Limit theorems for long-range dependent processes based on random partitions

Olivier Durieu
(Université de Tours, Institut Denis Poisson)
joint work with
Gennady Samorodnitsky (Cornell University)
and
Yizao Wang (University of Cincinnati)

Self-Similarity, Long-Range Dependence, and Extremes
BIRS-CMO Oaxaca, June 2018

Outline

Random Partition: Infinite Urn Model

Randomized Karlin model

Heavy-Tailed Randomization

Extremes and Random Sup-Measures

Infinte urn model

$\left(Y_{n}\right)_{n \geq 1}$ i.i.d. with values in $\mathbb{N}=\{1,2, \ldots\}$.

Infinte urn model

$\left(Y_{n}\right)_{n \geq 1}$ i.i.d. with values in $\mathbb{N}=\{1,2, \ldots\}$.

$$
Y_{1}=2
$$

Infinte urn model

$\left(Y_{n}\right)_{n \geq 1}$ i.i.d. with values in $\mathbb{N}=\{1,2, \ldots\}$.

Infinte urn model

$\left(Y_{n}\right)_{n \geq 1}$ i.i.d. with values in $\mathbb{N}=\{1,2, \ldots\}$.

1

$$
Y_{1}=2, Y_{2}=4, Y_{3}=2
$$

Infinte urn model

$\left(Y_{n}\right)_{n \geq 1}$ i.i.d. with values in $\mathbb{N}=\{1,2, \ldots\}$.

1

2

3

4

5

$$
Y_{1}=2, Y_{2}=4, Y_{3}=2, Y_{4}=1
$$

Infinte urn model

$\left(Y_{n}\right)_{n \geq 1}$ i.i.d. with values in $\mathbb{N}=\{1,2, \ldots\}$.

1

2

3

4

5

$$
Y_{1}=2, Y_{2}=4, Y_{3}=2, Y_{4}=1, Y_{5}=100
$$

Infinte urn model

$\left(Y_{n}\right)_{n \geq 1}$ i.i.d. with values in $\mathbb{N}=\{1,2, \ldots\}$.

1

2

5

$$
Y_{1}=2, Y_{2}=4, Y_{3}=2, Y_{4}=1, Y_{5}=100, Y_{6}=2
$$

Infinte urn model

$\left(Y_{n}\right)_{n \geq 1}$ i.i.d. with values in $\mathbb{N}=\{1,2, \ldots\}$.

1

2

3

4

5

$$
Y_{1}=2, Y_{2}=4, Y_{3}=2, Y_{4}=1, Y_{5}=100, Y_{6}=2, Y_{7}=4
$$

Infinte urn model

$\left(Y_{n}\right)_{n \geq 1}$ i.i.d. with values in $\mathbb{N}=\{1,2, \ldots\}$.

1

2

3

4

5

$$
Y_{1}=2, Y_{2}=4, Y_{3}=2, Y_{4}=1, Y_{5}=100, Y_{6}=2, Y_{7}=4, Y_{8}=5
$$

Infinte urn model

$\left(Y_{n}\right)_{n \geq 1}$ i.i.d. with values in $\mathbb{N}=\{1,2, \ldots\}$.

\longrightarrow Random partition of $\{1,2,3,4,5,6,7,8\}$ as $\{1,3,6\},\{2,7\},\{4\},\{5\},\{8\}$.

Infinte urn model

$\left(Y_{n}\right)_{n \geq 1}$ i.i.d. with values in $\mathbb{N}=\{1,2, \ldots\}$.

\longrightarrow Random partition of $\{1,2,3,4,5,6,7,8\}$ as $\{1,3,6\},\{2,7\},\{4\},\{5\},\{8\}$.
Bahadur (1960), Karlin (1968), Gnedin, Hansen \& Pitman (2007)

Infinte urn model

- $K_{n, \ell}=\sum_{i=1}^{n} \mathbb{1}_{\left\{Y_{i}=\ell\right\}}$.
- Occupancy process: $Z(n)=\sum_{\ell \geq 1} \mathbb{1}_{\left\{K_{n, \ell}>0\right\}}$.

Infinte urn model

- $K_{n, \ell}=\sum_{i=1}^{n} \mathbb{1}_{\left\{Y_{i}=\ell\right\}}$.
- Occupancy process: $Z(n)=\sum_{\ell \geq 1} \mathbb{1}_{\left\{K_{n, \ell}>0\right\}}$.
- Odd-occupancy process: $U(n)=\sum_{\ell \geq 1} \mathbb{1}_{\left\{K_{n, \ell} \text { odd }\right\}}$.

Infinte urn model

- $K_{n, \ell}=\sum_{i=1}^{n} \mathbb{1}_{\left\{Y_{i}=\ell\right\}}$.
- Occupancy process: $Z(n)=\sum_{\ell \geq 1} \mathbb{1}_{\left\{K_{n, \ell}>0\right\}}$.
- Odd-occupancy process: $U(n)=\sum_{\ell \geq 1} \mathbb{1}_{\left\{K_{n, \ell} \text { odd }\right\}}$.

1

4

5

$$
Y_{1}=2
$$

Infinte urn model

- $K_{n, \ell}=\sum_{i=1}^{n} \mathbb{1}_{\left\{Y_{i}=\ell\right\}}$.
- Occupancy process: $Z(n)=\sum_{\ell \geq 1} \mathbb{1}_{\left\{K_{n, \ell}>0\right\}}$.
- Odd-occupancy process: $U(n)=\sum_{\ell \geq 1} \mathbb{1}_{\left\{K_{n, \ell} \text { odd }\right\}}$.

4

5

$$
Y_{1}=2, Y_{2}=4
$$

Infinte urn model

- $K_{n, \ell}=\sum_{i=1}^{n} \mathbb{1}_{\left\{Y_{i}=\ell\right\}}$.
- Occupancy process: $Z(n)=\sum_{\ell \geq 1} \mathbb{1}_{\left\{K_{n, \ell}>0\right\}}$.
- Odd-occupancy process: $U(n)=\sum_{\ell \geq 1} \mathbb{1}_{\left\{K_{n, \ell} \text { odd }\right\}}$.

$Y_{1}=2, Y_{2}=4, Y_{3}=2$

Infinte urn model

- $K_{n, \ell}=\sum_{i=1}^{n} \mathbb{1}_{\left\{Y_{i}=\ell\right\}}$.
- Occupancy process: $Z(n)=\sum_{\ell \geq 1} \mathbb{1}_{\left\{K_{n, \ell}>0\right\}}$.
- Odd-occupancy process: $U(n)=\sum_{\ell \geq 1} \mathbb{1}_{\left\{K_{n, \ell} \text { odd }\right\}}$.

$$
Y_{1}=2, Y_{2}=4, Y_{3}=2, Y_{4}=1
$$

Infinte urn model

- $K_{n, \ell}=\sum_{i=1}^{n} \mathbb{1}_{\left\{Y_{i}=\ell\right\}}$.
- Occupancy process: $Z(n)=\sum_{\ell \geq 1} \mathbb{1}_{\left\{K_{n, \ell}>0\right\}}$.
- Odd-occupancy process: $U(n)=\sum_{\ell \geq 1} \mathbb{1}_{\left\{K_{n, \ell} \text { odd }\right\}}$.

$Y_{1}=2, Y_{2}=4, Y_{3}=2, Y_{4}=1, Y_{5}=100$

Infinte urn model

- $K_{n, \ell}=\sum_{i=1}^{n} \mathbb{1}_{\left\{Y_{i}=\ell\right\}}$.
- Occupancy process: $Z(n)=\sum_{\ell \geq 1} \mathbb{1}_{\left\{K_{n, \ell}>0\right\}}$.
- Odd-occupancy process: $U(n)=\sum_{\ell \geq 1} \mathbb{1}_{\left\{K_{n, \ell} \text { odd }\right\}}$.

Infinte urn model

- $K_{n, \ell}=\sum_{i=1}^{n} \mathbb{1}_{\left\{Y_{i}=\ell\right\}}$.
- Occupancy process: $Z(n)=\sum_{\ell \geq 1} \mathbb{1}_{\left\{K_{n, \ell}>0\right\}}$.
- Odd-occupancy process: $U(n)=\sum_{\ell \geq 1} \mathbb{1}_{\left\{K_{n, \ell} \text { odd }\right\}}$.

Infinte urn model

- $K_{n, \ell}=\sum_{i=1}^{n} \mathbb{1}_{\left\{Y_{i}=\ell\right\}}$.
- Occupancy process: $Z(n)=\sum_{\ell \geq 1} \mathbb{1}_{\left\{K_{n, \ell}>0\right\}}$.
- Odd-occupancy process: $U(n)=\sum_{\ell \geq 1} \mathbb{1}_{\left\{K_{n, \ell} \text { odd }\right\}}$.

Infinte urn model

Let $p_{k}=\mathbb{P}\left(Y_{1}=k\right), k \geq 1$.

Assumptions:

- $\left(p_{k}\right)$ is nonincreasing and $p_{k}>0$ for all $k \geq 1$.
- Regular variation: $\max \left\{k \geq 1 \mid p_{k} \geq 1 / t\right\}=t^{\beta} L(t)$, for some $\beta \in(0,1)$ and L slowly varying function.

Infinte urn model

Let $p_{k}=\mathbb{P}\left(Y_{1}=k\right), k \geq 1$.

Assumptions:

- $\left(p_{k}\right)$ is nonincreasing and $p_{k}>0$ for all $k \geq 1$.
- Regular variation: $\max \left\{k \geq 1 \mid p_{k} \geq 1 / t\right\}=t^{\beta} L(t)$, for some $\beta \in(0,1)$ and L slowly varying function.

Central Limit Theorem (Karlin, 1968)
For $\sigma_{n}=\left(\Gamma(1-\beta) n^{\beta} L(n)\right)^{1 / 2}$,

$$
\begin{aligned}
& \frac{Z(n)-\mathbb{E} Z(n)}{\sigma_{n}} \Rightarrow c_{1} \mathcal{N}(0,1) \\
& \frac{U(n)-\mathbb{E} U(n)}{\sigma_{n}} \Rightarrow c_{2} \mathcal{N}(0,1)
\end{aligned}
$$

where $c_{1}=\left(2^{\beta}-1\right)^{1 / 2}$ and $c_{2}=2^{\beta-1}$.

Outline

Random Partition: Infinite Urn Model

Randomized Karlin model

Heavy-Tailed Randomization

Extremes and Random Sup-Measures

Randomization

$\left(\varepsilon_{n}\right)_{n \geq 1}$ i.i.d. Rademacher random variables.

Randomization

$\left(\varepsilon_{n}\right)_{n \geq 1}$ i.i.d. Rademacher random variables.

Randomized Occupancy Process (ROP): $Z^{\varepsilon}(n)=\sum_{\ell \geq 1} \varepsilon_{\ell} \mathbb{1}_{\left\{K_{n, \ell}>0\right\}}$

Randomized Odd-Occupancy Process (ROOP): $U^{\varepsilon}(n)=\sum_{\ell \geq 1} \varepsilon_{\ell} \mathbb{1}_{\left\{K_{n, \ell} \text { odd }\right\}}$

Randomization

ROP

ROOP

Randomization

$Y_{1}=2$

ROP

ROOP

Randomization

Randomization

$$
Y_{1}=2, Y_{2}=4, Y_{3}=2
$$

ROP

ROOP

Randomization

Randomization

$Y_{1}=2, Y_{2}=4, Y_{3}=2, Y_{4}=1, Y_{5}=100$

ROP

ROOP

Randomization

Randomization

Randomization

ROP

Correlated random walks

$\operatorname{ROP}: Z^{\varepsilon}(n)=\sum_{\ell \geq 1} \varepsilon_{\ell} \mathbb{1}_{\left\{K_{n, \ell}>0\right\}}=\sum_{i=1}^{n} X_{i} \quad$ with $X_{i}=\varepsilon_{Y_{i}} \mathbb{1}_{\left\{K_{i, Y_{i}}=1\right\}}$.
ROOP: $U^{\varepsilon}(n)=\sum_{\ell \geq 1} \varepsilon_{\ell} \mathbb{1}_{\left\{K_{n, \ell} \text { odd }\right\}}=\sum_{i=1}^{n} X_{i} \quad$ with $X_{i}=\varepsilon_{Y_{i}(-1)^{K_{i, Y_{i}}+1}}$.

Correlated random walks

ROP: $Z^{\varepsilon}(n)=\sum_{\ell \geq 1} \varepsilon_{\ell} \mathbb{1}_{\left\{K_{n, \ell}>0\right\}}=\sum_{i=1}^{n} x_{i}$ with $X_{i}=\varepsilon_{Y_{i}} \mathbb{1}_{\left\{K_{i, Y_{i}}=1\right\}}$.
ROOP: $U^{\varepsilon}(n)=\sum_{\ell \geq 1} \varepsilon_{\ell} \mathbb{1}_{\left\{K_{n, \ell} \text { odd }\right\}}=\sum_{i=1}^{n} X_{i}$ with $X_{i}=\varepsilon_{Y_{i}}(-1)^{K_{i, Y_{i}}+1}$.
Functional CLT (D., Wang, 2016)
For $\sigma_{n}=\left(\Gamma(1-\beta) n^{\beta} L(n)\right)^{1 / 2}$,

$$
\begin{aligned}
& \left\{\frac{Z^{\varepsilon}(\lfloor n t\rfloor)}{\sigma_{n}}\right\}_{t \in[0,1]} \Rightarrow\left\{\mathbb{B}\left(t^{\beta}\right)\right\}_{t \in[0,1]} \quad \text { (time-changed Brownian motion) } \\
& \left\{\frac{U^{\varepsilon}(\lfloor n t\rfloor)}{\sigma_{n}}\right\}_{t \in[0,1]} \Rightarrow c_{\beta}\left\{\mathbb{B}^{\beta / 2}(t)\right\}_{t \in[0,1]} \quad \text { (fractional Brownian motion) }
\end{aligned}
$$

in $D([0,1])$.
Here $c_{\beta}=2^{(\beta-1) / 2}$.

Outline

Random Partition: Infinite Urn Model
Randomized Karlin model

Heavy-Tailed Randomization

Extremes and Random Sup-Measures

Heavy-tailed randomization

Assume $\left(\varepsilon_{n}\right)_{n \geq 1}$ are symmetric i.i.d. random variables in the DoA of a symmetric α-stable law, $\bar{\alpha} \in(0,2)$:

$$
\lim _{x \rightarrow \infty} \frac{\mathbb{P}\left(\left|\varepsilon_{1}\right|>x\right)}{x^{-\alpha}}=C_{\varepsilon} \in(0, \infty)
$$

Heavy-tailed randomization

Assume $\left(\varepsilon_{n}\right)_{n>1}$ are symmetric i.i.d. random variables in the DoA of a symmetric α-stable law, $\bar{\alpha} \in(0,2)$:

$$
\lim _{x \rightarrow \infty} \frac{\mathbb{P}\left(\left|\varepsilon_{1}\right|>x\right)}{x^{-\alpha}}=C_{\varepsilon} \in(0, \infty)
$$

Theorem (D., Samorodnitsky, Wang)
For $b_{n}=\left(\Gamma(1-\beta) n^{\beta} L(n)\right)^{1 / \alpha}$,

$$
\left\{\frac{Z^{\varepsilon}(\lfloor n t\rfloor)}{b_{n}}\right\}_{t \in[0,1]} \Rightarrow \sigma_{\varepsilon}\left\{\mathbb{Z}^{\alpha}\left(t^{\beta}\right)\right\}_{t \in[0,1]} \quad \text { (time-changed S } \alpha \text { S Lévy process) }
$$

in $D([0,1])$.
Here $\sigma_{\varepsilon}^{\alpha}=C_{\varepsilon} \int_{0}^{\infty} x^{-\alpha} \sin x d x$.

Heavy-tailed randomization

Let

$$
\mathbb{U}^{\alpha, \beta}(t):=\int_{\mathbb{R}_{+} \times \Omega^{\prime}} \mathbb{1}_{\left\{N(r t)\left(\omega^{\prime}\right) \text { odd }\right\}} m_{\alpha, \beta}\left(d r, d \omega^{\prime}\right), \quad t \geq 0
$$

where $m_{\alpha, \beta}$ is a $\mathrm{S} \alpha \mathrm{S}$ random measure on $\mathbb{R}_{+} \times \Omega^{\prime}$ with control measure

$$
\Gamma(1-\beta)^{-1} \beta r^{-\beta-1} d r \times \mathbb{P}^{\prime}\left(d \omega^{\prime}\right)
$$

and N is a standard Poisson process defined on the probability space $\left(\Omega^{\prime}, \mathcal{F}^{\prime}, \mathbb{P}^{\prime}\right)$.

Heavy-tailed randomization

Let

$$
\mathbb{U}^{\alpha, \beta}(t):=\int_{\mathbb{R}_{+} \times \Omega^{\prime}} \mathbb{1}_{\left\{N(r t)\left(\omega^{\prime}\right) \text { odd }\right\}} m_{\alpha, \beta}\left(d r, d \omega^{\prime}\right), \quad t \geq 0
$$

where $m_{\alpha, \beta}$ is a $\mathrm{S} \alpha \mathrm{S}$ random measure on $\mathbb{R}_{+} \times \Omega^{\prime}$ with control measure

$$
\Gamma(1-\beta)^{-1} \beta r^{-\beta-1} d r \times \mathbb{P}^{\prime}\left(d \omega^{\prime}\right)
$$

and N is a standard Poisson process defined on the probability space $\left(\Omega^{\prime}, \mathcal{F}^{\prime}, \mathbb{P}^{\prime}\right)$.
Theorem (D., Samorodnitsky, Wang)
For $b_{n}=\left(\Gamma(1-\beta) n^{\beta} L(n)\right)^{1 / \alpha}$,

$$
\left\{\frac{U^{\varepsilon}(\lfloor n t\rfloor)}{b_{n}}\right\}_{t \in[0,1]} \xrightarrow{\text { f.d.d. }} \sigma_{\varepsilon}\left\{\mathbb{U}^{\alpha, \beta}(t)\right\}_{t \in[0,1]}
$$

Heavy-tailed randomization

Let

$$
\mathbb{U}^{\alpha, \beta}(t):=\int_{\mathbb{R}_{+} \times \Omega^{\prime}} \mathbb{1}_{\left\{N(r t)\left(\omega^{\prime}\right) \text { odd }\right\}} m_{\alpha, \beta}\left(d r, d \omega^{\prime}\right), \quad t \geq 0
$$

where $m_{\alpha, \beta}$ is a $\mathrm{S} \alpha \mathrm{S}$ random measure on $\mathbb{R}_{+} \times \Omega^{\prime}$ with control measure

$$
\Gamma(1-\beta)^{-1} \beta r^{-\beta-1} d r \times \mathbb{P}^{\prime}\left(d \omega^{\prime}\right)
$$

and N is a standard Poisson process defined on the probability space $\left(\Omega^{\prime}, \mathcal{F}^{\prime}, \mathbb{P}^{\prime}\right)$.
Theorem (D., Samorodnitsky, Wang)
For $b_{n}=\left(\Gamma(1-\beta) n^{\beta} L(n)\right)^{1 / \alpha}$,

$$
\left\{\frac{U^{\varepsilon}(\lfloor n t\rfloor)}{b_{n}}\right\}_{t \in[0,1]} \stackrel{\text { f.d.d. }}{\rightarrow} \sigma_{\varepsilon}\left\{\mathbb{U}^{\alpha, \beta}(t)\right\}_{t \in[0,1]} .
$$

If $\alpha<1$, then the convergence in distribution in $D([0,1])$ holds.

Heavy-tailed randomization

Let

$$
\mathbb{U}^{\alpha, \beta}(t):=\int_{\mathbb{R}_{+} \times \Omega^{\prime}} \mathbb{1}_{\left\{N(r t)\left(\omega^{\prime}\right) \text { odd }\right\}} m_{\alpha, \beta}\left(d r, d \omega^{\prime}\right), \quad t \geq 0
$$

where $m_{\alpha, \beta}$ is a $\mathrm{S} \alpha \mathrm{S}$ random measure on $\mathbb{R}_{+} \times \Omega^{\prime}$ with control measure

$$
\Gamma(1-\beta)^{-1} \beta r^{-\beta-1} d r \times \mathbb{P}^{\prime}\left(d \omega^{\prime}\right)
$$

and N is a standard Poisson process defined on the probability space $\left(\Omega^{\prime}, \mathcal{F}^{\prime}, \mathbb{P}^{\prime}\right)$.
Theorem (D., Samorodnitsky, Wang)
For $b_{n}=\left(\Gamma(1-\beta) n^{\beta} L(n)\right)^{1 / \alpha}$,

$$
\left\{\frac{U^{\varepsilon}(\lfloor n t\rfloor)}{b_{n}}\right\}_{t \in[0,1]} \stackrel{\text { f.d.d. }}{\rightarrow} \sigma_{\varepsilon}\left\{\mathbb{U}^{\alpha, \beta}(t)\right\}_{t \in[0,1]} .
$$

If $\alpha<1$, then the convergence in distribution in $D([0,1])$ holds.
If $\alpha \geq 1$, open question.

Heavy-tailed randomization

Let

$$
\mathbb{U}^{\alpha, \beta}(t):=\int_{\mathbb{R}_{+} \times \Omega^{\prime}} \mathbb{1}_{\left\{N(r t)\left(\omega^{\prime}\right) \text { odd }\right\}} m_{\alpha, \beta}\left(d r, d \omega^{\prime}\right), \quad t \geq 0
$$

where $m_{\alpha, \beta}$ is a $\mathrm{S} \alpha \mathrm{S}$ random measure on $\mathbb{R}_{+} \times \Omega^{\prime}$ with control measure

$$
\Gamma(1-\beta)^{-1} \beta r^{-\beta-1} d r \times \mathbb{P}^{\prime}\left(d \omega^{\prime}\right)
$$

and N is a standard Poisson process defined on the probability space $\left(\Omega^{\prime}, \mathcal{F}^{\prime}, \mathbb{P}^{\prime}\right)$.

Theorem (D., Samorodnitsky, Wang)

For $b_{n}=\left(\Gamma(1-\beta) n^{\beta} L(n)\right)^{1 / \alpha}$,

$$
\left\{\frac{U^{\varepsilon}(\lfloor n t\rfloor)}{b_{n}}\right\}_{t \in[0,1]} \stackrel{\text { f.d.d. }}{\rightarrow} \sigma_{\varepsilon}\left\{\mathbb{U}^{\alpha, \beta}(t)\right\}_{t \in[0,1]} .
$$

If $\alpha<1$, then the convergence in distribution in $D([0,1])$ holds.
If $\alpha \geq 1$, open question.
Properties: $\mathbb{U}^{\alpha, \beta}$ is β / α-self-similar with non-ergodic stationary increments
(Samorodnitsky, 2005)

Idea of the proof

Let $d \geq 1$ and $\delta \in \Lambda_{d}=\{0,1\}^{d} \backslash\{(0, \ldots, 0)\}$.
Consider the multiparameter odd-occupancy process

$$
M^{\delta}(\mathbf{n}):=\sum_{k=1}^{\infty} \mathbb{1}_{\left\{K_{\mathbf{n}, k}=\boldsymbol{\delta} \bmod 2\right\}}=\sum_{k=1}^{\infty} \prod_{j=1}^{d} \mathbb{1}_{\left\{K_{\left.n_{j}, k=\delta_{j} \bmod 2\right\}}, \quad \mathbf{n} \in \mathbb{N}^{d} . . . ~\right.}^{\text {. }}
$$

Idea of the proof

Let $d \geq 1$ and $\delta \in \Lambda_{d}=\{0,1\}^{d} \backslash\{(0, \ldots, 0)\}$.
Consider the multiparameter odd-occupancy process

$$
M^{\delta}(\mathbf{n}):=\sum_{k=1}^{\infty} \mathbb{1}_{\left\{K_{\mathbf{n}, k}=\delta \bmod 2\right\}}=\sum_{k=1}^{\infty} \prod_{j=1}^{d} \mathbb{1}_{\left\{K_{n_{j}, k}=\delta_{j} \bmod 2\right\}}, \quad \mathbf{n} \in \mathbb{N}^{d}
$$

Then

$$
\lim _{n \rightarrow \infty} \frac{M^{\delta}(\lfloor n t\rfloor)}{n^{\beta} L(n)}=\int_{0}^{\infty} \mathbb{P}(\vec{N}(r \mathbf{t})=\delta \bmod 2) \beta r^{-\beta-1} d r \quad \text { in probability. }
$$

Idea of the proof

Let $d \geq 1$ and $\delta \in \Lambda_{d}=\{0,1\}^{d} \backslash\{(0, \ldots, 0)\}$.
Consider the multiparameter odd-occupancy process

$$
M^{\delta}(\mathbf{n}):=\sum_{k=1}^{\infty} \mathbb{1}_{\left\{K_{\mathbf{n}, k}=\delta \bmod 2\right\}}=\sum_{k=1}^{\infty} \prod_{j=1}^{d} \mathbb{1}_{\left\{K_{\left.n_{j}, k=\delta_{j} \bmod 2\right\}}, \quad \mathbf{n} \in \mathbb{N}^{d} . . . ~\right.}^{\text {. }}
$$

Then

$$
\lim _{n \rightarrow \infty} \frac{M^{\delta}(\lfloor n t\rfloor)}{n^{\beta} L(n)}=\int_{0}^{\infty} \mathbb{P}(\vec{N}(r \mathbf{t})=\delta \bmod 2) \beta r^{-\beta-1} d r \quad \text { in probability. }
$$

Moreover,

$$
\left\{\frac{M^{\delta}(\lfloor n \mathbf{t}\rfloor)-\mathbb{E} M^{\delta}(\lfloor n \mathbf{t}\rfloor)}{\left(n^{\beta} L(n)\right)^{1 / 2}}\right\}_{\mathbf{t} \in[0,1]^{d}} \Rightarrow\left\{\mathbb{M}^{\delta}(\mathbf{t})\right\}_{\mathbf{t} \in[0,1]^{d}}
$$

in $D\left([0,1]^{d}\right)$, where $\mathbb{M}^{\boldsymbol{\delta}}$ is a centered Gaussian random field with

$$
\operatorname{Cov}\left(\mathbb{M}^{\boldsymbol{\delta}}(\mathbf{t}), \mathbb{M}^{\boldsymbol{\delta}}(\mathbf{s})\right)=\int_{0}^{\infty} \operatorname{Cov}\left(\mathbb{1}_{\{\vec{N}(r \mathbf{t})=\boldsymbol{\delta} \bmod 2\}}, \mathbb{1}_{\{\vec{N}(r \mathrm{~s})=\boldsymbol{\operatorname { m o d } 2 \}}}\right) \beta r^{-\beta-1} d r .
$$

Outline

Random Partition: Infinite Urn Model
Randomized Karlin model
Heavy-Tailed Randomization

Extremes and Random Sup-Measures

Related models for extremes

Infinite urn model $\left(Y_{i}\right)_{i \geq 1}$ with positive heavy-tailed randomization $\left(\varepsilon_{k}\right)_{k \geq 1}$.
Empirical random sup-measures on $[0,1]$

$$
M_{n}(A)=\max _{i / n \in A} X_{i}, \quad A \subset[0,1]
$$

with

$$
\begin{aligned}
& X_{i} & =\varepsilon_{Y_{i}} \quad \text { (occupancy), } \\
\text { or } & X_{i} & =\varepsilon_{Y_{i}} \mathbb{1}_{\left\{K_{i, Y_{i}} \text { odd }\right\}} \quad \text { (odd-occupancy), } \\
\text { or } & X_{i} & =\varepsilon_{Y_{i}} \mathbb{1}_{\left\{K_{i, Y_{i}}=1\right\}} \quad \text { (first-occupancy). }
\end{aligned}
$$

Related models for extremes

Infinite urn model $\left(Y_{i}\right)_{i \geq 1}$ with positive heavy-tailed randomization $\left(\varepsilon_{k}\right)_{k \geq 1}$.
Empirical random sup-measures on $[0,1]$

$$
M_{n}(A)=\max _{i / n \in A} X_{i}, \quad A \subset[0,1]
$$

with

$$
\begin{aligned}
& X_{i} & =\varepsilon_{Y_{i}} \quad \text { (occupancy), } \\
\text { or } & X_{i} & =\varepsilon_{Y_{i}} \mathbb{1}_{\left\{K_{i, Y_{i}} \text { odd }\right\}} \quad \text { (odd-occupancy), } \\
\text { or } & X_{i} & =\varepsilon_{Y_{i}} \mathbb{1}_{\left\{K_{i, Y_{i}}=1\right\}} \quad \text { (first-occupancy). }
\end{aligned}
$$

They all have the same associated extremal process

$$
M_{n}(t)=M_{n}([0, t])=\max _{i=1, \ldots,\lfloor n t\rfloor} X_{i}, \quad t \in[0,1] .
$$

In the sequel, $X_{i}=\varepsilon_{Y_{i}}$.

Related models for extremes

Related models for extremes

$M_{n}(\cdot)=\max _{i / n \in .} X_{i}$, for $X_{i}=\varepsilon_{Y_{i}}, i \geq 1$.
Theorem (D., Wang)
For $b_{n}=\left(C_{\varepsilon} \Gamma(1-\beta) n^{\beta} L(n)\right)^{1 / \alpha}$,

$$
\frac{1}{b_{n}} M_{n} \Rightarrow \mathcal{M}_{\alpha, \beta}, \text { as } n \rightarrow \infty,
$$

in $\operatorname{SM}([0,1])$, where $\mathcal{M}_{\alpha, \beta}$ is the Karlin random sup-measure on $[0,1]$:

$$
\mathcal{M}_{\alpha, \beta}(A):=\sup _{\ell \geq 1} \frac{1}{\Gamma_{\ell}^{1 / \alpha}} \mathbb{1}_{\left\{N_{\ell}\left(x_{\ell} A\right) \neq 0\right\}}, \quad A \subset[0,1]
$$

where $\left\{\left(\Gamma_{\ell}, x_{\ell}\right)\right\}_{\ell \geq 1}$ is an enumeration of a Poisson process on $\mathbb{R}_{+} \times \mathbb{R}_{+}$with intensity $d \gamma \times \Gamma(1-\beta)^{-1} \beta x^{-\beta-1} d x$ and $\left\{N_{\ell}\right\}_{\ell \geq 1}$ are i.i.d. standard Poisson processes on \mathbb{R}_{+}.

Related models for extremes

$M_{n}(\cdot)=\max _{i / n \in .} X_{i}$, for $X_{i}=\varepsilon_{Y_{i}}, i \geq 1$.
Theorem (D., Wang)
For $b_{n}=\left(C_{\varepsilon} \Gamma(1-\beta) n^{\beta} L(n)\right)^{1 / \alpha}$,

$$
\frac{1}{b_{n}} M_{n} \Rightarrow \mathcal{M}_{\alpha, \beta}, \text { as } n \rightarrow \infty
$$

in $\operatorname{SM}([0,1])$, where $\mathcal{M}_{\alpha, \beta}$ is the Karlin random sup-measure on $[0,1]$:

$$
\mathcal{M}_{\alpha, \beta}(A):=\sup _{\ell \geq 1} \frac{1}{\Gamma_{\ell}^{1 / \alpha}} \mathbb{1}_{\left\{N_{\ell}\left(x_{\ell} A\right) \neq 0\right\}}, \quad A \subset[0,1]
$$

where $\left\{\left(\Gamma_{\ell}, x_{\ell}\right)\right\}_{\ell \geq 1}$ is an enumeration of a Poisson process on $\mathbb{R}_{+} \times \mathbb{R}_{+}$with intensity $d \gamma \times \Gamma(1-\beta)^{-1} \beta x^{-\beta-1} d x$ and $\left\{N_{\ell}\right\}_{\ell \geq 1}$ are i.i.d. standard Poisson processes on \mathbb{R}_{+}.
$\mathcal{M}_{\alpha, \beta}$ has been considered as example of Choquet-RSM in Molchanov \& Strokorb (2016).

Karlin random sup-measure

For all $z>0$,

$$
\mathbb{P}\left(\mathcal{M}_{\alpha, \beta}(A) \leq z\right)=\exp \left(-\frac{\theta_{\beta}(A)}{z^{\alpha}}\right) \quad \text { with } \quad \theta_{\beta}(A):=\operatorname{Leb}(A)^{\beta}
$$

The function θ_{β} is the extremal coefficient of $\mathcal{M}_{\alpha, \beta}$.

Karlin random sup-measure

For all $z>0$,

$$
\mathbb{P}\left(\mathcal{M}_{\alpha, \beta}(A) \leq z\right)=\exp \left(-\frac{\theta_{\beta}(A)}{z^{\alpha}}\right) \quad \text { with } \quad \theta_{\beta}(A):=\operatorname{Leb}(A)^{\beta}
$$

The function θ_{β} is the extremal coefficient of $\mathcal{M}_{\alpha, \beta}$.
Another representation:

$$
\mathcal{M}_{\alpha, \beta}(A) \stackrel{d}{=} \sup _{\ell \geq 1} \frac{1}{\Gamma_{\ell}^{1 / \alpha}} \mathbb{1}_{\left\{\mathcal{R}_{\ell}^{(\beta)} \cap A \neq \emptyset\right\}}, \quad A \subset[0,1],
$$

with $\left(\mathcal{R}_{\ell}^{(\beta)}\right)_{\ell \geq 1}$ i.i.d. random sets such that

$$
\mathbb{P}\left(\mathcal{R}^{(\beta)} \cap A \neq \emptyset\right)=\operatorname{Leb}(A)^{\beta} .
$$

Karlin random sup-measure

For all $z>0$,

$$
\mathbb{P}\left(\mathcal{M}_{\alpha, \beta}(A) \leq z\right)=\exp \left(-\frac{\theta_{\beta}(A)}{z^{\alpha}}\right) \quad \text { with } \quad \theta_{\beta}(A):=\operatorname{Leb}(A)^{\beta}
$$

The function θ_{β} is the extremal coefficient of $\mathcal{M}_{\alpha, \beta}$.
Another representation:

$$
\mathcal{M}_{\alpha, \beta}(A) \stackrel{d}{=} \sup _{\ell \geq 1} \frac{1}{\Gamma_{\ell}^{1 / \alpha}} \mathbb{1}_{\left\{\mathcal{R}_{\ell}^{(\beta)} \cap A \neq \emptyset\right\}}, \quad A \subset[0,1],
$$

with $\left(\mathcal{R}_{\ell}^{(\beta)}\right)_{\ell \geq 1}$ i.i.d. random sets such that

Remark:

$$
\begin{aligned}
& \mathbb{P}\left(\mathcal{R}^{(\beta)} \cap A \neq \emptyset\right)=\operatorname{Leb}(A)^{\beta} . \\
& \mathcal{R}^{(\beta)} \stackrel{d}{=} \bigcup_{i=1}^{Q_{\beta}}\left\{U_{i}\right\},
\end{aligned}
$$

with $\left(U_{i}\right)$ be i.i.d. uniformly distributed over $(0,1)$ and Q_{β} an \mathbb{N}-valued random variable such that

$$
\mathbb{P}\left(Q_{\beta}=k\right)=\frac{\beta(1-\beta)(2-\beta) \cdots(k-1-\beta)}{k!}, \quad k \in \mathbb{N} .
$$

Karlin Random Sup-Measure

The Karlin RSM can be compared with:

$$
\mathcal{M}_{\alpha}^{i s}(\cdot)=\sup _{\ell \in \mathbb{N}} \frac{1}{\Gamma_{\ell}^{1 / \alpha}} \mathbb{1}_{\left\{U_{\ell} \in \cdot\right\}} \quad \text { (independently scattered RSM) }
$$

where $\left(U_{\ell}\right)$ are i.i.d. uniformely distributed on $[0,1]$, or

Karlin Random Sup-Measure

The Karlin RSM can be compared with:

$$
\mathcal{M}_{\alpha}^{i s}(\cdot)=\sup _{\ell \in \mathbb{N}} \frac{1}{\Gamma_{\ell}^{1 / \alpha}} \mathbb{1}_{\left\{U_{\ell} \in \cdot\right\}} \quad \text { (independently scattered RSM) }
$$

where $\left(U_{\ell}\right)$ are i.i.d. uniformely distributed on $[0,1]$, or

$$
\mathcal{M}_{\alpha, \beta}^{s r}(\cdot)=\sup _{\ell \in \mathbb{N}} \frac{1}{\Gamma_{\ell}^{1 / \alpha}} \mathbb{1}_{\left\{s_{\ell}^{(\beta)} \cap \cdot \neq \emptyset\right\}} \quad \text { (stable-regenerative RSM) }
$$

where $\left(S_{\ell}^{(\beta)}\right)$ are i.i.d. random closed sets of $[0,1]$, each consisting of a randomly shifted β-stable regenerative set.

Karlin Random Sup-Measure

The Karlin RSM can be compared with:

$$
\mathcal{M}_{\alpha}^{i s}(\cdot)=\sup _{\ell \in \mathbb{N}} \frac{1}{\Gamma_{\ell}^{1 / \alpha}} \mathbb{1}_{\left\{U_{\ell} \in \cdot\right\}} \quad \text { (independently scattered RSM) }
$$

where $\left(U_{\ell}\right)$ are i.i.d. uniformely distributed on $[0,1]$, or

$$
\mathcal{M}_{\alpha, \beta}^{s r}(\cdot)=\sup _{\ell \in \mathbb{N}} \frac{1}{\Gamma_{\ell}^{1 / \alpha}} \mathbb{1}_{\left\{s_{\ell}^{(\beta)} \cap \cdot \neq \emptyset\right\}} \quad \text { (stable-regenerative RSM) }
$$

where $\left(S_{\ell}^{(\beta)}\right)$ are i.i.d. random closed sets of $[0,1]$, each consisting of a randomly shifted β-stable regenerative set.

The max-increment process $\{\mathcal{M}((t, t+1])\}_{t \in \mathbb{R}}$ of
$\mathcal{M}_{\alpha}^{\text {is }}$ is mixing,
$\mathcal{M}_{\alpha, \beta}^{s r}$ is ergodic but not mixing, $\mathcal{M}_{\alpha, \beta}^{\alpha, \beta}$ is not ergodic.

Idea of the proof of the theorem

For each $n \in \mathbb{N}, \ell \geq 1$, let

$$
R_{n, \ell}:=\left\{i \in\{1, \ldots, n\}: Y_{i}=\ell\right\}
$$

and consider the point process

$$
\xi_{n}:=\sum_{\ell \geq 1, K_{n, \ell} \neq 0} \delta\left(\frac{\varepsilon_{\ell}}{b_{n}}, \frac{R_{n, \ell}}{n}\right)
$$

Idea of the proof of the theorem

For each $n \in \mathbb{N}, \ell \geq 1$, let

$$
R_{n, \ell}:=\left\{i \in\{1, \ldots, n\}: Y_{i}=\ell\right\}
$$

and consider the point process

$$
\xi_{n}:=\sum_{\ell \geq 1, K_{n, \ell} \neq 0} \delta\left(\frac{\varepsilon_{\ell}}{b_{n}}, \frac{R_{n}, \ell}{n}\right),
$$

Theorem
For $b_{n}=\left(C_{\varepsilon} \Gamma(1-\beta) n^{\beta} L(n)\right)^{1 / \alpha}$,

$$
\xi_{n} \Rightarrow \xi:=\sum_{\ell=1}^{\infty} \delta_{\left(\Gamma_{\ell}^{-1 / \alpha}, \mathcal{R}_{\ell}^{(\beta)}\right)}, \text { as } n \rightarrow \infty,
$$

in $\mathfrak{M}_{+}((0, \infty) \times \mathcal{F}([0,1]))$.

Introduce
$\left(\varepsilon_{n, k}\right)_{k=1, \ldots, Z(n)}$ the order statistics of $\left\{\varepsilon_{\ell}: K_{n, \ell} \neq 0\right\}$ (assume no equalities),

Introduce
$\left(\varepsilon_{n, k}\right)_{k=1, \ldots, Z(n)}$ the order statistics of $\left\{\varepsilon_{\ell}: K_{n, \ell} \neq 0\right\}$ (assume no equalities), $\hat{\ell}_{n, k}$ the index such that $\varepsilon_{n, k}=\varepsilon_{\hat{\ell}_{n, k}}$, $\widehat{R}_{n, k}=\left\{i \in\{1, \ldots, n\}: Y_{i}=\hat{\ell}_{n, k}\right\}$.

Introduce
$\left(\varepsilon_{n, k}\right)_{k=1, \ldots, Z(n)}$ the order statistics of $\left\{\varepsilon_{\ell}: K_{n, \ell} \neq 0\right\}$ (assume no equalities), $\hat{\ell}_{n, k}$ the index such that $\varepsilon_{n, k}=\varepsilon_{\hat{\ell}_{n, k}}$,
$\widehat{R}_{n, k}=\left\{i \in\{1, \ldots, n\}: Y_{i}=\hat{\ell}_{n, k}\right\}$.
Then

$$
\xi_{n}=\sum_{k=1}^{Z(n)} \delta_{\left(\frac{\varepsilon_{n, k}}{b_{n}}, \frac{\widehat{R}_{n, k}}{n}\right)}
$$

Introduce
$\left(\varepsilon_{n, k}\right)_{k=1, \ldots, Z(n)}$ the order statistics of $\left\{\varepsilon_{\ell}: K_{n, \ell} \neq 0\right\}$ (assume no equalities), $\hat{\ell}_{n, k}$ the index such that $\varepsilon_{n, k}=\varepsilon_{\hat{\ell}_{n, k}}$,
$\widehat{R}_{n, k}=\left\{i \in\{1, \ldots, n\}: Y_{i}=\hat{\ell}_{n, k}\right\}$.
Then

$$
\xi_{n}=\sum_{k=1}^{Z(n)} \delta_{\left(\frac{\varepsilon_{n, k}}{b_{n}}, \frac{\widehat{R}_{n, k}}{n}\right)}
$$

The joint convergence of the $\frac{\widehat{R}_{n, k}}{n}$ uses Poissonization technique.
Let N be a standard Poisson process on \mathbb{R}_{+}, and $\tau_{1}, \tau_{2}, \ldots$ its arrival times. At time n :

$$
\widetilde{K}_{n, \ell}=\#\left\{i: Y_{i}=\ell \text { and } \tau_{i} \leq n\right\} \text { and } \widetilde{Z}(n)=\#\left\{\ell: \widetilde{K}_{n \ell} \neq 0\right\}
$$

Introduce
$\left(\varepsilon_{n, k}\right)_{k=1, \ldots, Z(n)}$ the order statistics of $\left\{\varepsilon_{\ell}: K_{n, \ell} \neq 0\right\}$ (assume no equalities), $\hat{\ell}_{n, k}$ the index such that $\varepsilon_{n, k}=\varepsilon_{\hat{\ell}_{n, k}}$,
$\widehat{R}_{n, k}=\left\{i \in\{1, \ldots, n\}: Y_{i}=\hat{\ell}_{n, k}\right\}$.
Then

$$
\xi_{n}=\sum_{k=1}^{Z(n)} \delta_{\left(\frac{\varepsilon_{n, k}}{b_{n}}, \frac{\widehat{R}_{n, k}}{n}\right)}
$$

The joint convergence of the $\frac{\widehat{R}_{n, k}}{n}$ uses Poissonization technique.
Let N be a standard Poisson process on \mathbb{R}_{+}, and $\tau_{1}, \tau_{2}, \ldots$ its arrival times. At time n :

$$
\widetilde{K}_{n, \ell}=\#\left\{i: Y_{i}=\ell \text { and } \tau_{i} \leq n\right\} \text { and } \widetilde{Z}(n)=\#\left\{\ell: \widetilde{K}_{n \ell} \neq 0\right\}
$$

The order statistics of $\left\{\varepsilon_{\ell}: \widetilde{K}_{n, \ell} \neq 0\right\}$ is $\left(\varepsilon_{N(n), k}\right)$.

Introduce
$\left(\varepsilon_{n, k}\right)_{k=1, \ldots, Z(n)}$ the order statistics of $\left\{\varepsilon_{\ell}: K_{n, \ell} \neq 0\right\}$ (assume no equalities), $\hat{\ell}_{n, k}$ the index such that $\varepsilon_{n, k}=\varepsilon_{\hat{\ell}_{n, k}}$,
$\widehat{R}_{n, k}=\left\{i \in\{1, \ldots, n\}: Y_{i}=\hat{\ell}_{n, k}\right\}$.
Then

$$
\xi_{n}=\sum_{k=1}^{Z(n)} \delta_{\left(\frac{\varepsilon_{n, k}}{b_{n}}, \frac{\widehat{R}_{n, k}}{n}\right)}
$$

The joint convergence of the $\frac{\widehat{R}_{n, k}}{n}$ uses Poissonization technique.
Let N be a standard Poisson process on \mathbb{R}_{+}, and $\tau_{1}, \tau_{2}, \ldots$ its arrival times. At time n:

$$
\widetilde{K}_{n, \ell}=\#\left\{i: Y_{i}=\ell \text { and } \tau_{i} \leq n\right\} \text { and } \widetilde{Z}(n)=\#\left\{\ell: \widetilde{K}_{n \ell} \neq 0\right\}
$$

The order statistics of $\left\{\varepsilon_{\ell}: \widetilde{K}_{n, \ell} \neq 0\right\}$ is $\left(\varepsilon_{N(n), k}\right)$.
Let $\tilde{\ell}_{n, k}$ the index s.t. $\varepsilon_{n, k}=\varepsilon_{\tilde{\ell}_{n, k}}$ and $\widetilde{R}_{n, k}=\left\{\tau_{i} \leq n: Y_{i}=\tilde{\ell}_{n, k}\right\}$.
Then

$$
d_{H}\left(\widetilde{R}_{n, k} / n, \widehat{R}_{n, k} / n\right) \rightarrow 0, \text { as } n \rightarrow \infty
$$

