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Random scale constructions

(X1,X2) = R(W1,W2), R ⊥⊥ (W1,W2)

Why is this model important?

I Archimedean/Liouville copulas

I (Scale mixtures of) Gaussian
copulas

I Student-t copulas

I Elliptical copulas

I Pareto copulas, includes all
extreme value dependence
structures

I etc.
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Extremal properties: asymptotic dependence

Tail dependence coefficient χX ∈ [0, 1]

χX = lim
q→1

P{F1(X1) > q | F2(X2) > q}
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I χX > 0: Asymptotic dependence
(Pareto, student-t,...)

I χX = 0: Asymptotic independence
(Gaussian copula,...)



Extremal properties: asymptotic dependence

Tail dependence coefficient χX ∈ [0, 1]

χX = lim
q→1

P{F1(X1) > q,F2(X2) > q}/(1− q)
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I χX > 0: Asymptotic dependence
(Pareto, student-t,...)

I χX = 0: Asymptotic independence
(Gaussian copula,...)



Extremal properties: asymptotic dependence

Tail dependence coefficient χX ∈ [0, 1]

χX = lim
q→1

P{F1(X1) > q,F2(X2) > q}/(1− q)
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I χX > 0: Asymptotic dependence
(Pareto, student-t,...)

I χX = 0: Asymptotic independence
(Gaussian copula,...)



Extremal properties: asymptotic dependence

Tail dependence coefficient χX ∈ [0, 1]

χX = lim
q→1

P{F1(X1) > q,F2(X2) > q}/(1− q)
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I χX > 0: Asymptotic dependence
(Pareto, student-t,...)

I χX = 0: Asymptotic independence
(Gaussian copula,...)



Extremal properties: asymptotic independence

Residual tail dependence coefficient ηX ∈ [0, 1]

P{F1(X1) > q,F2(X2) > q} = `(1− q)P{F1(X1) > q}1/ηX

where ` is slowly varying.
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I ηX ∈ (1/2, 1]: Positive association.

I ηX ∈ [0, 1/2): Negative association.

Asymp. dep.: ηX = 1
Independence: ηX = 1/2
Gaussian: ηX = (1 + ρX )/2



Extremal properties: asymptotic independence

Residual tail dependence coefficient ηX ∈ [0, 1]

P{F1(X1) > q,F2(X2) > q} = `(1− q)P{F1(X1) > q}1/ηX

where ` is slowly varying.
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I ηX ∈ (1/2, 1]: Positive association.

I ηX ∈ [0, 1/2): Negative association.

Asymp. dep.: ηX = 1
Independence: ηX = 1/2
Gaussian: ηX = (1 + ρX )/2



Asymptotic dependence or independence?

Pre-asymptotic tail dependence coefficient

χX (q) = P{F1(X1) > q,F2(X2) > q}/(1− q)

for finite levels q ∈ (0, 1).
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Asymptotic dependence or independence?

Pre-asymptotic tail dependence coefficient

χX (q) = P{F1(X1) > q,F2(X2) > q}/(1− q)

for finite levels q ∈ (0, 1).
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Asymptotic dependence or independence?

Pre-asymptotic tail dependence coefficient

χX (q) = P{F1(X1) > q,F2(X2) > q}/(1− q)

for finite levels q ∈ (0, 1).
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Extreme Value Theory and Statistics

I Rare events do happen!

I Impact on various risks (health,
environment, economy,...)

I Often result of simultaneous events

I Joint exceedance estimates drastically
differ between AD and AI models
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The goals

(X1,X2) = R(W1,W2), R ⊥⊥ (W1,W2)

In this project, we want to
I systematically characterize extremal dependence in (X1,X2), in terms of

I the tail heaviness of R and (W1,W2);
I the extremal dependence χW and ηW of (W1,W2);

I compute the dependence coefficients χX and ηX ;

I unify existing theory and models;

I build new statistical models with desirable properties.
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Main assumptions on R and (W1,W2)

For R ≥ 0: There exists ξ ∈ R and a function b(t) > 0 s.t.

lim
t→r∗

P(R > t + r/b(t) | R > t) = (1 + ξr)
−1/ξ
+ , r ≥ 0,

where r∗ = sup{r : FR(r) < 1} is upper endpoint; cf. Embrechts et al. (1997).

Tail heaviness of R increases with shape ξ:

1. ξ < 0: R has upper endpoint and is in negative Weibull MDA;

2. ξ = 0: R light tailed ⇒ MDA of Gumbel distribution;

3. ξ > 0: R regularly varying ⇒ MDA of Fréchet distribution.

4. ξ =∞: R is superheavy-tailed ⇒ not in any MDA.

For (W1,W2) ∈ R2: W1
d
= W2

d
= W ≥ 0 and same range of tail decays as R.

Notation: χW and ηW are tail dependence and residual tail dependence
coefficient of (W1,W2).
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Some intuition: the “Independence Model”

(X1,X2) = R (W1,W2), R ⊥⊥ W1 ⊥⊥ W2

I Simple model: R, W1 and W2 independent, i.e., χW = 0, ηW = 1/2.

I Let W1,W2 ∼ Unif[0, 1].

I Let Rξ = F−1
Rξ

(U), with U ∼ Unif[0, 1], shape ξ ∈ R and

FRξ (r) = 1− (1 + ξr)
−1/ξ
+ , r ≥ 0.
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Tail decays for R and (W1,W2)

Angle W Super-heavy Reg. varying Weibull Neg. Weibull
Radius R
Super-heavy

Reg. varying

Weibull

Neg. Weibull



Superheavy-tails (ξ = ∞)

Y ∈ SHT: exp(λx)P(logY > x)→∞ as x →∞, for any λ > 0

Proposition

1. R ∈ SHT and FW (x) ∼ cFR(x), c ∈ [0,∞). Then ηX = 1 and

χX =
1 + c χW

1 + c
.

2. W ∈ SHT and FR = o(FW ). Then χX = χW . If χW = 0 and
I FR = O(Fmin(W1,W2)), then ηX = ηW ;
I Fmin(W1,W2) = o(FR), then, if the limit exists,

ηX = lim
x→∞

log FR(x)/log FW (x)

Example (R, W1, W2 independent)

Fmin(W1,W2) = (FW )2, χW = 0, ηW = 1/2.
1. R ∈ SHT: χX = 1/(1 + c)
2. W ∈ SHT, R lighter: χX = 0 and ηX = 1/2
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The “Independence model”

Angle W Super-heavy Reg. varying Weibull Neg. Weibull
Radius R

Super-heavy χX =
1

1 + c
χX = 1 χX = 1 χX = 1

Reg. varying *

Weibull *

Neg. Weibull *

Table : Values of χX and ηX for (X1,X2) = R(W1,W2) with W1,W2
d
= W

independent. The *’s indicate χX = χW = 0 and ηX = ηW = 1/2.



Regularly varying tails (ξ > 0)

Y ∈ RV−α: P(Y > x) ∼ `(x)x−α with α > 0, ` slowly varying

Proposition

1. R ∈ RV−αR , W ∈ RV−αW with αW ∈ (αR ,∞], then

χX = E

[
min

{
W αR

1

E(W αR
1 )

,
W αR

2

E(W αR
2 )

}]
.

2. W ∈ RV−αW , R ∈ RV−αR with αR ∈ (αW ,∞], then χX = χW and

ηX =

{
αW /αR , if αR < αW /ηW ,

ηW , if αR > αW /ηW or αR = +∞.

3. αW = αR : More involved.

Example

1. All Pareto copulas, t-distributions, ...
2. Asymptotically independent model in Huser & Wadsworth (2018).
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The “Independence model”

Angle W Super-heavy Reg. varying Weibull Neg. Weibull
Radius R

Super-heavy χX =
1

1 + c
χX = 1 χX = 1 χX = 1

Reg. varying * αR < αW : χX > 0 χX > 0 χX > 0
αW < αR < 2αW :

ηX = αW /αR

αR > 2αW : ηX = 1/2
Weibull * *

Neg. Weibull * *

Table : Values of χX and ηX for (X1,X2) = R(W1,W2) with W1,W2
d
= W

independent. The *’s indicate χX = χW = 0 and ηX = ηW = 1/2.



Weibull-type tails (ξ = 0)

Y ∈W(θ): P(Y > x) ∼ cx−γ exp(−αxβ), with θ = (c, γ, α, β).

Proposition

Let R ∈W(θR), W ∈W(θW ) and W̃ = min(W1,W2) ∈W(θW̃ ).

1. βW̃ = βW , αW̃ = αW , γW̃ = γW . Then χX = χW = cW̃ /cW .

2. βW̃ = βW , αW̃ = αW , γW̃ < γW . Then χX = χW = 0 and ηX = ηW = 1.

3. βW̃ = βW , αW̃ > αW . Then χX = χW = 0 and

ηX = η
βR/(βR+βW )
W =

(
αW

αW̃

)βR/(βR+βW )

.

4. βW̃ > βW . Then χX = χW = 0. ηX = ηW = 0.

Example

3. Independence model: αW̃ = 2αW and ηX = 2−βR/(βR+βW ).
3. Gaussian scale mixtures: ηX = {(1 + ρW )/2}βR/(βR+2).
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The “Independence model”

Angle W Super-heavy Reg. varying Weibull Neg. Weibull
Radius R

Super-heavy χX =
1

1 + c
χX = 1 χX = 1 χX = 1

Reg. varying * αR < αW : χX > 0 χX > 0 χX > 0
αW < αR < 2αW :

ηX = αW /αR

αR > 2αW : ηX = 1/2
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Neg. Weibull * *

Table : Values of χX and ηX for (X1,X2) = R(W1,W2) with W1,W2
d
= W

independent. The *’s indicate χX = χW = 0 and ηX = ηW = 1/2.



Negative Weibull domain of attraction (ξ < 0)

Y ∈ NW(α): P(Y > 1− s) ∼ `(1/s)sα, s → 0, ` ∈ RV0, α > 0

Proposition

1. R ∈W(θR), W ∈ NW(αW ), W̃ ∈ NW(αW̃ ). Then χX = χW and ηX = 1.

2. R ∈ NW(αR), W ∈W(θW ), W̃ ∈ NW(αW̃ ). Then χX = χW and
ηX = ηW .

3. R ∈ NW(αR), W ∈ NW(αW ), W̃ ∈ NW(αW̃ ). If αW̃ = αW then
χX = χW and ηX = 1. If αW̃ > αW then χX = χW = 0 and

ηX =
αW + αR

αW̃ + αR
>
αW

αW̃

= ηW .

Example

1. Support of (W1,W2) on sphere: model of Wadsworth et al. (2017).
3. Independence model: ηX = αW +αR

2αW +αR
∈ (1/2, 1).
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The “Independence model”
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Radius R

Super-heavy χX =
1

1 + c
χX = 1 χX = 1 χX = 1

Reg. varying * αR < αW : χX > 0 χX > 0 χX > 0
αW < αR < 2αW :

ηX = αW /αR

αR > 2αW : ηX = 1/2

Weibull * * ηX = 2−βR/(βR+βW ) χX = 0
ηX = 1

Neg. Weibull * * * ηX =
αW + αR

2αW + αR

Table : Values of χX and ηX for (X1,X2) = R(W1,W2) with W1,W2
d
= W

independent. The *’s indicate χX = χW = 0 and ηX = ηW = 1/2.

How do we use this in a statistical model?
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Parametric model: Bridging between AD and AI

Let {Cξ,α : (ξ, α) ∈ R×R+} be the family of copulas corresponding to:

(X1,X2) = R(W1,W2), R ⊥⊥W1 ⊥⊥W2,

I P(R ≤ r) = 1− (1 + ξr)
−1/ξ
+ , r ≥ 0;

I W1,W2 ∼ Beta(α, α), independent.

Properties:

1. ξ < 0: AI (χX = 0) with

ηX =
α + ξ−1

2α + ξ−1
.

2. ξ = 0: AI (χX = 0) with ηX = 1.

3. ξ > 0: AD with

χX = E

[
min

{
W

1/ξ
1

E(W
1/ξ
1 )

,
W

1/ξ
2

E(W
1/ξ
2 )

}]
.

Estimation:

I Densities for ML estimation readily available.

I Marginal normalization requires one-dim. integration.
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Parametric model: Bridging between AD and AI

Estimates: ξ̂ = −1.18 and α̂ = 0.85

I Asymptotically independent model (blue curve in plot)
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Conclusion

We unify theory and cover/extend existing examples:

I Archimedean/Liouville copulas:
Larsson & Nešlehová (2011), Belzile & Nešlehová (2017)

I (Scale mixtures of) Gaussian copulas: Sibuya (1960), Huser et al. (2017)

I Student-t copulas Nikoloulopoulos et al. (2012)

I Pareto copulas Rootzén et al. (2006)

I Elliptical copulas

I Recent AI models Wadsworth et al. (2017), Huser & Wadsworth (2018)

We build new models bridging between AD and AI:

I “Independence model”

I “Spiky norm model”

I etc.

Thank you!
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I (Scale mixtures of) Gaussian copulas: Sibuya (1960), Huser et al. (2017)

I Student-t copulas Nikoloulopoulos et al. (2012)

I Pareto copulas Rootzén et al. (2006)

I Elliptical copulas

I Recent AI models Wadsworth et al. (2017), Huser & Wadsworth (2018)

We build new models bridging between AD and AI:

I “Independence model”

I “Spiky norm model”

I etc.

Thank you!



References
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