# Extremal (in)dependence structures of copulas WITH MULTIPLICATIVE CONSTRUCTIONS 

Sebastian Engelke (University of Geneva)
Thomas Opitz (INRA, Avignon), Jenny Wadsworth (Lancaster University)
June 19, 2018
Self-Similarity, Long-range dependence, and Extremes Casa Matématica Oaxaca, Mexico

## Random scale constructions

$$
\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)=\mathbf{R}\left(\mathbf{W}_{1}, \mathbf{W}_{2}\right), \quad R \Perp\left(W_{1}, W_{2}\right)
$$

## Random scale constructions

## $\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)=\mathbf{R}\left(\mathbf{W}_{1}, \mathbf{W}_{2}\right), \quad R \Perp\left(W_{1}, W_{2}\right)$



## Random scale constructions

## $\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)=\mathbf{R}\left(\mathbf{W}_{1}, \mathbf{W}_{2}\right), \quad R \Perp\left(W_{1}, W_{2}\right)$

Random scale


## Random scale constructions

## $\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)=\mathbf{R}\left(\mathbf{W}_{1}, \mathbf{W}_{2}\right), \quad R \Perp\left(W_{1}, W_{2}\right)$



## Random scale constructions

$$
\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)=\mathbf{R}\left(\mathbf{W}_{1}, \mathbf{W}_{2}\right), \quad R \Perp\left(W_{1}, W_{2}\right)
$$

Why is this model important?

- Archimedean/Liouville copulas
- (Scale mixtures of) Gaussian copulas
- Student- $t$ copulas
- Elliptical copulas
- Pareto copulas, includes all extreme value dependence structures
- etc.

Copula


Extremal properties: asymptotic dependence

Tail dependence coefficient $\chi_{x} \in[0,1]$

$$
\chi x=\lim _{q \rightarrow 1} P\left\{F_{1}\left(X_{1}\right)>q \mid F_{2}\left(X_{2}\right)>q\right\}
$$



Extremal properties: asymptotic dependence

Tail dependence coefficient $\chi x \in[0,1]$

$$
\chi x=\lim _{q \rightarrow 1} P\left\{F_{1}\left(X_{1}\right)>q, F_{2}\left(X_{2}\right)>q\right\} /(1-q)
$$

Copula


Extremal properties: asymptotic dependence

Tail dependence coefficient $\chi x \in[0,1]$

$$
\chi x=\lim _{q \rightarrow 1} P\left\{F_{1}\left(X_{1}\right)>q, F_{2}\left(X_{2}\right)>q\right\} /(1-q)
$$



- $\chi x>0$ : Asymptotic dependence (Pareto, student- $t, \ldots$ )

Extremal properties: asymptotic dependence

Tail dependence coefficient $\chi x \in[0,1]$

$$
\chi x=\lim _{q \rightarrow 1} P\left\{F_{1}\left(X_{1}\right)>q, F_{2}\left(X_{2}\right)>q\right\} /(1-q)
$$



- $\chi_{x}>0$ : Asymptotic dependence (Pareto, student- $t, \ldots$ )
- $\chi_{x}=0$ : Asymptotic independence (Gaussian copula,...)

Extremal properties: asymptotic independence

Residual tail dependence coefficient $\eta_{X} \in[0,1]$

$$
\mathrm{P}\left\{F_{1}\left(X_{1}\right)>q, F_{2}\left(X_{2}\right)>q\right\}=\ell(1-q) \mathrm{P}\left\{F_{1}\left(X_{1}\right)>q\right\}^{1 / \eta X}
$$

where $\ell$ is slowly varying.


Extremal properties: asymptotic independence

Residual tail dependence coefficient $\eta_{X} \in[0,1]$

$$
\mathrm{P}\left\{F_{1}\left(X_{1}\right)>q, F_{2}\left(X_{2}\right)>q\right\}=\ell(1-q) \mathrm{P}\left\{F_{1}\left(X_{1}\right)>q\right\}^{1 / \eta_{X}}
$$

where $\ell$ is slowly varying.


- $\eta_{X} \in(1 / 2,1]:$ Positive association.
- $\eta_{x} \in[0,1 / 2):$ Negative association.

Asymp. dep.: $\eta_{X}=1$ Independence: $\eta_{X}=1 / 2$
Gaussian: $\eta_{X}=\left(1+\rho_{X}\right) / 2$

## Asymptotic dependence or independence?

Pre-asymptotic tail dependence coefficient

$$
\chi x(q)=\mathrm{P}\left\{F_{1}\left(X_{1}\right)>q, F_{2}\left(X_{2}\right)>q\right\} /(1-q)
$$

for finite levels $q \in(0,1)$.

## Asymptotic dependence or independence?

Pre-asymptotic tail dependence coefficient

$$
\chi_{x}(q)=\mathrm{P}\left\{F_{1}\left(X_{1}\right)>q, F_{2}\left(X_{2}\right)>q\right\} /(1-q)
$$

for finite levels $q \in(0,1)$.


## Asymptotic dependence or independence?

Pre-asymptotic tail dependence coefficient

$$
\chi_{x}(q)=\mathrm{P}\left\{F_{1}\left(X_{1}\right)>q, F_{2}\left(X_{2}\right)>q\right\} /(1-q)
$$

for finite levels $q \in(0,1)$.


## Extreme Value Theory and Statistics

- Rare events do happen!
- Impact on various risks (health, environment, economy,...)
- Often result of simultaneous events
- Joint exceedance estimates drastically differ between AD and AI models

Copula



## $\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)=\mathbf{R}\left(\mathbf{W}_{1}, \mathbf{W}_{2}\right), \quad R \Perp\left(W_{1}, W_{2}\right)$

In this project, we want to

- systematically characterize extremal dependence in ( $X_{1}, X_{2}$ ), in terms of
- the tail heaviness of $R$ and $\left(W_{1}, W_{2}\right)$;
- the extremal dependence $\chi_{W}$ and $\eta_{W}$ of $\left(W_{1}, W_{2}\right)$;


## The goals

## $\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)=\mathbf{R}\left(\mathbf{W}_{1}, \mathbf{W}_{2}\right), \quad R \Perp\left(W_{1}, W_{2}\right)$

In this project, we want to

- systematically characterize extremal dependence in ( $X_{1}, X_{2}$ ), in terms of
- the tail heaviness of $R$ and $\left(W_{1}, W_{2}\right)$;
- the extremal dependence $\chi_{W}$ and $\eta_{W}$ of $\left(W_{1}, W_{2}\right)$;
- compute the dependence coefficients $\chi_{x}$ and $\eta_{x}$;


## The goals

## $\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)=\mathbf{R}\left(\mathbf{W}_{1}, \mathbf{W}_{2}\right), \quad R \Perp\left(W_{1}, W_{2}\right)$

In this project, we want to

- systematically characterize extremal dependence in ( $X_{1}, X_{2}$ ), in terms of
- the tail heaviness of $R$ and $\left(W_{1}, W_{2}\right)$;
- the extremal dependence $\chi_{W}$ and $\eta_{W}$ of $\left(W_{1}, W_{2}\right)$;
- compute the dependence coefficients $\chi_{x}$ and $\eta_{x}$;
- unify existing theory and models;


## The goals

## $\left(\mathbf{X}_{\mathbf{1}}, \mathbf{X}_{2}\right)=\mathbf{R}\left(\mathbf{W}_{\mathbf{1}}, \mathbf{W}_{\mathbf{2}}\right), \quad R \Perp\left(W_{1}, W_{2}\right)$

In this project, we want to

- systematically characterize extremal dependence in ( $X_{1}, X_{2}$ ), in terms of
- the tail heaviness of $R$ and $\left(W_{1}, W_{2}\right)$;
- the extremal dependence $\chi_{w}$ and $\eta_{w}$ of $\left(W_{1}, W_{2}\right)$;
- compute the dependence coefficients $\chi_{x}$ and $\eta_{x}$;
- unify existing theory and models;
- build new statistical models with desirable properties.


## Main assumptions on $R$ and $\left(W_{1}, W_{2}\right)$

For $R \geq 0$ : There exists $\xi \in \mathbb{R}$ and a function $b(t)>0$ s.t.

$$
\lim _{t \rightarrow r^{*}} \mathrm{P}(R>t+r / b(t) \mid R>t)=(1+\xi r)_{+}^{-1 / \xi}, \quad r \geq 0,
$$

where $r^{*}=\sup \left\{r: F_{R}(r)<1\right\}$ is upper endpoint; cf. Embrechts et al. (1997).

## Main assumptions on $R$ and $\left(W_{1}, W_{2}\right)$

For $R \geq 0$ : There exists $\xi \in \mathbb{R}$ and a function $b(t)>0$ s.t.

$$
\lim _{t \rightarrow r^{*}} \mathrm{P}(R>t+r / b(t) \mid R>t)=(1+\xi r)_{+}^{-1 / \xi}, \quad r \geq 0
$$

where $r^{*}=\sup \left\{r: F_{R}(r)<1\right\}$ is upper endpoint; cf. Embrechts et al. (1997).
Tail heaviness of $R$ increases with shape $\xi$ :

1. $\xi<0: R$ has upper endpoint and is in negative Weibull MDA;
2. $\xi=0: R$ light tailed $\Rightarrow$ MDA of Gumbel distribution;
3. $\xi>0: R$ regularly varying $\Rightarrow$ MDA of Fréchet distribution.

## Main assumptions on $R$ and $\left(W_{1}, W_{2}\right)$

For $R \geq 0$ : There exists $\xi \in \mathbb{R}$ and a function $b(t)>0$ s.t.

$$
\lim _{t \rightarrow r^{*}} \mathrm{P}(R>t+r / b(t) \mid R>t)=(1+\xi r)_{+}^{-1 / \xi}, \quad r \geq 0
$$

where $r^{*}=\sup \left\{r: F_{R}(r)<1\right\}$ is upper endpoint; cf. Embrechts et al. (1997).
Tail heaviness of $R$ increases with shape $\xi$ :

1. $\xi<0: R$ has upper endpoint and is in negative Weibull MDA;
2. $\xi=0: R$ light tailed $\Rightarrow$ MDA of Gumbel distribution;
3. $\xi>0: R$ regularly varying $\Rightarrow$ MDA of Fréchet distribution.
4. $\xi=\infty: R$ is superheavy-tailed $\Rightarrow$ not in any MDA.

## Main assumptions on $R$ and $\left(W_{1}, W_{2}\right)$

For $R \geq 0$ : There exists $\xi \in \mathbb{R}$ and a function $b(t)>0$ s.t.

$$
\lim _{t \rightarrow r^{*}} \mathrm{P}(R>t+r / b(t) \mid R>t)=(1+\xi r)_{+}^{-1 / \xi}, \quad r \geq 0
$$

where $r^{*}=\sup \left\{r: F_{R}(r)<1\right\}$ is upper endpoint; cf. Embrechts et al. (1997).
Tail heaviness of $R$ increases with shape $\xi$ :

1. $\xi<0: R$ has upper endpoint and is in negative Weibull MDA;
2. $\xi=0: R$ light tailed $\Rightarrow$ MDA of Gumbel distribution;
3. $\xi>0: R$ regularly varying $\Rightarrow$ MDA of Fréchet distribution.
4. $\xi=\infty: R$ is superheavy-tailed $\Rightarrow$ not in any MDA.

For $\left(W_{1}, W_{2}\right) \in \mathbb{R}^{2}: W_{1} \stackrel{d}{=} W_{2} \stackrel{d}{=} W \geq 0$ and same range of tail decays as $R$.
Notation: $\chi_{W}$ and $\eta_{W}$ are tail dependence and residual tail dependence coefficient of $\left(W_{1}, W_{2}\right)$.

Some intuition: the "Independence Model"

$$
\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)=\mathbf{R}\left(\mathbf{W}_{1}, \mathbf{W}_{2}\right), \quad R \Perp W_{1} \Perp W_{2}
$$

- Simple model: $R, W_{1}$ and $W_{2}$ independent, i.e., $\chi_{W}=0, \eta_{W}=1 / 2$.


## Some intuition: the "Independence Model"

$$
\left(\mathbf{X}_{1}, \mathbf{X}_{2}\right)=\mathbf{R}_{\xi}\left(\mathbf{W}_{1}, \mathbf{W}_{2}\right), \quad R \Perp W_{1} \Perp W_{2}
$$

- Simple model: $R_{\xi}, W_{1}$ and $W_{2}$ independent, i.e., $\chi_{w}=0, \eta_{w}=1 / 2$.
- Let $W_{1}, W_{2} \sim \operatorname{Unif}[0,1]$.
- Let $R_{\xi}=F_{R_{\xi}}^{-1}(U)$, with $U \sim \operatorname{Unif}[0,1]$, shape $\xi \in \mathbb{R}$ and

$$
F_{R_{\xi}}(r)=1-(1+\xi r)_{+}^{-1 / \xi}, \quad r \geq 0
$$

## Tail decays for $R$ and $\left(W_{1}, W_{2}\right)$

| Angle W <br> Radius $R$ | Super-heavy | Reg. varying | Weibull | Neg. Weibull |
| :--- | :--- | :--- | :--- | :--- |
| Super-heavy |  |  |  |  |
| Reg. varying |  |  |  |  |
| Weibull |  |  |  |  |
| Neg. Weibull |  |  |  |  |

## Superheavy-tails $(\xi=\infty)$

$$
Y \in \operatorname{SHT}: \exp (\lambda x) \mathrm{P}(\log Y>x) \rightarrow \infty \text { as } x \rightarrow \infty, \text { for any } \lambda>0
$$

## Superheavy-tails $(\xi=\infty)$

$$
Y \in \operatorname{SHT}: \exp (\lambda x) \mathrm{P}(\log Y>x) \rightarrow \infty \text { as } x \rightarrow \infty, \text { for any } \lambda>0
$$

Proposition

1. $R \in \operatorname{SHT}$ and $\bar{F}_{w}(x) \sim c \bar{F}_{R}(x), c \in[0, \infty)$. Then $\eta x=1$ and

$$
\chi_{x}=\frac{1+c \chi_{w}}{1+c} .
$$

## Superheavy-tails $(\xi=\infty)$

$Y \in \operatorname{SHT}: \exp (\lambda x) \mathrm{P}(\log Y>x) \rightarrow \infty$ as $x \rightarrow \infty$, for any $\lambda>0$

Proposition

1. $R \in \operatorname{SHT}$ and $\bar{F}_{w}(x) \sim c \bar{F}_{R}(x), c \in[0, \infty)$. Then $\eta x=1$ and

$$
\chi_{x}=\frac{1+c \chi_{W}}{1+c} .
$$

2. $W \in$ SHT and $\bar{F}_{R}=o\left(\bar{F}_{W}\right)$. Then $\chi_{x}=\chi_{W}$. If $\chi_{w}=0$ and

- $\bar{F}_{R}=O\left(\bar{F}_{\min \left(W_{1}, W_{2}\right)}\right)$, then $\eta_{X}=\eta_{W}$;
- $\bar{F}_{\min \left(W_{1}, W_{2}\right)}=o\left(\bar{F}_{R}\right)$, then, if the limit exists,

$$
\eta_{X}=\lim _{x \rightarrow \infty} \log \bar{F}_{R}(x) / \log \bar{F}_{W}(x)
$$

## Superheavy-tails $(\xi=\infty)$

$Y \in \operatorname{SHT}: \exp (\lambda x) \mathrm{P}(\log Y>x) \rightarrow \infty$ as $x \rightarrow \infty$, for any $\lambda>0$

Proposition

1. $R \in \operatorname{SHT}$ and $\bar{F}_{w}(x) \sim c \bar{F}_{R}(x), c \in[0, \infty)$. Then $\eta x=1$ and

$$
\chi_{x}=\frac{1+c \chi_{w}}{1+c} .
$$

2. $W \in$ SHT and $\bar{F}_{R}=o\left(\bar{F}_{W}\right)$. Then $\chi x=\chi_{w}$. If $\chi w=0$ and

- $\bar{F}_{R}=O\left(\bar{F}_{\min \left(W_{1}, W_{2}\right)}\right)$, then $\eta_{X}=\eta_{W}$;
- $\bar{F}_{\min \left(W_{1}, W_{2}\right)}=o\left(\bar{F}_{R}\right)$, then, if the limit exists,

$$
\eta_{X}=\lim _{x \rightarrow \infty} \log \bar{F}_{R}(x) / \log \bar{F}_{W}(x)
$$

Example ( $R, W_{1}, W_{2}$ independent)
$\bar{F}_{\min \left(W_{1}, W_{2}\right)}=\left(\bar{F}_{W}\right)^{2}, \chi_{w}=0, \eta_{W}=1 / 2$.

1. $R \in$ SHT: $\chi_{x}=1 /(1+c)$
2. $W \in \mathrm{SHT}, R$ lighter: $\chi_{x}=0$ and $\eta_{X}=1 / 2$

## The "Independence model"

| Angle W <br> Radius $R$ | Super-heavy | Reg. varying | Weibull | Neg. Weibull |
| :--- | :---: | :---: | :---: | :---: |
| Super-heavy | $\chi x=\frac{1}{1+c}$ | $\chi x=1$ | $\chi x=1$ | $\chi x=1$ |
| Reg. varying | $*$ |  |  |  |
| Weibull | $*$ |  |  |  |
| Neg. Weibull | $*$ |  |  |  |

Table: Values of $\chi_{X}$ and $\eta_{X}$ for $\left(X_{1}, X_{2}\right)=R\left(W_{1}, W_{2}\right)$ with $W_{1}, W_{2} \stackrel{d}{=} W$ independent. The ${ }^{*}$ 's indicate $\chi_{x}=\chi_{W}=0$ and $\eta_{X}=\eta_{W}=1 / 2$.

## Regularly varying tails $(\xi>0)$

$$
Y \in \mathrm{RV}_{-\alpha}: \mathrm{P}(Y>x) \sim \ell(x) x^{-\alpha} \text { with } \alpha>0, \ell \text { slowly varying }
$$

## Regularly varying tails $(\xi>0)$

$$
Y \in \mathrm{RV}_{-\alpha}: \mathrm{P}(Y>x) \sim \ell(x) x^{-\alpha} \text { with } \alpha>0, \ell \text { slowly varying }
$$

## Proposition

1. $R \in R V_{-\alpha_{R}}, W \in R V_{-\alpha_{W}}$ with $\alpha_{w} \in\left(\alpha_{R}, \infty\right]$, then

$$
\chi x=E\left[\min \left\{\frac{W_{1}^{\alpha_{R}}}{E\left(W_{1}^{\alpha_{R}}\right)}, \frac{W_{2}^{\alpha_{R}}}{E\left(W_{2}^{\alpha_{R}}\right)}\right\}\right] .
$$

## Regularly varying tails $(\xi>0)$

$$
Y \in \mathrm{RV}_{-\alpha}: \mathrm{P}(Y>x) \sim \ell(x) x^{-\alpha} \text { with } \alpha>0, \ell \text { slowly varying }
$$

## Proposition

1. $R \in R V_{-\alpha_{R}}, W \in R V_{-\alpha_{W}}$ with $\alpha_{w} \in\left(\alpha_{R}, \infty\right]$, then

$$
\chi x=E\left[\min \left\{\frac{W_{1}^{\alpha_{R}}}{E\left(W_{1}^{\alpha_{R}}\right)}, \frac{W_{2}^{\alpha_{R}}}{E\left(W_{2}^{\alpha_{R}}\right)}\right\}\right] .
$$

2. $W \in R V_{-\alpha_{W}}, R \in R V_{-\alpha_{R}}$ with $\alpha_{R} \in\left(\alpha_{W}, \infty\right]$, then $\chi_{x}=\chi_{W}$ and

$$
\eta_{X}= \begin{cases}\alpha_{W} / \alpha_{R}, & \text { if } \alpha_{R}<\alpha_{W} / \eta_{W} \\ \eta_{W}, & \text { if } \alpha_{R}>\alpha_{W} / \eta_{W} \text { or } \alpha_{R}=+\infty\end{cases}
$$

## Regularly varying tails $(\xi>0)$

$$
Y \in \mathrm{RV}_{-\alpha}: \mathrm{P}(Y>x) \sim \ell(x) x^{-\alpha} \text { with } \alpha>0, \ell \text { slowly varying }
$$

## Proposition

1. $R \in R V_{-\alpha_{R}}, W \in R V_{-\alpha_{W}}$ with $\alpha_{w} \in\left(\alpha_{R}, \infty\right]$, then

$$
\chi x=E\left[\min \left\{\frac{W_{1}^{\alpha_{R}}}{E\left(W_{1}^{\alpha_{R}}\right)}, \frac{W_{2}^{\alpha_{R}}}{E\left(W_{2}^{\alpha_{R}}\right)}\right\}\right] .
$$

2. $W \in R V_{-\alpha_{W}}, R \in R V_{-\alpha_{R}}$ with $\alpha_{R} \in\left(\alpha_{W}, \infty\right]$, then $\chi_{x}=\chi_{W}$ and

$$
\eta_{X}= \begin{cases}\alpha_{W} / \alpha_{R}, & \text { if } \alpha_{R}<\alpha_{W} / \eta_{W} \\ \eta_{W}, & \text { if } \alpha_{R}>\alpha_{W} / \eta_{W} \text { or } \alpha_{R}=+\infty\end{cases}
$$

3. $\alpha_{W}=\alpha_{R}$ : More involved.

## Regularly varying tails $(\xi>0)$

$$
Y \in \mathrm{RV}_{-\alpha}: \mathrm{P}(Y>x) \sim \ell(x) x^{-\alpha} \text { with } \alpha>0, \ell \text { slowly varying }
$$

## Proposition

1. $R \in R V_{-\alpha_{R}}, W \in R V_{-\alpha_{W}}$ with $\alpha_{W} \in\left(\alpha_{R}, \infty\right]$, then

$$
\chi x=E\left[\min \left\{\frac{W_{1}^{\alpha_{R}}}{E\left(W_{1}^{\alpha_{R}}\right)}, \frac{W_{2}^{\alpha_{R}}}{E\left(W_{2}^{\alpha_{R}}\right)}\right\}\right] .
$$

2. $W \in R V_{-\alpha_{W}}, R \in R V_{-\alpha_{R}}$ with $\alpha_{R} \in\left(\alpha_{W}, \infty\right]$, then $\chi_{x}=\chi_{W}$ and

$$
\eta_{X}= \begin{cases}\alpha_{W} / \alpha_{R}, & \text { if } \alpha_{R}<\alpha_{W} / \eta_{W} \\ \eta_{W}, & \text { if } \alpha_{R}>\alpha_{W} / \eta_{W} \text { or } \alpha_{R}=+\infty\end{cases}
$$

3. $\alpha_{W}=\alpha_{R}$ : More involved.

## Example

1. All Pareto copulas, $t$-distributions, ...
2. Asymptotically independent model in Huser \& Wadsworth (2018).

## The "Independence model"

| Angle W <br> Radius $R$ | Super-heavy | Reg. varying | Weibull | Neg. Weibull |
| :--- | :---: | :---: | :---: | :---: |
| Super-heavy | $\chi_{x}=\frac{1}{1+c}$ | $\chi_{x}=1$ | $\chi x=1$ | $\chi x=1$ |
| Reg. varying | $*$ | $\alpha_{R}<\alpha_{W}: \chi_{x}>0$ <br> $\alpha_{W}<\alpha_{R}<2 \alpha_{W}:$ <br> $\eta_{X}=\alpha_{W} / \alpha_{R}$ <br> $2 \alpha_{W}: \eta_{X}=1 / 2$ | $\chi x>0$ | $\chi x>0$ |
|  |  | $*$ |  |  |
| Weibull | $*$ | $*$ |  |  |
| Neg. Weibull | $*$ |  |  |  |

Table: Values of $\chi_{X}$ and $\eta_{X}$ for $\left(X_{1}, X_{2}\right)=R\left(W_{1}, W_{2}\right)$ with $W_{1}, W_{2} \stackrel{d}{=} W$ independent. The *'s indicate $\chi_{x}=\chi_{w}=0$ and $\eta_{X}=\eta_{W}=1 / 2$.

## Weibull-type tails $(\xi=0)$

$$
Y \in \mathrm{~W}(\theta): \mathrm{P}(Y>x) \sim c x^{-\gamma} \exp \left(-\alpha x^{\beta}\right) \text {, with } \theta=(c, \gamma, \alpha, \beta) .
$$

## Weibull-type tails $(\xi=0)$

$$
Y \in \mathrm{~W}(\theta): \mathrm{P}(Y>x) \sim c x^{-\gamma} \exp \left(-\alpha x^{\beta}\right), \text { with } \theta=(c, \gamma, \alpha, \beta)
$$

Proposition
Let $R \in \mathrm{~W}\left(\theta_{R}\right), W \in \mathrm{~W}\left(\theta_{W}\right)$ and $\tilde{W}=\min \left(W_{1}, W_{2}\right) \in \mathrm{W}\left(\theta_{\tilde{W}}\right)$.

## Weibull-type tails $(\xi=0)$

$$
Y \in \mathrm{~W}(\theta): \mathrm{P}(Y>x) \sim c x^{-\gamma} \exp \left(-\alpha x^{\beta}\right), \text { with } \theta=(c, \gamma, \alpha, \beta)
$$

Proposition
Let $R \in \mathrm{~W}\left(\theta_{R}\right), W \in \mathrm{~W}\left(\theta_{W}\right)$ and $\tilde{W}=\min \left(W_{1}, W_{2}\right) \in \mathrm{W}\left(\theta_{\tilde{W}}\right)$.

1. $\beta_{\tilde{W}}=\beta_{W}, \alpha_{\tilde{W}}=\alpha_{W}, \gamma_{\tilde{W}}=\gamma_{W}$. Then $\chi_{x}=\chi_{W}=c_{\tilde{W}} / c_{W}$.
2. $\beta_{\tilde{W}}=\beta_{W}, \alpha_{\tilde{W}}=\alpha_{w}, \gamma_{\tilde{W}}<\gamma_{w}$. Then $\chi_{x}=\chi_{w}=0$ and $\eta_{x}=\eta_{w}=1$.
3. $\beta_{\tilde{W}}=\beta_{w}, \alpha_{\tilde{W}}>\alpha_{w}$. Then $\chi x=\chi w=0$ and

$$
\eta_{X}=\eta_{W}^{\beta_{R} /\left(\beta_{R}+\beta_{W}\right)}=\left(\frac{\alpha_{W}}{\alpha_{\tilde{W}}}\right)^{\beta_{R} /\left(\beta_{R}+\beta_{W}\right)} .
$$

4. $\beta_{\tilde{W}}>\beta_{w}$. Then $\chi x=\chi_{w}=0 . \eta_{x}=\eta_{w}=0$.

## Weibull-type tails $(\xi=0)$

$$
Y \in \mathrm{~W}(\theta): \mathrm{P}(Y>x) \sim c x^{-\gamma} \exp \left(-\alpha x^{\beta}\right), \text { with } \theta=(c, \gamma, \alpha, \beta)
$$

## Proposition

Let $R \in \mathrm{~W}\left(\theta_{R}\right), W \in \mathrm{~W}\left(\theta_{W}\right)$ and $\tilde{W}=\min \left(W_{1}, W_{2}\right) \in \mathrm{W}\left(\theta_{\tilde{W}}\right)$.

1. $\beta_{\tilde{W}}=\beta_{W}, \alpha_{\tilde{W}}=\alpha_{W}, \gamma_{\tilde{W}}=\gamma_{W}$. Then $\chi_{x}=\chi_{W}=c_{\tilde{W}} / c_{W}$.
2. $\beta_{\tilde{W}}=\beta_{W}, \alpha_{\tilde{W}}=\alpha_{W}, \gamma_{\tilde{W}}<\gamma_{W}$. Then $\chi_{x}=\chi_{W}=0$ and $\eta_{x}=\eta_{W}=1$.
3. $\beta_{\tilde{W}}=\beta_{W}, \alpha_{\tilde{W}}>\alpha_{w}$. Then $\chi x=\chi_{w}=0$ and

$$
\eta_{X}=\eta_{W}^{\beta_{R} /\left(\beta_{R}+\beta_{W}\right)}=\left(\frac{\alpha_{W}}{\alpha_{\tilde{W}}}\right)^{\beta_{R} /\left(\beta_{R}+\beta_{W}\right)} .
$$

4. $\beta_{\tilde{W}}>\beta_{W}$. Then $\chi_{x}=\chi_{W}=0 . \eta_{x}=\eta_{W}=0$.

## Example

3. Independence model: $\alpha_{\tilde{W}}=2 \alpha_{W}$ and $\eta_{X}=2^{-\beta_{R} /\left(\beta_{R}+\beta_{W}\right)}$.
4. Gaussian scale mixtures: $\eta x=\left\{\left(1+\rho_{W}\right) / 2\right\}^{\beta_{R} /\left(\beta_{R}+2\right)}$.

## The "Independence model"

| Angle $W$ <br> Radius $R$ | Super-heavy | Reg. varying | Weibull | Neg. Weibull |
| :--- | :---: | :---: | :---: | :---: |
| Super-heavy | $\chi_{x}=\frac{1}{1+c}$ | $\chi_{x}=1$ | $\chi_{x}=1$ | $\chi_{x}=1$ |
| Reg. varying | $*$ | $\alpha_{R}<\alpha_{W}: \chi_{x}>0$ <br> $\alpha_{W}<\alpha_{R}<2 \alpha_{W}:$ <br> $\eta_{X}=\alpha_{W} / \alpha_{R}$ <br> $2 \alpha_{W}: \eta_{X}=1 / 2$ | $\chi x>0$ | $\chi x>0$ |
| Weibull | $*$ | $*$ | $\eta_{X}=2^{-\beta_{R} /\left(\beta_{R}+\beta_{W}\right)}$ |  |
| Neg. Weibull | $*$ | $*$ |  |  |

Table: Values of $\chi_{x}$ and $\eta_{X}$ for $\left(X_{1}, X_{2}\right)=R\left(W_{1}, W_{2}\right)$ with $W_{1}, W_{2} \stackrel{d}{=} W$ independent. The ${ }^{*}$ 's indicate $\chi_{x}=\chi_{W}=0$ and $\eta_{X}=\eta_{W}=1 / 2$.

Negative Weibull domain of attraction $(\xi<0)$

$$
Y \in \mathrm{NW}(\alpha): \mathrm{P}(Y>1-s) \sim \ell(1 / s) s^{\alpha}, \quad s \rightarrow 0, \ell \in \mathrm{RV}_{0}, \alpha>0
$$

Negative Weibull domain of attraction $(\xi<0)$

$$
Y \in \operatorname{NW}(\alpha): \mathrm{P}(Y>1-s) \sim \ell(1 / s) s^{\alpha}, \quad s \rightarrow 0, \ell \in \mathrm{RV}_{0}, \alpha>0
$$

## Proposition

1. $R \in W\left(\theta_{R}\right), W \in N W\left(\alpha_{W}\right), \tilde{W} \in \operatorname{NW}\left(\alpha_{\tilde{W}}\right)$. Then $\chi_{x}=\chi_{W}$ and $\eta_{x}=1$.
2. $R \in N W\left(\alpha_{R}\right), W \in W\left(\theta_{W}\right), \tilde{W} \in N W\left(\alpha_{\tilde{W}}\right)$. Then $\chi_{x}=\chi_{W}$ and $\eta_{x}=\eta_{w}$.
3. $R \in \operatorname{NW}\left(\alpha_{R}\right), W \in \operatorname{NW}\left(\alpha_{W}\right), \tilde{W} \in \operatorname{NW}\left(\alpha_{\tilde{W}}\right)$. If $\alpha_{\tilde{W}}=\alpha_{w}$ then $\chi_{x}=\chi_{w}$ and $\eta_{x}=1$. If $\alpha_{\tilde{w}}>\alpha_{w}$ then $\chi_{x}=\chi_{w}=0$ and

$$
\eta_{x}=\frac{\alpha_{W}+\alpha_{R}}{\alpha_{\tilde{W}}+\alpha_{R}}>\frac{\alpha_{W}}{\alpha_{\tilde{W}}}=\eta_{W}
$$

Negative Weibull domain of attraction $(\xi<0)$

$$
Y \in \operatorname{NW}(\alpha): \mathrm{P}(Y>1-s) \sim \ell(1 / s) s^{\alpha}, \quad s \rightarrow 0, \ell \in \mathrm{RV}_{0}, \alpha>0
$$

## Proposition

1. $R \in W\left(\theta_{R}\right), W \in \operatorname{NW}\left(\alpha_{W}\right), \tilde{W} \in \operatorname{NW}\left(\alpha_{\tilde{W}}\right)$. Then $\chi_{x}=\chi_{W}$ and $\eta_{x}=1$.
2. $R \in \operatorname{NW}\left(\alpha_{R}\right), W \in W\left(\theta_{W}\right), \tilde{W} \in \operatorname{NW}\left(\alpha_{\tilde{W}}\right)$. Then $\chi x=\chi_{w}$ and $\eta_{X}=\eta_{W}$.
3. $R \in \operatorname{NW}\left(\alpha_{R}\right), W \in \operatorname{NW}\left(\alpha_{W}\right), \tilde{W} \in \operatorname{NW}\left(\alpha_{\tilde{W}}\right)$. If $\alpha_{\tilde{W}}=\alpha_{W}$ then $\chi_{x}=\chi_{w}$ and $\eta_{x}=1$. If $\alpha_{\tilde{w}}>\alpha_{w}$ then $\chi_{x}=\chi_{w}=0$ and

$$
\eta_{x}=\frac{\alpha_{W}+\alpha_{R}}{\alpha_{\tilde{W}}+\alpha_{R}}>\frac{\alpha_{W}}{\alpha_{\tilde{W}}}=\eta_{W}
$$

Example

1. Support of $\left(W_{1}, W_{2}\right)$ on sphere: model of Wadsworth et al. (2017).
2. Independence model: $\eta x=\frac{\alpha_{W}+\alpha_{R}}{2 \alpha_{W}+\alpha_{R}} \in(1 / 2,1)$.

## The "Independence model"

| Angle $W$ <br> Radius $R$ | Super-heavy | Reg. varying | Weibull | Neg. Weibull |
| :--- | :---: | :---: | :---: | :---: |
| Super-heavy | $\chi x=\frac{1}{1+c}$ | $\chi x=1$ | $\chi x=1$ | $\chi x=1$ |
| Reg. varying | $*$ | $\alpha_{R}<\alpha_{W}: \chi_{x}>0$ <br> $\alpha_{W}<\alpha_{R}<2 \alpha_{W}:$ <br> $\eta_{X}=\alpha_{W} / \alpha_{R}$ <br> $\alpha_{R}>2 \alpha_{W}: \eta_{X}=1 / 2$ | $\chi x>0$ | $\chi x>0$ |
|  |  | $*$ | $\eta_{X}=2^{-\beta_{R} /\left(\beta_{R}+\beta_{W}\right)}$ | $\chi_{x}=0$ <br> $\eta_{X}=1$ |
| Weibull | $*$ | $*$ | $*$ | $\eta_{X}=\frac{\alpha_{W}+\alpha_{R}}{2 \alpha_{W}+\alpha_{R}}$ |

Table: Values of $\chi_{X}$ and $\eta_{X}$ for $\left(X_{1}, X_{2}\right)=R\left(W_{1}, W_{2}\right)$ with $W_{1}, W_{2} \stackrel{d}{=} W$ independent. The ${ }^{*}$ 's indicate $\chi_{x}=\chi_{W}=0$ and $\eta_{X}=\eta_{W}=1 / 2$.

## The "Independence model"

| Angle $W$ <br> Radius $R$ | Super-heavy | Reg. varying | Weibull | Neg. Weibull |
| :--- | :---: | :---: | :---: | :---: |
| Super-heavy | $\chi x=\frac{1}{1+c}$ | $\chi x=1$ | $\chi x=1$ | $\chi x=1$ |
| Reg. varying | $*$ | $\alpha_{R}<\alpha_{W}: \chi_{x}>0$ <br> $\alpha_{W}<\alpha_{R}<2 \alpha_{W}:$ <br> $\eta_{X}=\alpha_{W} / \alpha_{R}$ <br> $\alpha_{R}>2 \alpha_{W}: \eta_{X}=1 / 2$ | $\chi x>0$ | $\chi x>0$ |
|  |  | $*$ | $\eta_{X}=2^{-\beta_{R} /\left(\beta_{R}+\beta_{W}\right)}$ | $\chi_{x}=0$ <br> $\eta_{X}=1$ |
| Weibull | $*$ | $*$ | $*$ | $\eta_{X}=\frac{\alpha_{W}+\alpha_{R}}{2 \alpha_{W}+\alpha_{R}}$ |

Table: Values of $\chi_{X}$ and $\eta_{X}$ for $\left(X_{1}, X_{2}\right)=R\left(W_{1}, W_{2}\right)$ with $W_{1}, W_{2} \stackrel{d}{=} W$ independent. The ${ }^{*}$ 's indicate $\chi_{x}=\chi_{W}=0$ and $\eta_{X}=\eta_{W}=1 / 2$.

How do we use this in a statistical model?

## Parametric model: Bridging between AD and AI

Let $\left\{C_{\xi, \alpha}:(\xi, \alpha) \in \mathbb{R} \times \mathbb{R}_{+}\right\}$be the family of copulas corresponding to:

$$
\left(X_{1}, X_{2}\right)=R\left(W_{1}, W_{2}\right), \quad R \Perp W_{1} \Perp W_{2},
$$

- $\mathrm{P}(R \leq r)=1-(1+\xi r)_{+}^{-1 / \xi}, \quad r \geq 0$;
- $W_{1}, W_{2} \sim \operatorname{Beta}(\alpha, \alpha)$, independent.


## Parametric model: Bridging between AD and AI

Let $\left\{C_{\xi, \alpha}:(\xi, \alpha) \in \mathbb{R} \times \mathbb{R}_{+}\right\}$be the family of copulas corresponding to:

$$
\left(X_{1}, X_{2}\right)=R\left(W_{1}, W_{2}\right), \quad R \Perp W_{1} \Perp W_{2},
$$

- $\mathrm{P}(R \leq r)=1-(1+\xi r)_{+}^{-1 / \xi}, \quad r \geq 0$;
- $W_{1}, W_{2} \sim \operatorname{Beta}(\alpha, \alpha)$, independent.


## Properties:

1. $\xi<0: \mathrm{Al}(\chi x=0)$ with

$$
\eta_{X}=\frac{\alpha+\xi^{-1}}{2 \alpha+\xi^{-1}}
$$

2. $\xi=0: \mathrm{Al}(\chi x=0)$ with $\eta_{x}=1$.
3. $\xi>0$ : AD with

$$
\chi x=\mathrm{E}\left[\min \left\{\frac{W_{1}^{1 / \xi}}{\mathrm{E}\left(W_{1}^{1 / \xi}\right)}, \frac{W_{2}^{1 / \xi}}{\mathrm{E}\left(W_{2}^{1 / \xi}\right)}\right\}\right] .
$$

## Parametric model: Bridging between AD and AI

Let $\left\{C_{\xi, \alpha}:(\xi, \alpha) \in \mathbb{R} \times \mathbb{R}_{+}\right\}$be the family of copulas corresponding to:

$$
\left(X_{1}, X_{2}\right)=R\left(W_{1}, W_{2}\right), \quad R \Perp W_{1} \Perp W_{2},
$$

- $\mathrm{P}(R \leq r)=1-(1+\xi r)_{+}^{-1 / \xi}, \quad r \geq 0$;
- $W_{1}, W_{2} \sim \operatorname{Beta}(\alpha, \alpha)$, independent.


## Properties:

1. $\xi<0: \mathrm{Al}\left(\chi_{x}=0\right)$ with

$$
\eta_{X}=\frac{\alpha+\xi^{-1}}{2 \alpha+\xi^{-1}}
$$

2. $\xi=0: \mathrm{Al}(\chi x=0)$ with $\eta_{X}=1$.
3. $\xi>0$ : AD with

Estimation:

$$
\chi x=\mathrm{E}\left[\min \left\{\frac{W_{1}^{1 / \xi}}{\mathrm{E}\left(W_{1}^{1 / \xi}\right)}, \frac{W_{2}^{1 / \xi}}{\mathrm{E}\left(W_{2}^{1 / \xi}\right)}\right\}\right]
$$

- Densities for ML estimation readily available.
- Marginal normalization requires one-dim. integration.


## Parametric model: Bridging between AD and AI

Estimates: $\hat{\xi}=-1.18$ and $\hat{\alpha}=0.85$

- Asymptotically independent model (blue curve in plot)




## Conclusion

We unify theory and cover/extend existing examples:

- Archimedean/Liouville copulas:

Larsson \& Nešlehová (2011), Belzile \& Nešlehová (2017)

- (Scale mixtures of) Gaussian copulas: Sibuya (1960), Huser et al. (2017)
- Student- $t$ copulas

Nikoloulopoulos et al. (2012)

- Pareto copulas Rootzén et al. (2006)
- Elliptical copulas
- Recent AI models Wadsworth et al. (2017), Huser \& Wadsworth (2018)


## Conclusion

We unify theory and cover/extend existing examples:

- Archimedean/Liouville copulas:

Larsson \& Nešlehová (2011), Belzile \& Nešlehová (2017)

- (Scale mixtures of) Gaussian copulas: Sibuya (1960), Huser et al. (2017)
- Student- $t$ copulas

Nikoloulopoulos et al. (2012)

- Pareto copulas
- Elliptical copulas
- Recent AI models Wadsworth et al. (2017), Huser \& Wadsworth (2018)

We build new models bridging between AD and AI:

- "Independence model"
- "Spiky norm model"
- etc.


## Conclusion

We unify theory and cover/extend existing examples:

- Archimedean/Liouville copulas:

Larsson \& Nešlehová (2011), Belzile \& Nešlehová (2017)

- (Scale mixtures of) Gaussian copulas: Sibuya (1960), Huser et al. (2017)
- Student- $t$ copulas

Nikoloulopoulos et al. (2012)

- Pareto copulas
- Elliptical copulas
- Recent AI models Wadsworth et al. (2017), Huser \& Wadsworth (2018)

We build new models bridging between AD and AI:

- "Independence model"
- "Spiky norm model"
- etc.


## Thank you!

## References

P. Embrechts, C. Klüppelberg, and T. Mikosch.

Modelling Extremal Events: for Insurance and Finance.
Springer, London, 1997.

S. Engelke, T. Opitz, and J. Wadsworth.

Extremal dependence of random scale constructions.
Available from http://arxiv.org/abs/1803.04221, 2018.
R. Huser, T. Opitz, and E. Thibaud.

Bridging asymptotic independence and dependence in spatial extremes using gaussian scale mixtures. Spatial Statistics, 21:166-186, 2017.
R. Huser and J. Wadsworth.

Modeling spatial processes with unknown extremal dependence class.
J. Amer. Statist. Assoc., 2018.
to appear.
M. Larsson and J. Nešlehová.

Extremal behavior of archimedean copulas.
Advances in Applied Probability, 43(1):195-216, 2011.
A. K. Nikoloulopoulos, H. Joe, and H. Li.

Extreme value properties of multivariate t copulas.
Extremes, 12(2):129-148, 2009.
H. Rootzén and N. Tajvidi.

Multivariate generalized Pareto distributions.
Bernoulli, 12:917-930, 2006.
M. Sibuya.

Bivariate extreme statistics. I.
Ann. Inst. Statist. Math. Tokyo, 11:195-210, 1960.
J.L. Wadsworth, J.A. Tawn, A.C. Davison, and D.M. Elton.

Modelling across extremal dependence classes.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(1):149-175, 2017.

