-\alpha_R}$$
, $W \in RV_{-\alpha_W}$ with $\alpha_W \in (\alpha_R, \infty]$, then

$$\chi_X = E\left[\min\left\{\frac{W_1^{\alpha_R}}{E(W_1^{\alpha_R})}, \frac{W_2^{\alpha_R}}{E(W_2^{\alpha_R})}\right\}\right].$$

2. $W \in RV_{-\alpha_W}$, $R \in RV_{-\alpha_R}$ with $\alpha_R \in (\alpha_W, \infty]$, then $\chi_X = \chi_W$ and

$$\eta_{X} = \begin{cases} \alpha_{W}/\alpha_{R}, & \text{if } \alpha_{R} < \alpha_{W}/\eta_{W}, \\ \eta_{W}, & \text{if } \alpha_{R} > \alpha_{W}/\eta_{W} \text{ or } \alpha_{R} = +\infty. \end{cases}$$

$$Y \in \mathsf{RV}_{-\alpha}$$
: $\mathsf{P}(Y > x) \sim \ell(x)x^{-\alpha}$ with $\alpha > 0$, ℓ slowly varying

Proposition

1.
$$R \in RV_{-\alpha_R}$$
, $W \in RV_{-\alpha_W}$ with $\alpha_W \in (\alpha_R, \infty]$, then

$$\chi_X = E\left[\min\left\{\frac{W_1^{\alpha_R}}{E(W_1^{\alpha_R})}, \frac{W_2^{\alpha_R}}{E(W_2^{\alpha_R})}\right\}\right].$$

2. $W \in RV_{-\alpha_W}$, $R \in RV_{-\alpha_R}$ with $\alpha_R \in (\alpha_W, \infty]$, then $\chi_X = \chi_W$ and

$$\eta_{X} = \begin{cases} \alpha_{W}/\alpha_{R}, & \text{if } \alpha_{R} < \alpha_{W}/\eta_{W}, \\ \eta_{W}, & \text{if } \alpha_{R} > \alpha_{W}/\eta_{W} \text{ or } \alpha_{R} = +\infty. \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

3. $\alpha_W = \alpha_R$: More involved.

$$Y \in \mathsf{RV}_{-\alpha}$$
: $\mathsf{P}(Y > x) \sim \ell(x)x^{-\alpha}$ with $\alpha > 0$, ℓ slowly varying

Proposition

1.
$$R \in RV_{-\alpha_R}$$
, $W \in RV_{-\alpha_W}$ with $\alpha_W \in (\alpha_R, \infty]$, then

$$\chi_X = E\left[\min\left\{\frac{W_1^{\alpha_R}}{E(W_1^{\alpha_R})}, \frac{W_2^{\alpha_R}}{E(W_2^{\alpha_R})}\right\}\right].$$

2. $W \in RV_{-\alpha_W}$, $R \in RV_{-\alpha_R}$ with $\alpha_R \in (\alpha_W, \infty]$, then $\chi_X = \chi_W$ and

$$\eta_{X} = \begin{cases} \alpha_{W}/\alpha_{R}, & \text{if } \alpha_{R} < \alpha_{W}/\eta_{W}, \\ \eta_{W}, & \text{if } \alpha_{R} > \alpha_{W}/\eta_{W} \text{ or } \alpha_{R} = +\infty \end{cases}$$

3. $\alpha_W = \alpha_R$: More involved.

Example

- 1. All Pareto copulas, t-distributions, ...
- 2. Asymptotically independent model in Huser & Wadsworth (2018).

The "Independence model"

Angle <i>W</i> Radius <i>R</i>	Super-heavy	Reg. varying	Weibull	Neg. Weibull
Super-heavy	$\chi_X = \frac{1}{1+c}$	$\chi_X = 1$	$\chi_X = 1$	$\chi_X = 1$
Reg. varying	*	$\alpha_R < \alpha_W : \chi_X > 0$	$\chi_X > 0$	$\chi_X > 0$
		$\alpha_W < \alpha_R < 2\alpha_W$:		
		$\eta_X = \alpha_W / \alpha_R$		
		$\alpha_R > 2\alpha_W$: $\eta_X = 1/2$		
Weibull	*	*		
Neg. Weibull	*	*		

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Table : Values of χ_X and η_X for $(X_1, X_2) = R(W_1, W_2)$ with $W_1, W_2 \stackrel{d}{=} W$ independent. The *'s indicate $\chi_X = \chi_W = 0$ and $\eta_X = \eta_W = 1/2$.

$$Y \in W(\theta)$$
: $P(Y > x) \sim cx^{-\gamma} \exp(-\alpha x^{\beta})$, with $\theta = (c, \gamma, \alpha, \beta)$

$$Y \in W(\theta)$$
: $P(Y > x) \sim cx^{-\gamma} \exp(-\alpha x^{\beta})$, with $\theta = (c, \gamma, \alpha, \beta)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition

Let $R \in W(\theta_R)$, $W \in W(\theta_W)$ and $\tilde{W} = \min(W_1, W_2) \in W(\theta_{\tilde{W}})$.

$$Y \in W(\theta)$$
: $P(Y > x) \sim cx^{-\gamma} \exp(-\alpha x^{\beta})$, with $\theta = (c, \gamma, \alpha, \beta)$.

Proposition

Let $R \in W(\theta_R)$, $W \in W(\theta_W)$ and $\tilde{W} = \min(W_1, W_2) \in W(\theta_{\tilde{W}})$.

1. $\beta_{\tilde{W}} = \beta_W$, $\alpha_{\tilde{W}} = \alpha_W$, $\gamma_{\tilde{W}} = \gamma_W$. Then $\chi_X = \chi_W = c_{\tilde{W}}/c_W$.

- 2. $\beta_{\tilde{W}} = \beta_W$, $\alpha_{\tilde{W}} = \alpha_W$, $\gamma_{\tilde{W}} < \gamma_W$. Then $\chi_X = \chi_W = 0$ and $\eta_X = \eta_W = 1$.
- 3. $\beta_{\tilde{W}} = \beta_W$, $\alpha_{\tilde{W}} > \alpha_W$. Then $\chi_X = \chi_W = 0$ and

$$\eta_X = \eta_W^{\beta_R/(\beta_R + \beta_W)} = \left(\frac{\alpha_W}{\alpha_{\tilde{W}}}\right)^{\beta_R/(\beta_R + \beta_W)}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

4. $\beta_{\tilde{W}} > \beta_{W}$. Then $\chi_{X} = \chi_{W} = 0$. $\eta_{X} = \eta_{W} = 0$.

$$Y \in W(\theta)$$
: $P(Y > x) \sim cx^{-\gamma} \exp(-\alpha x^{\beta})$, with $\theta = (c, \gamma, \alpha, \beta)$.

Proposition

Let $R \in W(\theta_R)$, $W \in W(\theta_W)$ and $\tilde{W} = \min(W_1, W_2) \in W(\theta_{\tilde{W}})$.

1. $\beta_{\tilde{W}} = \beta_W$, $\alpha_{\tilde{W}} = \alpha_W$, $\gamma_{\tilde{W}} = \gamma_W$. Then $\chi_X = \chi_W = c_{\tilde{W}}/c_W$.

- 2. $\beta_{\tilde{W}} = \beta_W$, $\alpha_{\tilde{W}} = \alpha_W$, $\gamma_{\tilde{W}} < \gamma_W$. Then $\chi_X = \chi_W = 0$ and $\eta_X = \eta_W = 1$.
- 3. $\beta_{\tilde{W}} = \beta_W$, $\alpha_{\tilde{W}} > \alpha_W$. Then $\chi_X = \chi_W = 0$ and

$$\eta_X = \eta_W^{\beta_R/(\beta_R + \beta_W)} = \left(\frac{\alpha_W}{\alpha_{\tilde{W}}}\right)^{\beta_R/(\beta_R + \beta_W)}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

4.
$$\beta_{\tilde{W}} > \beta_{W}$$
. Then $\chi_{X} = \chi_{W} = 0$. $\eta_{X} = \eta_{W} = 0$.

Example

- 3. Independence model: $\alpha_{\tilde{W}} = 2\alpha_W$ and $\eta_X = 2^{-\beta_R/(\beta_R + \beta_W)}$.
- 3. Gaussian scale mixtures: $\eta_X = \{(1 + \rho_W)/2\}^{\beta_R/(\beta_R+2)}$.

The "Independence model"

Angle W	Super-heavy	Reg. varying	Weibull	Neg. Weibull
Radius R				
Super-heavy	$\chi_X = \frac{1}{1+c}$	$\chi_X = 1$	$\chi_X = 1$	$\chi_X = 1$
Reg. varying	*	$\alpha_R < \alpha_W : \chi_X > 0$	$\chi_X > 0$	$\chi_X > 0$
		$\alpha_W < \alpha_R < 2\alpha_W$:		
		$\eta_X = \alpha_W / \alpha_R$		
		$\alpha_R > 2\alpha_W$: $\eta_X = 1/2$		
Weibull	*	*	$\eta_X = 2^{-\beta_R/(\beta_R + \beta_W)}$	
Neg. Weibull	*	*		

Table : Values of χ_X and η_X for $(X_1, X_2) = R(W_1, W_2)$ with $W_1, W_2 \stackrel{d}{=} W$ independent. The *'s indicate $\chi_X = \chi_W = 0$ and $\eta_X = \eta_W = 1/2$.

Negative Weibull domain of attraction ($\xi < 0$)

 $\textbf{\textit{Y}} \in \mathrm{NW}(\alpha) \text{: } \textbf{\textit{P}}(\textbf{\textit{Y}} > 1 - \textbf{\textit{s}}) \sim \ell(1/\textbf{\textit{s}})\textbf{\textit{s}}^{\alpha}, \quad \textbf{\textit{s}} \rightarrow \textbf{\textit{0}}, \, \ell \in \mathsf{RV}_{0}, \alpha > \textbf{\textit{0}}$

Negative Weibull domain of attraction ($\xi < 0$)

$$Y \in \mathrm{NW}(lpha)$$
: $\mathsf{P}(Y > 1 - s) \sim \ell(1/s)s^{lpha}, \quad s \to 0, \ \ell \in \mathsf{RV}_0, \ lpha > 0$

Proposition

- **1.** $R \in W(\theta_R)$, $W \in NW(\alpha_W)$, $\tilde{W} \in NW(\alpha_{\tilde{W}})$. Then $\chi_X = \chi_W$ and $\eta_X = 1$.
- 2. $R \in NW(\alpha_R)$, $W \in W(\theta_W)$, $\tilde{W} \in NW(\alpha_{\tilde{W}})$. Then $\chi_X = \chi_W$ and $\eta_X = \eta_W$.
- 3. $R \in NW(\alpha_R)$, $W \in NW(\alpha_W)$, $\tilde{W} \in NW(\alpha_{\tilde{W}})$. If $\alpha_{\tilde{W}} = \alpha_W$ then $\chi_X = \chi_W$ and $\eta_X = 1$. If $\alpha_{\tilde{W}} > \alpha_W$ then $\chi_X = \chi_W = 0$ and

$$\eta_X = \frac{\alpha_W + \alpha_R}{\alpha_{\tilde{W}} + \alpha_R} > \frac{\alpha_W}{\alpha_{\tilde{W}}} = \eta_W.$$

$$Y \in \mathrm{NW}(lpha)$$
: $\mathsf{P}(Y > 1 - s) \sim \ell(1/s)s^{lpha}, \quad s \to 0, \ \ell \in \mathsf{RV}_0, \ lpha > 0$

Proposition

- **1**. $R \in W(\theta_R)$, $W \in NW(\alpha_W)$, $\tilde{W} \in NW(\alpha_{\tilde{W}})$. Then $\chi_X = \chi_W$ and $\eta_X = 1$.
- 2. $R \in NW(\alpha_R)$, $W \in W(\theta_W)$, $\tilde{W} \in NW(\alpha_{\tilde{W}})$. Then $\chi_X = \chi_W$ and $\eta_X = \eta_W$.
- 3. $R \in NW(\alpha_R)$, $W \in NW(\alpha_W)$, $\tilde{W} \in NW(\alpha_{\tilde{W}})$. If $\alpha_{\tilde{W}} = \alpha_W$ then $\chi_X = \chi_W$ and $\eta_X = 1$. If $\alpha_{\tilde{W}} > \alpha_W$ then $\chi_X = \chi_W = 0$ and

$$\eta_X = \frac{\alpha_W + \alpha_R}{\alpha_{\tilde{W}} + \alpha_R} > \frac{\alpha_W}{\alpha_{\tilde{W}}} = \eta_W.$$

Example

- 1. Support of (W_1, W_2) on sphere: model of Wadsworth et al. (2017).
- 3. Independence model: $\eta_X = \frac{\alpha_W + \alpha_R}{2\alpha_W + \alpha_R} \in (1/2, 1).$

The "Independence model"

Angle W	Super-heavy	Reg. varying	Weibull	Neg. Weibull
Radius R				
Super-heavy	$\chi_X = \frac{1}{1+c}$	$\chi_X = 1$	$\chi_X = 1$	$\chi_X = 1$
Reg. varying	*	$\alpha_R < \alpha_W : \chi_X > 0$	$\chi_X > 0$	$\chi_X > 0$
		$\alpha_W < \alpha_R < 2\alpha_W$:		
		$\eta_X = \alpha_W / \alpha_R$		
		$\alpha_R > 2\alpha_W$: $\eta_X = 1/2$		
Weibull	*	*	$\eta_X = 2^{-\beta_R/(\beta_R + \beta_W)}$	$\chi_X = 0$
				$\eta_X = 1$
Neg. Weibull	*	*	*	$\eta_X = \frac{\alpha_W + \alpha_R}{2\alpha_W + \alpha_R}$

Table : Values of χ_X and η_X for $(X_1, X_2) = R(W_1, W_2)$ with $W_1, W_2 \stackrel{d}{=} W$ independent. The *'s indicate $\chi_X = \chi_W = 0$ and $\eta_X = \eta_W = 1/2$.

The "Independence model"

Angle W	Super-heavy	Reg. varying	Weibull	Neg. Weibull
Radius R				
Super-heavy	$\chi_X = \frac{1}{1+c}$	$\chi_X = 1$	$\chi_X = 1$	$\chi_X = 1$
Reg. varying	*	$\alpha_R < \alpha_W : \chi_X > 0$	$\chi_X > 0$	$\chi_X > 0$
		$\alpha_W < \alpha_R < 2\alpha_W$:		
		$\eta_X = \alpha_W / \alpha_R$		
		$\alpha_R > 2\alpha_W$: $\eta_X = 1/2$		
Weibull	*	*	$\eta_X = 2^{-\beta_R/(\beta_R + \beta_W)}$	$\chi_X = 0$
				$\eta_X = 1$
Neg. Weibull	*	*	*	$\eta_X = \frac{\alpha_W + \alpha_R}{2\alpha_W + \alpha_R}$

Table : Values of χ_X and η_X for $(X_1, X_2) = R(W_1, W_2)$ with $W_1, W_2 \stackrel{d}{=} W$ independent. The *'s indicate $\chi_X = \chi_W = 0$ and $\eta_X = \eta_W = 1/2$.

How do we use this in a statistical model?

Let $\{C_{\xi,\alpha} : (\xi, \alpha) \in \mathbb{R} \times \mathbb{R}_+\}$ be the family of copulas corresponding to: $(X_1, X_2) = R(W_1, W_2), \qquad R \perp W_1 \perp W_2,$ $\triangleright P(R \le r) = 1 - (1 + \xi r)_+^{-1/\xi}, \qquad r \ge 0;$ $\triangleright W_1, W_2 \sim \text{Beta}(\alpha, \alpha), \text{ independent.}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $\{C_{\xi,\alpha} : (\xi, \alpha) \in \mathbb{R} \times \mathbb{R}_+\}$ be the family of copulas corresponding to: $(X_1, X_2) = R(W_1, W_2), \qquad R \perp \!\!\!\perp W_1 \perp \!\!\!\perp W_2,$ $\blacktriangleright P(R \le r) = 1 - (1 + \xi r)_+^{-1/\xi}, \qquad r \ge 0;$ $\blacktriangleright W_1, W_2 \sim \text{Beta}(\alpha, \alpha), \text{ independent.}$

٠

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Properties:

1.
$$\xi < 0$$
: Al $(\chi_X = 0)$ with $\eta_X = \frac{\alpha + \xi^{-1}}{2\alpha + \xi^{-1}}.$

2.
$$\xi = 0$$
: AI ($\chi_X = 0$) with $\eta_X = 1$.
3. $\xi > 0$: AD with
 $\chi_X = \mathsf{E}\left[\min\left\{\frac{W_1^{1/\xi}}{\mathsf{E}(W_1^{1/\xi})}, \frac{W_2^{1/\xi}}{\mathsf{E}(W_2^{1/\xi})}\right\}\right]$

Let $\{C_{\xi,\alpha} : (\xi, \alpha) \in \mathbb{R} \times \mathbb{R}_+\}$ be the family of copulas corresponding to: $(X_1, X_2) = R(W_1, W_2), \qquad R \perp \!\!\!\perp W_1 \perp \!\!\!\perp W_2,$ • $P(R \le r) = 1 - (1 + \xi r)_{+}^{-1/\xi}, \quad r \ge 0;$ • $W_1, W_2 \sim \text{Beta}(\alpha, \alpha)$, independent.

Properties:

1.
$$\xi < 0$$
: Al $(\chi_X = 0)$ with $\eta_X = \frac{\alpha + \xi^{-1}}{2\alpha + \xi^{-1}}.$

2.
$$\xi = 0$$
: AI ($\chi_X = 0$) with $\eta_X = 1$.
3. $\xi > 0$: AD with
 $\chi_X = \mathsf{E}\left[\min\left\{\frac{W_1^{1/\xi}}{\mathsf{E}(W_1^{1/\xi})}, \frac{W_2^{1/\xi}}{\mathsf{E}(W_2^{1/\xi})}\right\}\right]$

- Densities for ML estimation readily available.
- Marginal normalization requires one-dim. integration.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Conclusion

We unify theory and cover/extend existing examples:

Archimedean/Liouville copulas:

Larsson & Nešlehová (2011), Belzile & Nešlehová (2017)

- ▶ (Scale mixtures of) Gaussian copulas: Sibuya (1960), Huser et al. (2017)
- Student-t copulas
- Pareto copulas
- Elliptical copulas
- ▶ Recent AI models Wadsworth et al. (2017), Huser & Wadsworth (2018)

Nikoloulopoulos et al. (2012)

Rootzén et al. (2006)

Conclusion

We unify theory and cover/extend existing examples:

Archimedean/Liouville copulas:

Larsson & Nešlehová (2011), Belzile & Nešlehová (2017)

- ▶ (Scale mixtures of) Gaussian copulas: Sibuya (1960), Huser et al. (2017)
- Student-t copulas
- Pareto copulas
- Elliptical copulas
- Recent AI models Wadsworth et al. (2017), Huser & Wadsworth (2018)

We build new models bridging between AD and AI:

- "Independence model"
- "Spiky norm model"
- etc.

Nikoloulopoulos et al. (2012)

Rootzén et al. (2006)

Conclusion

We unify theory and cover/extend existing examples:

Archimedean/Liouville copulas:

Larsson & Nešlehová (2011), Belzile & Nešlehová (2017)

- ▶ (Scale mixtures of) Gaussian copulas: Sibuya (1960), Huser et al. (2017)
- Student-t copulas
- Pareto copulas
- Elliptical copulas
- Recent AI models Wadsworth et al. (2017), Huser & Wadsworth (2018)

We build new models bridging between AD and AI:

- "Independence model"
- "Spiky norm model"
- etc.

Thank you!

Nikoloulopoulos et al. (2012)

Rootzén et al. (2006)

References

P. Embrechts, C. Klüppelberg, and T. Mikosch.

Modelling Extremal Events: for Insurance and Finance. Springer, London, 1997.

S. Engelke, T. Opitz, and J. Wadsworth.

Extremal dependence of random scale constructions. Available from http://arxiv.org/abs/1803.04221, 2018.

R. Huser, T. Opitz, and E. Thibaud.

Bridging asymptotic independence and dependence in spatial extremes using gaussian scale mixtures. Spatial Statistics, 21:166 – 186, 2017.

R. Huser and J. Wadsworth.

Modeling spatial processes with unknown extremal dependence class. J. Amer. Statist. Assoc., 2018. to appear.

M. Larsson and J. Nešlehová.

Extremal behavior of archimedean copulas. Advances in Applied Probability, 43(1):195–216, 2011.

A. K. Nikoloulopoulos, H. Joe, and H. Li.

Extreme value properties of multivariate t copulas. *Extremes*, 12(2):129–148, 2009.

H. Rootzén and N. Tajvidi.

Multivariate generalized Pareto distributions. Bernoulli, 12:917–930, 2006.

M. Sibuya.

Bivariate extreme statistics. I. Ann. Inst. Statist. Math. Tokyo, 11:195-210, 1960.

J.L. Wadsworth, J.A. Tawn, A.C. Davison, and D.M. Elton.

Modelling across extremal dependence classes.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(1):149–175, 2017.

э