Threshold Selection by Distance Minimization

> (work in progress)

Holger Drees

University of Hamburg
Workshop on Self-Similarity, Long-Range Dependence and Extremes June 2018
based on joint work with Anja Janßen (KTH Stockholm), and Sid Resnick and Tiandong Wang (Cornell)

POT-analysis of heavy tails

$X_{i}, 1 \leq i \leq n$, iid observations with $\operatorname{cdf} F \in D\left(G_{1 / \alpha}\right), \alpha>0$, i.e. as $t \rightarrow \infty$

$$
\frac{1-F(t x)}{1-F(t)} \rightarrow x^{-\alpha}, \quad \forall x>0
$$

Hill estimator of α :

$$
\hat{\alpha}_{n, k}:=1 /\left[\frac{1}{k-1} \sum_{i=1}^{k-1} \log \frac{X_{n-i+1: n}}{X_{n-k+1: n}}\right]
$$

where $X_{j: n}$ denotes the j th smallest order statistic.
Hill estimator is essentially ML estimator if k largest observations behave like Pareto random variables.

Performance strongly depends on choice of k

- k must be sufficiently small such that Pareto approximation is justified (\sim small bias)
- k must be sufficiently large such that average is taken over many observations (\sim small variance)

POT-analysis of heavy tails

$X_{i}, 1 \leq i \leq n$, iid observations with $\operatorname{cdf} F \in D\left(G_{1 / \alpha}\right), \alpha>0$, i.e. as $t \rightarrow \infty$

$$
\frac{1-F(t x)}{1-F(t)} \rightarrow x^{-\alpha}, \quad \forall x>0
$$

Hill estimator of α :

$$
\hat{\alpha}_{n, k}:=1 /\left[\frac{1}{k-1} \sum_{i=1}^{k-1} \log \frac{X_{n-i+1: n}}{X_{n-k+1: n}}\right]
$$

where $X_{j: n}$ denotes the j th smallest order statistic.
Hill estimator is essentially ML estimator if k largest observations behave like Pareto random variables.

Performance strongly depends on choice of k :

- k must be sufficiently small such that Pareto approximation is justified (\sim small bias)
- k must be sufficiently large such that average is taken over many observations (\sim small variance)

Threshold selection

$$
\hat{\alpha}_{n, k}:=1 /\left[\frac{1}{k-1} \sum_{i=1}^{k-1} \log \frac{X_{n-i+1: n}}{X_{n-k+1: n}}\right]
$$

Several procedures for data-dependent selection of k have been suggested, e.g. using

- plug-in methods: Hall \& Welsh ('85), ...

Threshold selection

$$
\hat{\alpha}_{n, k}:=1 /\left[\frac{1}{k-1} \sum_{i=1}^{k-1} \log \frac{X_{n-i+1: n}}{X_{n-k+1: n}}\right]
$$

Several procedures for data-dependent selection of k have been suggested, e.g. using

- plug-in methods: Hall \& Welsh ('85), ...
- resampling: Hall ('90), Danielsson et al. ('01), Gomes \& Oliveira ('01), ...

Threshold selection

$$
\hat{\alpha}_{n, k}:=1 /\left[\frac{1}{k-1} \sum_{i=1}^{k-1} \log \frac{X_{n-i+1: n}}{X_{n-k+1: n}}\right]
$$

Several procedures for data-dependent selection of k have been suggested, e.g. using

- plug-in methods: Hall \& Welsh ('85), ...
- resampling: Hall ('90), Danielsson et al. ('01), Gomes \& Oliveira ('01), ...
- Lepskii method: D. \& Kaufmann ('98), ...
- using log-spacings: Guillou \& Hall ('01), Beirlant et al. ('04),

Threshold selection

$$
\hat{\alpha}_{n, k}:=1 /\left[\frac{1}{k-1} \sum_{i=1}^{k-1} \log \frac{X_{n-i+1: n}}{X_{n-k+1: n}}\right]
$$

Several procedures for data-dependent selection of k have been suggested, e.g. using

- plug-in methods: Hall \& Welsh ('85), ...
- resampling: Hall ('90), Danielsson et al. ('01), Gomes \& Oliveira ('01), ...
- Lepskii method: D. \& Kaufmann ('98), ...
- using log-spacings: Guillou \& Hall ('01), Beirlant et al. ('04), ...

Threshold selection

$$
\hat{\alpha}_{n, k}:=1 /\left[\frac{1}{k-1} \sum_{i=1}^{k-1} \log \frac{X_{n-i+1: n}}{X_{n-k+1: n}}\right]
$$

Several procedures for data-dependent selection of k have been suggested, e.g. using

- plug-in methods: Hall \& Welsh ('85), ...
- resampling: Hall ('90), Danielsson et al. ('01), Gomes \& Oliveira ('01), ...
- Lepskii method: D. \& Kaufmann ('98), ...
- using log-spacings: Guillou \& Hall ('01), Beirlant et al. ('04), ...
- distance minimization: Clauset, Shalizi \& Newman (2009) (over 2700 citations)

> Idea: Choose k such that the Kolmogorov-Smirnov distance between empirical cdf of exceedances over $X_{n-k+1: n}$ and fitted Pareto distribution is minimal

More precisely, minimize

Threshold selection

$$
\hat{\alpha}_{n, k}:=1 /\left[\frac{1}{k-1} \sum_{i=1}^{k-1} \log \frac{X_{n-i+1: n}}{X_{n-k+1: n}}\right]
$$

Several procedures for data-dependent selection of k have been suggested, e.g. using

- plug-in methods: Hall \& Welsh ('85), ...
- resampling: Hall ('90), Danielsson et al. ('01), Gomes \& Oliveira ('01), ...
- Lepskii method: D. \& Kaufmann ('98), ...
- using log-spacings: Guillou \& Hall ('01), Beirlant et al. ('04), ...
- distance minimization: Clauset, Shalizi \& Newman (2009) (over 2700 citations)
Idea: Choose k such that the Kolmogorov-Smirnov distance between empirical cdf of exceedances over $X_{n-k+1: n}$ and fitted Pareto distribution is minimal.
More precisely, minimize

$$
D_{n, k}:=\sup _{y \geq 1}\left|\frac{1}{k-1} \sum_{i=1}^{k-1} 1_{(y, \infty)}\left(\frac{X_{n-i+1: n}}{X_{n-k+1: n}}\right)-y^{-\hat{\alpha}_{n, k}}\right|
$$

Threshold selection by distance minimization

$$
\operatorname{minimize} \quad D_{n, k}:=\sup _{y \geq 1}\left|\frac{1}{k-1} \sum_{i=1}^{k-1} 1_{(y, \infty)}\left(\frac{X_{n-i+1: n}}{X_{n-k+1: n}}\right)-y^{-\hat{\alpha}_{n, k}}\right|
$$

Rationale:

- If Pareto approximation is accurate for top k order statistics, then $D_{n, k}$ is of stochastic order $k^{-1 / 2}$, i.e. it shrinks with increasing k
- If below threshold u cdf is poorly approximated by Pareto cdf, $D_{n, k}$ quickly increases as k increases such that $X_{n-k: n}$ shrinks below u.
\qquad
\qquad
\square much smaller than n due to random fluctuations.

Threshold selection by distance minimization

$$
\operatorname{minimize} \quad D_{n, k}:=\sup _{y \geq 1}\left|\frac{1}{k-1} \sum_{i=1}^{k-1} 1_{(y, \infty)}\left(\frac{X_{n-i+1: n}}{X_{n-k+1: n}}\right)-y^{-\hat{\alpha}_{n, k}}\right|
$$

Rationale:

- If Pareto approximation is accurate for top k order statistics, then $D_{n, k}$ is of stochastic order $k^{-1 / 2}$, i.e. it shrinks with increasing k
- If below threshold u cdf is poorly approximated by Pareto cdf, $D_{n, k}$ quickly increases as k increases such that $X_{n-k: n}$ shrinks below u.

Indeed, it seems plausible that procedure yields k converging at the "optimal rate"

However, even if all observations are exact Pareto, $D_{n, k}$ will be minimal for k much smaller than n due to random fluctuations.

Threshold selection by distance minimization

$$
\operatorname{minimize} \quad D_{n, k}:=\sup _{y \geq 1}\left|\frac{1}{k-1} \sum_{i=1}^{k-1} 1_{(y, \infty)}\left(\frac{X_{n-i+1: n}}{X_{n-k+1: n}}\right)-y^{-\hat{\alpha}_{n, k}}\right|
$$

Rationale:

- If Pareto approximation is accurate for top k order statistics, then $D_{n, k}$ is of stochastic order $k^{-1 / 2}$, i.e. it shrinks with increasing k
- If below threshold u cdf is poorly approximated by Pareto cdf, $D_{n, k}$ quickly increases as k increases such that $X_{n-k: n}$ shrinks below u.

Indeed, it seems plausible that procedure yields k converging at the "optimal rate".

However, even if all observations are exact Pareto, $D_{n, k}$ will be minimal for k much smaller than n due to random fluctuations.

Gaussian approximation: α known

Assume $F(x)=1-x^{-\alpha}(x>1)$ with known $\alpha>0$. Consider KS distance

$$
\begin{aligned}
\bar{D}_{n, k} & :=\sup _{y \geq 1}\left|\frac{1}{k-1} \sum_{i=1}^{k-1} 1_{(y, \infty)}\left(\frac{X_{n-i+1: n}}{X_{n-k+1: n}}\right)-y^{-\alpha}\right| \\
& =\max _{1 \leq i<k}\left|\left(\frac{X_{n-i+1: n}}{X_{n-k+1: n}}\right)^{-\alpha}-\frac{i}{k}\right|+O\left(k^{-1}\right) \\
& =^{d} \max _{1 \leq i<k}\left|\frac{U_{i: n}}{U_{k: n}}-\frac{i}{k}\right|+O\left(k^{-1}\right)
\end{aligned}
$$

for iid uniform rv's U_{j}.
Approximation of uniform order statistics by Brownian motion yields

Gaussian approximation: α known

Assume $F(x)=1-x^{-\alpha}(x>1)$ with known $\alpha>0$. Consider KS distance

$$
\begin{aligned}
\bar{D}_{n, k} & :=\sup _{y \geq 1}\left|\frac{1}{k-1} \sum_{i=1}^{k-1} 1_{(y, \infty)}\left(\frac{X_{n-i+1: n}}{X_{n-k+1: n}}\right)-y^{-\alpha}\right| \\
& =\max _{1 \leq i<k}\left|\left(\frac{X_{n-i+1: n}}{X_{n-k+1: n}}\right)^{-\alpha}-\frac{i}{k}\right|+O\left(k^{-1}\right) \\
& =^{d} \max _{1 \leq i<k}\left|\frac{U_{i: n}}{U_{k: n}}-\frac{i}{k}\right|+O\left(k^{-1}\right)
\end{aligned}
$$

for iid uniform rv's U_{j}.
Approximation of uniform order statistics by Brownian motion yields

$$
n^{1 / 2} \bar{D}_{n,\lceil n t\rceil} \rightarrow \sup _{0<z \leq 1} z\left|\frac{W(t z)}{t z}-\frac{W(t)}{t}\right|
$$

weakly in $D(0,1]$.

"Early stopping"

$$
n^{1 / 2} \bar{D}_{n,\lceil n t\rceil} \rightarrow \sup _{0<z \leq 1} z\left|\frac{W(t z)}{t z}-\frac{W(t)}{t}\right|
$$

One might thus expect that the value k for which $\bar{D}_{n, k}$ is minimized behaves like $n T^{*}$ with

$$
T^{*}:=\underset{0<t \leq 1}{\arg \min } \sup _{0<z \leq 1} z\left|\frac{W(t z)}{t z}-\frac{W(t)}{t}\right| .
$$

Despite

with non-negligible probability, t^{*} will be substantially smaller than 1 , leading to too small a value for k.

"Early stopping"

$$
n^{1 / 2} \bar{D}_{n,\lceil n t\rceil} \rightarrow \sup _{0<z \leq 1} z\left|\frac{W(t z)}{t z}-\frac{W(t)}{t}\right|
$$

One might thus expect that the value k for which $\bar{D}_{n, k}$ is minimized behaves like $n T^{*}$ with

$$
T^{*}:=\underset{0<t \leq 1}{\arg \min } \sup _{0<z \leq 1} z\left|\frac{W(t z)}{t z}-\frac{W(t)}{t}\right| .
$$

Despite

$$
\sup _{0<z \leq 1} z\left|\frac{W(t z)}{t z}-\frac{W(t)}{t}\right|=^{d} t^{-1 / 2} \sup _{0<z \leq 1} z\left|\frac{W(z)}{z}-W(1)\right|,
$$

with non-negligible probability, t^{*} will be substantially smaller than 1 , leading to too small a value for k.

Gaussian approximation: α unknown

If α is unknown and replaced with the Hill estimator, process convergence becomes more involved.

Theorem

Suppose $F(x)=1-c x^{-\alpha}\left(x>c^{1 / \alpha}\right)$.
(1) For all $k=k_{n}=o(n)$

$$
\inf _{2 \leq j \leq k} n^{1 / 2} D_{n, j} \xrightarrow{(P)} \infty
$$

Gaussian approximation: α unknown

If α is unknown and replaced with the Hill estimator, process convergence becomes more involved.

Theorem

Suppose $F(x)=1-c x^{-\alpha}\left(x>c^{1 / \alpha}\right)$.
(1) For all $k=k_{n}=o(n)$

$$
\inf _{2 \leq j \leq k} n^{1 / 2} D_{n, j} \xrightarrow{(P)} \infty
$$

$$
\begin{aligned}
& n^{1 / 2} D_{n,\lceil n t\rceil} \\
& \quad \rightarrow \sup _{0<z \leq 1}\left|\left(\int_{0}^{1} \frac{W(t x)}{t x} d x-\frac{W(t)}{t}\right) z \log z+\left(\frac{W(t z)}{t z}-\frac{W(t)}{t}\right) z\right| \\
& =: \sup _{0<z \leq 1}|Y(t, z)|
\end{aligned}
$$

weakly in $D(0,1]$.

Asymptotic behavior of selected threshold

Let $k^{*}:=\arg \min _{2 \leq k \leq n} D_{n, k}$

Corollary

Suppose $F(x)=1-c x^{-\alpha}\left(x>c^{1 / \alpha}\right)$. Then

$$
\frac{k^{*}}{n} \rightarrow \underset{t \in(0,1]}{\arg \inf } \sup _{0<z \leq 1}|Y(t, z)|=: T^{*},
$$

provided the process $\left(\sup _{0<z \leq 1}|Y(t, z)|\right)_{t \in(0,1]}$ has a unique point of minimum a.s.

In that case,

Asymptotic behavior of selected threshold

Let $k^{*}:=\arg \min _{2 \leq k \leq n} D_{n, k}$

Corollary

Suppose $F(x)=1-c x^{-\alpha}\left(x>c^{1 / \alpha}\right)$. Then

$$
\frac{k^{*}}{n} \rightarrow \underset{t \in(0,1]}{\arg \inf } \sup _{0<z \leq 1}|Y(t, z)|=: T^{*}
$$

provided the process $\left(\sup _{0<z \leq 1}|Y(t, z)|\right)_{t \in(0,1]}$ has a unique point of minimum a.s.

In that case,

$$
n^{1 / 2}\left(\hat{\alpha}_{n, k^{*}}-\alpha\right) \rightarrow \alpha\left(\int_{0}^{1} \frac{W\left(T^{*} x\right)}{T^{*} x} d x-\frac{W\left(T^{*}\right)}{T^{*}}\right) \quad \text { weakly. }
$$

The limit rv is not normally distributed.

Distribution of k^{*} / n

Quantile function of T^{*} / n for sample sizes $n=100$ (magenta dash-dotted), $n=1000$ (red dashed), and limit (blue solid)

Distribution of $\hat{\alpha}_{n, k^{*}}$

Quantile function of $n^{1 / 2}\left(\hat{\alpha}_{n, k^{*}}-\alpha\right)$ for sample sizes $n=100$ (magenta dash-dotted), $n=1000$ (red dashed), and limit (blue solid)

Limit distribution of $\hat{\alpha}_{n, k^{*}}$

Normal-QQ-plot for limit distribution of $n^{1 / 2}\left(\hat{\alpha}_{n, k^{*}}-\alpha\right)$

Limit distribution of $\hat{\alpha}_{n, k^{*}}$

Normal-QQ-plot for limit distribution of $n^{1 / 2}\left(\hat{\alpha}_{n, k^{*}}-\alpha\right)$

In the limit, the variance is about 1.95 times the variance of $\hat{\alpha}_{n, n}$

Structural breaks

In Clauset et al. (2009) (and similar papers) it is assumed that above some threshold $u F$ equals a Pareto cdf, while below it has a different structure.

Selection procedures should yield k such that $X_{n-k+1: n}$ is close to u.

There is no obvious asymptotic setting in which to embed such a situation.
However, simulations suggest that $k^{*} /(n(1-F(u)))$ roughly behaves like T^{*} if break is sufficiently clear and n is large.
Hence procedures often selects too small a k, i.e. too high a threshold.

Structural breaks

In Clauset et al. (2009) (and similar papers) it is assumed that above some threshold $u F$ equals a Pareto cdf, while below it has a different structure.

Selection procedures should yield k such that $X_{n-k+1: n}$ is close to u.

There is no obvious asymptotic setting in which to embed such a situation.
However, simulations suggest that $k^{*} /(n(1-F(u)))$ roughly behaves like T^{*} if break is sufficiently clear and n is large.

Hence procedures often selects too small a k, i.e. too high a threshold.

Simulation

$1-F(x)= \begin{cases}x^{-2}, & x>x_{0}, \\ c x^{-4}, & x_{0} \geq x>c^{1 / 4}\end{cases}$
with x_{0}, c such that $1-F\left(x_{0}\right)=0.3, F$ continuous.

Left: qf of k^{*} / n for $n=1000$; red line indicates break point Right: RMSE of Hill estimator as function of k; red line indicates RMSE of $\hat{\alpha}_{n, k^{*}}$ increase of RMSE and of SD $\approx 31 \%$

Second order condition

Assume, as $t \downarrow 0$,

$$
\frac{\frac{F^{\leftarrow}(1-t x)}{F^{\leftarrow}(1-t)}-x^{-1 / \alpha}}{A(t)} \rightarrow \psi(x), \quad \forall x>0,
$$

with $A(t) \downarrow 0$, regularly varying at 0 with index $\rho>0$, $\psi(x)$ not a multiple of $x^{-1 / \alpha}$.
Then there exists sequence $\tilde{k}=\tilde{k}_{n} \rightarrow \infty, \tilde{k}=o(n)$ such that $\tilde{k}^{1 / 2} A(\tilde{k} / n) \rightarrow 1$.
 minimal iff $k \sim c \tilde{k}$ for some constant c depending on α, ρ, ψ.

Second order condition

Assume, as $t \downarrow 0$,

$$
\frac{\frac{F^{\leftarrow}(1-t x)}{F^{\leftarrow}(1-t)}-x^{-1 / \alpha}}{A(t)} \rightarrow \psi(x), \quad \forall x>0
$$

with $A(t) \downarrow 0$, regularly varying at 0 with index $\rho>0$, $\psi(x)$ not a multiple of $x^{-1 / \alpha}$.
Then there exists sequence $\tilde{k}=\tilde{k}_{n} \rightarrow \infty, \tilde{k}=o(n)$ such that $\tilde{k}^{1 / 2} A(\tilde{k} / n) \rightarrow 1$.
SD, bias balanced iff $k \asymp \tilde{k}$ and then $\hat{\alpha}_{n, k}$ converges with the optimal rate $\tilde{k}^{-1 / 2}$ (among all deterministic intermediate sequences k). Moreover, AMSE $\hat{\alpha}_{n, k}$ is minimal iff $k \sim c \tilde{k}$ for some constant c depending on α, ρ, ψ.

Most $\underset{\sim}{\text { th }}$ reshold selection methods mentioned in the beginning yield random $\bar{k} \sim c \tilde{k}$ under suitable conditions.

Second order condition

Assume, as $t \downarrow 0$,

$$
\frac{\frac{F^{\leftarrow}(1-t x)}{F^{\leftarrow}(1-t)}-x^{-1 / \alpha}}{A(t)} \rightarrow \psi(x), \quad \forall x>0
$$

with $A(t) \downarrow 0$, regularly varying at 0 with index $\rho>0$, $\psi(x)$ not a multiple of $x^{-1 / \alpha}$.
Then there exists sequence $\tilde{k}=\tilde{k}_{n} \rightarrow \infty, \tilde{k}=o(n)$ such that $\tilde{k}^{1 / 2} A(\tilde{k} / n) \rightarrow 1$.
SD, bias balanced iff $k \asymp \tilde{k}$ and then $\hat{\alpha}_{n, k}$ converges with the optimal rate $\tilde{k}^{-1 / 2}$ (among all deterministic intermediate sequences k). Moreover, AMSE $\hat{\alpha}_{n, k}$ is minimal iff $k \sim c \tilde{k}$ for some constant c depending on α, ρ, ψ.

Most threshold selection methods mentioned in the beginning yield random $\bar{k} \sim c \tilde{k}$ under suitable conditions.

In this setting, minimizer of $D_{n, j}$ can be analyzed only if minimization is restricted

Second order condition

Assume, as $t \downarrow 0$,

$$
\frac{\frac{F^{\leftarrow}(1-t x)}{F^{\leftarrow}(1-t)}-x^{-1 / \alpha}}{A(t)} \rightarrow \psi(x), \quad \forall x>0
$$

with $A(t) \downarrow 0$, regularly varying at 0 with index $\rho>0$, $\psi(x)$ not a multiple of $x^{-1 / \alpha}$.
Then there exists sequence $\tilde{k}=\tilde{k}_{n} \rightarrow \infty, \tilde{k}=o(n)$ such that $\tilde{k}^{1 / 2} A(\tilde{k} / n) \rightarrow 1$.
SD, bias balanced iff $k \asymp \tilde{k}$ and then $\hat{\alpha}_{n, k}$ converges with the optimal rate $\tilde{k}^{-1 / 2}$ (among all deterministic intermediate sequences k). Moreover, AMSE $\hat{\alpha}_{n, k}$ is minimal iff $k \sim c \tilde{k}$ for some constant c depending on α, ρ, ψ.

Most threshold selection methods mentioned in the beginning yield random $\bar{k} \sim c \tilde{k}$ under suitable conditions.

In this setting, minimizer of $D_{n, j}$ can be analyzed only if minimization is restricted to $j \leq k$ for some intermediate sequence k.

Asymptotics under second order condition

Theorem

(- $\inf _{2 \leq j \leq k} \tilde{k}^{1 / 2} D_{n, j} \rightarrow \infty \quad$ for all intermediate sequences $k=o(\tilde{k})$

Asymptotics under second order condition

Theorem

(1) $\inf _{2 \leq j \leq k} \tilde{k}^{1 / 2} D_{n, j} \rightarrow \infty \quad$ for all intermediate sequences $k=o(\tilde{k})$
(2)

$$
\tilde{k}^{1 / 2} D_{n,\lceil\tilde{k} t\rceil} \rightarrow \sup _{0<z \leq 1}\left|Y(t, z)-\left(\int_{0}^{1} x^{1 / \alpha} \psi(x) d x \cdot z \log z+\alpha z^{1 / \alpha} \psi(z)\right) t^{\rho}\right|
$$

weakly in $D(0, \infty)$.

- If $\tilde{k}=o(k), k=o(n)$ then, for all $0<t_{0}<t_{1}<\infty$

Asymptotics under second order condition

Theorem

(1) $\inf _{2 \leq j \leq k} \tilde{k}^{1 / 2} D_{n, j} \rightarrow \infty \quad$ for all intermediate sequences $k=o(\tilde{k})$
©

$$
\tilde{k}^{1 / 2} D_{n,\lceil\tilde{k} t\rceil} \rightarrow \sup _{0<z \leq 1}\left|Y(t, z)-\left(\int_{0}^{1} x^{1 / \alpha} \psi(x) d x \cdot z \log z+\alpha z^{1 / \alpha} \psi(z)\right) t^{\rho}\right|
$$

weakly in $D(0, \infty)$.
(3) If $\tilde{k}=o(k), k=o(n)$ then, for all $0<t_{0}<t_{1}<\infty$

$$
\inf _{t \in\left[t_{0}, t_{1}\right]} \tilde{k}^{1 / 2} D_{n,\lceil k t]} \rightarrow \infty .
$$

This suggests (but doesn't prove) that

Asymptotics under second order condition

Theorem

(1) $\inf _{2 \leq j \leq k} \tilde{k}^{1 / 2} D_{n, j} \rightarrow \infty \quad$ for all intermediate sequences $k=o(\tilde{k})$
©

$$
\tilde{k}^{1 / 2} D_{n,\lceil\tilde{k} t\rceil} \rightarrow \sup _{0<z \leq 1}\left|Y(t, z)-\left(\int_{0}^{1} x^{1 / \alpha} \psi(x) d x \cdot z \log z+\alpha z^{1 / \alpha} \psi(z)\right) t^{\rho}\right|
$$

weakly in $D(0, \infty)$.
(3) If $\tilde{k}=o(k), k=o(n)$ then, for all $0<t_{0}<t_{1}<\infty$

$$
\inf _{t \in\left[t_{0}, t_{1}\right]} \tilde{k}^{1 / 2} D_{n,\lceil k t]} \rightarrow \infty .
$$

This suggests (but doesn't prove) that

$$
k^{*} / \tilde{k} \rightarrow \underset{0<t<\infty}{\arg \inf \sup _{0<z \leq 1}}\left|Y(t, z)-\left(\int_{0}^{1} x^{1 / \alpha} \psi(x) d x \cdot z \log z+\alpha z^{1 / \alpha} \psi(z)\right) t^{\rho}\right|
$$

Simulations: Fréchet distribution

$F(x)=\exp \left(-x^{-4}\right), \quad x>0$

Left: qf of k^{*} / n for $n=1000$; red line indicates RMSE minimizing value Right: RMSE of Hill estimator as function of k; red line indicates RMSE of $\hat{\alpha}_{n, k^{*}}$

Simulations: Student's t-distribution

F Student's t cdf with 4 degrees of freedom

Left: qf of k^{*} / n for $n=1000$; red line indicates RMSE minimizing value Right: RMSE of Hill estimator as function of k; red line indicates RMSE of $\hat{\alpha}_{n, k^{*}}$

Loss of efficiency

Increase of RMSE and standard deviation relative to Hill estimator with deterministic k minimizing the RMSE; sample size $n=1000$

		distance minimization		Lepskii's method
F	α	RMSE	SD	RMSE
Frechet	1	41%	22%	12%
	5	37%	14%	12%
t	1	32%	30%	15%
	4	63%	-28%	14%
	10	49%	-62%	30%
Stable	$1 / 2$	37%	13%	30%
log-gamma	3	35%	-32%	9%

Linear preferential attachment networks

LPAN are oriented graphs successively built starting from a core network; in each step one of the following randomly chosen procedures is applied

Linear preferential attachment networks

LPAN are oriented graphs successively built starting from a core network; in each step one of the following randomly chosen procedures is applied
(a) add new node and edge from this node to an existing node w; latter is chosen with probability proportional to number of existing incoming edges of w plus a constant $\delta_{i n}$;

Linear preferential attachment networks

LPAN are oriented graphs successively built starting from a core network; in each step one of the following randomly chosen procedures is applied
(a) add new node and edge from this node to an existing node w; latter is chosen with probability proportional to number of existing incoming edges of w plus a constant $\delta_{\text {in }}$;
(b) add new edge from existing node v to existing node w; pair is chosen with probability proportional to (number of existing outgoing edges of v plus a constant $\left.\delta_{\text {out }}\right) \times($ number of existing incoming edges of w plus a constant $\delta_{\text {in }}$);
(c) add new node and edge from an existing node v this node; v is chosen with probability proportional to number of existing outgoing edges of v plus a constant $\delta_{\text {out }}$

Linear preferential attachment networks

LPAN are oriented graphs successively built starting from a core network; in each step one of the following randomly chosen procedures is applied
(a) add new node and edge from this node to an existing node w; latter is chosen with probability proportional to number of existing incoming edges of w plus a constant $\delta_{\text {in }}$;
(b) add new edge from existing node v to existing node w; pair is chosen with probability proportional to (number of existing outgoing edges of v plus a constant $\left.\delta_{\text {out }}\right) \times($ number of existing incoming edges of w plus a constant $\delta_{\text {in }}$);
(c) add new node and edge from an existing node v this node;
v is chosen with probability proportional to number of existing outgoing edges of v plus a constant $\delta_{\text {out }}$

Asymptotics of linear preferential attachment networks Let
 n : total number of nodes
 $n_{i}^{(i n)}$: number of nodes with i incoming edges
 $n_{i}^{\text {(out })}$: number of nodes with i outgoing edges

Ballobás et al. (2003):
$\left(n_{i}^{(\text {in })} / n\right)_{i \in \mathbb{N}_{0}},\left(n_{i}^{(\text {out })} / n\right)_{i \in \mathbb{N}_{0}}$ converge to pmf of distribution with Pareto type tail;
exponents $a^{(i n)}$, aut $^{(o u n}$ be calculated from probabilities of three procedures
and $\delta_{\text {in }}, \delta_{\text {out }}$
(see Samorodnitsky et al. (2016) and Wang \& Resnick (2016) for results on joint multivariate regular variation)

In the following simulations, in-degrees are observed
note that observations are not iid.

Asymptotics of linear preferential attachment networks

 Letn : total number of nodes
$n_{i}^{(\text {in })}$: number of nodes with i incoming edges
$n_{i}^{(\text {out })}$: number of nodes with i outgoing edges
Ballobás et al. (2003):
$\left(n_{i}^{\text {(in) }} / n\right)_{i \in \mathbb{N}_{0}},\left(n_{i}^{\text {out })} / n\right)_{i \in \mathbb{N}_{0}}$ converge to pmf of distribution with Pareto type tail; exponents $\alpha^{(\text {in })}, \alpha^{(o u t)}$ can be calculated from probabilities of three procedures and $\delta_{\text {in }}, \delta_{\text {out }}$
(see Samorodnitsky et al. (2016) and Wang \& Resnick (2016) for results on joint multivariate regular variation)

In the following simulations, in-degrees are observed; note that observations are not iid.

Asymptotics of linear preferential attachment networks

 Letn : total number of nodes
$n_{i}^{(i n)}$: number of nodes with i incoming edges
$n_{i}^{(\text {out })}$: number of nodes with i outgoing edges
Ballobás et al. (2003):
$\left(n_{i}^{(\text {in })} / n\right)_{i \in \mathbb{N}_{0}},\left(n_{i}^{(\text {out })} / n\right)_{i \in \mathbb{N}_{0}}$ converge to pmf of distribution with Pareto type tail; exponents $\alpha^{(i n)}, \alpha^{(o u t)}$ can be calculated from probabilities of three procedures and $\delta_{\text {in }}, \delta_{\text {out }}$
(see Samorodnitsky et al. (2016) and Wang \& Resnick (2016) for results on joint multivariate regular variation)

In the following simulations, in-degrees are observed; note that observations are not iid.

Simulations: LPAN

Model: probability of procedures (a)/(b)/(c): 0.3 / 0.5 / 0.2

$$
\delta_{\text {in }}=2, \quad \delta_{\text {out }}=1 \quad(\Rightarrow \alpha=2.5)
$$

Left: qf of k^{*} / n for $n=50,000$; red line indicates RMSE minimizing value Right: RMSE of Hill estimator as function of k; red line indicates RMSE of $\hat{\alpha}_{n, k^{*}}$ increase of RMSE $\approx 9 \%$ (relative to optimal fixed k)

Simulations: LPAN (cont.)

Model: probability of procedures (a)/(b)/(c): 0.3 / 0.5 / 0.2

$$
\delta_{\text {in }}=2, \quad \delta_{\text {out }}=1 \quad(\Rightarrow \alpha=2.5)
$$

Left: qf of k^{*} / n for $n=500,000$; red line indicates RMSE minimizing value Right: RMSE of Hill estimator as function of k; red line indicates RMSE of $\hat{\alpha}_{n, k^{*}}$ increase of RMSE $\approx 4 \%$ (relative to optimal fixed k)

Simulations: LPAN (cont.)

Q.: Why does minimum distance selection perform so much better for LPAN data than for iid data under second order condition?

Possible answers: Because of

- large sample size
- discrete data,
- dependence,

Simulations: LPAN (cont.)

Q.: Why does minimum distance selection perform so much better for LPAN data than for iid data under second order condition?

Possible answers: Because of

- large sample size,
- discrete data,
- dependence,

Simulations: LPAN (cont.)

Q.: Why does minimum distance selection perform so much better for LPAN data than for iid data under second order condition?

Possible answers: Because of

- large sample size, but e.g. for iid Cauchy much worse behavior
- discrete data,
- dependence,

Simulations: LPAN (cont.)

Q.: Why does minimum distance selection perform so much better for LPAN data than for iid data under second order condition?

Possible answers: Because of

- large sample size, but e.g. for iid Cauchy much worse behavior
- discrete data, but e.g. for iid discretized Fréchet much worse behavior
- dependence,

Simulations: LPAN (cont.)

Q.: Why does minimum distance selection perform so much better for LPAN data than for iid data under second order condition?

Possible answers: Because of

- large sample size, but e.g. for iid Cauchy much worse behavior
- discrete data, but e.g. for iid discretized Fréchet much worse behavior
- dependence, maybe, but why?

Simulations: LPAN (cont.)

Q.: Why does minimum distance selection perform so much better for LPAN data than for iid data under second order condition?

Possible answers: Because of

- large sample size, but e.g. for iid Cauchy much worse behavior
- discrete data, but e.g. for iid discretized Fréchet much worse behavior
- dependence, maybe, but why?
- conceptual difference to iid setting:
in iid setting, α has same clear meaning as exponent of regular variation of
$1-F$ for all n

Simulations: LPAN (cont.)

Q.: Why does minimum distance selection perform so much better for LPAN data than for iid data under second order condition?

Possible answers: Because of

- large sample size, but e.g. for iid Cauchy much worse behavior
- discrete data, but e.g. for iid discretized Fréchet much worse behavior
- dependence, maybe, but why?
- conceptual difference to iid setting:
in iid setting, α has same clear meaning as exponent of regular variation of $1-F$ for all n
in LPAN, for any fixed n, distribution of in-degrees does not have a power
tail, i.e. α is meaningful only for $n \rightarrow \infty$!
For fixed n, there is no true α. Hence calculated RMSE has a completely
different meaning than in an iid setting.
Thus, here the RMSE may be mainly caused by difference between cdf of
in-degrees and limit cdf, not by a feature of the estimators.

Simulations: LPAN (cont.)

Q.: Why does minimum distance selection perform so much better for LPAN data than for iid data under second order condition?

Possible answers: Because of

- large sample size, but e.g. for iid Cauchy much worse behavior
- discrete data, but e.g. for iid discretized Fréchet much worse behavior
- dependence, maybe, but why?
- conceptual difference to iid setting:
in iid setting, α has same clear meaning as exponent of regular variation of $1-F$ for all n
in LPAN, for any fixed n, distribution of in-degrees does not have a power tail, i.e. α is meaningful only for $n \rightarrow \infty$!
For fixed n, there is no true α. Hence calculated RMSE has a completely different meaning than in an iid setting.
Thus, here the RMSE may be mainly caused by difference between cdf of in-degrees and limit cdf, not by a feature of the estimators.

Thank you for your attention!

