Large deviation for extremes in BRW with regularly varying displacements

Ayan Bhattacharya

Centrum Wiskunde & Informatica, Amsterdam

June 20, 2018

Ayan Bhattacharya (C.W.I.)

LDP for BRW

June 20, 2018 1 / 37

(日) (周) (日) (日)

э

• It starts with a single particle at the origin of the real line.

Image: A matrix of the second seco

• It starts with a single particle at the origin of the real line. This is referred as the 0th generation.

After unit time the particle at origin produces a random number of particles according to a distribution (progeny distribution) on N = {1, 2, 3, ...} (no leaf) and dies immediately. The new particles form generation 1.

۰

After unit time the particle at origin produces a random number of particles according to a distribution (progeny distribution) on N = {1, 2, 3, ...} (no leaf) and dies immediately. The new particles form generation 1.

- After unit time the particle at origin produces a random number of particles according to a distribution (progeny distribution) on N = {1, 2, 3, ...} and dies immediately. The new particles form generation 1.
- Each new particle comes with a random real-valued displacement being independent of others.

- After unit time the particle at origin produces a random number of particles according to a distribution (progeny distribution) on N = {1, 2, 3, ...} and dies immediately. The new particles form generation 1.
- Each new particle comes with a random real-valued displacement being independent of others. Displacements are identically distributed according to the law of X.

• After unit time, each particle in the first generation produces a random number of particles according to progeny distribution

• After unit time, each particle in the first generation produces a random number of particles according to progeny distribution being independent of others and

• After unit time, each particle in the first generation produces a random number of particles according to progeny distribution being independent of others and whatever happened in the first generation.

• After unit time, each particle in the first generation produces a random number of particles according to progeny distribution being independent of others and whatever happened in the first generation. The new particles form second generation.

• After unit time, each particle in the first generation produces a random number of particles according to progeny distribution being independent of others and whatever happened in the first generation. The new particles form second generation. Each new particle comes with a random displacement being independent of others.

• After unit time, each particle in the first generation produces a random number of particles according to progeny distribution being independent of others and whatever happened in the first generation. The new particles form second generation. Each new particle comes with a random displacement being independent of others.

• After unit time, each particle in the first generation produces a random number of particles according to progeny distribution being independent of others and whatever happened in the first generation. The new particles form second generation. Each new particle comes with a random displacement being independent of others.

• This mechanism goes on.

A D > A A P >

э

- This mechanism goes on.
- The position of a particle is defined to be its displacement translated by position of its parent.

- This mechanism goes on.
- The position of a particle is defined to be its displacement translated by position of its parent.

Ayan Bhattacharya (C.W.I.)

June 20, 2018 8 / 37

• The collection of positions in the system is called branching random walk (BRW).

• In this talk, we shall focus on the position of the topmost particle in the *n*th generation.

• BRW is considered to be very important in the context of probability, statistical physics, algorithms etc. It has connection to Gaussian multplicative chaos, Gaussian free field, random polymers, percolation etc.

An easy to state problem

Ayan Bhattacharya (C.W.I.)

Ξ.

イロン 不聞と 不同と 不同と

• Suppose that X is positive almost surely.

3

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Suppose that X is positive almost surely.
- The displacement of a particle is the lifetime of a bacteria.

- Suppose that X is positive almost surely.
- The displacement of a particle is the lifetime of a bacteria.
- The position of the topmost particle in the *n*th generation can be interpreted as the last time one can see an *n*th generation bacteria.

• Phase transition in the asymptotic behavior of extremes.

э

- Phase transition in the asymptotic behavior of extremes.
- Reason: Non-trivial dependence structure. (Durrett(1979))

Ayan Bhattacharya (C.W.I.)

LDP for BRW

June 20, 2018 13 / 37

Ayan Bhattacharya (C.W.I.)

LDP for BRW

∃ → June 20, 2018 14 / 37

3

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• The genealogy of the particles is given by a Galton-Watson process.

3

A B A A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- The genealogy of the particles is given by a Galton-Watson process.
- We shall assume that the underlying GW process is supercritical and satisfies the Kesten-Stigum condition.

- The genealogy of the particles is given by a Galton-Watson process.
- We shall assume that the underlying GW process is supercritical and satisfies the Kesten-Stigum condition.
- Z_n denotes the number of particles in the nth generation for every n ≥ 1.

•
$$1 < m = \mathbb{E}(Z_1) < \infty$$
.

Ayan Bhattacharya (C.W.I.)

June 20, 2018 15 / 37

•
$$1 < m = \mathbb{E}(Z_1) < \infty$$
.

 (m⁻ⁿZ_n : n ≥ 1) is a non-negative martingale sequence and hence m⁻ⁿZ_n converges to a random variable W almost surely as n → ∞.

Image: A matrix and a matrix

3

•
$$1 < m = \mathbb{E}(Z_1) < \infty$$
.

- (m⁻ⁿZ_n : n ≥ 1) is a non-negative martingale sequence and hence m⁻ⁿZ_n converges to a random variable W almost surely as n → ∞.
- Kesten-Stigum condition (𝔼(𝒯₁ log⁺ 𝒯₁) < ∞) implies that 𝒴 is positive almost surely due to "no leaf" assumption.

Assumptions on the displacements

Ayan Bhattacharya (C.W.I.)

LDP for BRW

∃ → June 20, 2018 16 / 37

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Assumptions on the displacements

• The displacements are real-valued. For every x > 0,

$$\mathbb{P}(|X| > x) = x^{-\alpha}L(x)$$

where L is slowly varying function and satisfies tail-balancing conditions

$$\lim_{x \to \infty} \frac{\mathbb{P}(X > x)}{\mathbb{P}(|X| > x)} = p \quad \text{and} \quad \lim_{x \to \infty} \frac{\mathbb{P}(X < -x)}{\mathbb{P}(|X| > x)} = 1 - p$$
for some $p \in [0, 1]$.
Assumptions on the displacements

• The displacements are real-valued. For every x > 0,

$$\mathbb{P}(|X| > x) = x^{-\alpha}L(x)$$

where L is slowly varying function and satisfies tail-balancing conditions

$$\lim_{x\to\infty}\frac{\mathbb{P}(X>x)}{\mathbb{P}(|X|>x)}=p \quad \text{and} \quad \lim_{x\to\infty}\frac{\mathbb{P}(X<-x)}{\mathbb{P}(|X|>x)}=1-p$$
for some $p\in[0,1]$.

• Consider a sequence of constants $(b_n : n \ge 1)$ such that $m^n \mathbb{P}(b_n^{-1}X \in \cdot) \xrightarrow{\nu} \nu_{\alpha}(\cdot)$ in the space $[-\infty, \infty] \setminus \{0\}$ and

$$\nu_{\alpha}(dx) = \alpha \Big(px^{-\alpha-1} \mathbb{1}(x > 0) + (1-p)(-x)^{-\alpha} \mathbb{1}(x < 0) \Big).$$

Literature

Ayan Bhattacharya (C.W.I.)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

Literature

• Pioneering work on extremes of BRW has been done by Hammerseley-Kingman-Biggins.

Image: A matrix and a matrix

< ∃ ►

э

- Pioneering work on extremes of BRW has been done by Hammerseley-Kingman-Biggins.
- Weak convergence of extremes and extremal processes for light-tailed displacements are known. See Bachman (2000), Eidekon (2011), Maillard (2015), Madaule (2017), Mallein (2016).

- Pioneering work on extremes of BRW has been done by Hammerseley-Kingman-Biggins.
- Weak convergence of extremes and extremal processes for light-tailed displacements are known. See Bachman (2000), Eidekon (2011), Maillard (2015), Madaule (2017), Mallein (2016).
- Large deviation is derived for topmost particle in branching Brownian motion (BBM). See Chauvin and Rouault (1988).

- Pioneering work on extremes of BRW has been done by Hammerseley-Kingman-Biggins.
- Weak convergence of extremes and extremal processes for light-tailed displacements are known. See Bachman (2000), Eidekon (2011), Maillard (2015), Madaule (2017), Mallein (2016).
- Large deviation is derived for topmost particle in branching Brownian motion (BBM). See Chauvin and Rouault (1988).
- Large deviation for topmost position in different variants of the model BBM: Derrida and Shi(2017).

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Ayan Bhattacharya (C.W.I.)

LDP for BRW

∃ ⊳ June 20, 2018 18 / 37

Image: A math a math

э

• Let M_n be the position of the topmost particle in the *n*th generation.

< f²
▶

- Let M_n be the position of the topmost particle in the *n*th generation.
- $b_n^{-1}M_n \Rightarrow M$ where M is a W-mixture of Frechet distributions. (Durrett(1983))

- Let M_n be the position of the topmost particle in the *n*th generation.
- $b_n^{-1}M_n \Rightarrow M$ where M is a W-mixture of Frechet distributions. (Durrett(1983))
- Let **v** denote the generic vertex, $|\mathbf{v}|$ denote generation of the vertex **v** and $S(\mathbf{v})$ denote the position. Consider

$$\mathscr{P}_n = \sum_{|\mathbf{v}|=n} \delta_{b_n^{-1} S(\mathbf{v})}$$

Ayan Bhattacharya (C.W.I.)

- Let M_n be the position of the topmost particle in the *n*th generation.
- $b_n^{-1}M_n \Rightarrow M$ where M is a W-mixture of Frechet distributions. (Durrett(1983))
- Let **v** denote the generic vertex, $|\mathbf{v}|$ denote generation of the vertex **v** and $S(\mathbf{v})$ denote the position. Consider

$$\mathscr{P}_n = \sum_{|\mathbf{v}|=n} \delta_{b_n^{-1} S(\mathbf{v})}$$

• Let $\mathcal{M} = \{ \text{ space of all measures on } [-\infty, \infty] \setminus \{0\} \}$

Theorem (B. Hazra and Roy (2016))

There exists a Cox cluster process \mathscr{P} such that $\mathscr{P}_n \Rightarrow \mathscr{P}$ as $n \to \infty$ in the space \mathscr{M} where

$$\mathscr{P} \stackrel{d}{=} \sum_{l=1}^{\infty} Z_{\mathbf{G}_{l}} \delta_{W^{1/\alpha} j_{l}}$$

with $(j_l : l \ge 1)$ be the atoms of the $PRM(\nu_{\alpha})$ on \mathbb{R} .

Ayan Bhattacharya (C.W.I.)

LDP for BRW

June 20, 2018 19 / 37

Aim

Ayan Bhattacharya (C.W.I.)

• Consider an increasing sequence $(c_n : n \ge 1)$ such that

$$\lim_{n\to\infty}c_n^{-1}b_n=0.$$

э

イロト イポト イヨト イヨト

• Consider an increasing sequence $(c_n : n \ge 1)$ such that

$$\lim_{n\to\infty}c_n^{-1}b_n=0.$$

• $c_n^{-1}M_n$ converges to 0 in probability.

3

イロト 不得下 イヨト イヨト

• Consider an increasing sequence $(c_n : n \ge 1)$ such that

$$\lim_{n\to\infty}c_n^{-1}b_n=0.$$

• $c_n^{-1}M_n$ converges to 0 in probability.

Question

What is the rate of convergence for $\mathbb{P}(M_n > c_n x)$?

Ayan Bhattacharya (C.W.I.)

LDP for BRW

June 20, 2018 20 / 37

<ロ> <問> <問> < 回> < 回> < 回> < 回</p>

Generalization

• Same questions can be asked for second, third, ... topmost positions in the *n*th generation.

э

Generalization

- Same questions can be asked for second, third, ... topmost positions in the *n*th generation.
- Joint distribution of the first *k* largest positions and gap statistics.

Generalization

- Same questions can be asked for second, third, ... topmost positions in the *n*th generation.
- Joint distribution of the first *k* largest positions and gap statistics.
- Consider the sequence of point processes

$$N_n = \sum_{|\mathbf{v}|=n} \delta_{c_n^{-1} S(\mathbf{v})}$$

Question

How does N_n behave asymptotically?

• Hult and Samorodnitsky (2010). Large deviation of extremal processes.

Ayan Bhattacharya (C.W.I.)

LDP for BRW

June 20, 2018 21 / 37

• Recall $\mathcal{M} = \{$ space of all point measures on $[-\infty, \infty] \setminus \{0\}\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

- Recall $\mathcal{M} = \{$ space of all point measures on $[-\infty, \infty] \setminus \{0\}\}.$
- Vague convergence on the space \mathscr{M} is metrizable and \mathscr{M} equipped with vague topology is complete and separable.

Image: A math a math

- Recall $\mathcal{M} = \{$ space of all point measures on $[-\infty, \infty] \setminus \{0\}\}.$
- Vague convergence on the space \mathscr{M} is metrizable and \mathscr{M} equipped with vague topology is complete and separable.
- N_n converges to null measure (\emptyset) in the space \mathcal{M} almost surely.

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

- Recall $\mathcal{M} = \{$ space of all point measures on $[-\infty, \infty] \setminus \{0\}\}.$
- Vague convergence on the space \mathscr{M} is metrizable and \mathscr{M} equipped with vague topology is complete and separable.
- N_n converges to null measure (\emptyset) in the space \mathscr{M} almost surely.
- Consider $A \subset \mathscr{M}$ such that $\emptyset \notin \overline{A}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Recall $\mathcal{M} = \{$ space of all point measures on $[-\infty, \infty] \setminus \{0\}\}.$
- Vague convergence on the space \mathscr{M} is metrizable and \mathscr{M} equipped with vague topology is complete and separable.
- N_n converges to null measure (\emptyset) in the space \mathscr{M} almost surely.
- Consider $A \subset \mathcal{M}$ such that $\emptyset \notin \overline{A}$. Then it is clear that $\mathbb{P}(N_n \in A) \to 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Does there exist $(r_n : n \ge 1)$ and a non-trivial measure λ on \mathcal{M} such that $r_n \mathbb{P}(N_n \in A)$ converges to $\lambda(A)$ for every nice measurable set $A \subset \mathcal{M}$?

<**A**₽ ► < Ξ

Does there exist $(r_n : n \ge 1)$ and a non-trivial measure λ on \mathcal{M} such that $r_n \mathbb{P}(N_n \in A)$ converges to $\lambda(A)$ for every nice measurable set $A \subset \mathcal{M}$?

- "nice measurable set" A means
 - $\lambda(\partial A) = 0$. (∂A means boundary of A)

Does there exist $(r_n : n \ge 1)$ and a non-trivial measure λ on \mathcal{M} such that $r_n \mathbb{P}(N_n \in A)$ converges to $\lambda(A)$ for every nice measurable set $A \subset \mathcal{M}$?

- "nice measurable set" A means
 - $\lambda(\partial A) = 0$. (∂A means boundary of A)
 - "bounded away" means $\emptyset \notin \overline{A}$ (\emptyset is the null measure in \mathscr{M})

Does there exist $(r_n : n \ge 1)$ and a non-trivial measure λ on \mathcal{M} such that $r_n \mathbb{P}(N_n \in A)$ converges to $\lambda(A)$ for every nice measurable set $A \subset \mathcal{M}$?

- "nice measurable set" A means
 - $\lambda(\partial A) = 0$. (∂A means boundary of A)
 - "bounded away" means $\emptyset \notin \overline{A}$ (\emptyset is the null measure in \mathscr{M})
- "non-trivial measure" λ means the measure λ such that $0 < \lambda(A) < \infty$ for a "nice" set A.

Ayan Bhattacharya (C.W.I.)

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Ayan Bhattacharya (C.W.I.)

LDP for BRW

June 20, 2018 24 / 37

• Consider the space $\mathbb{M} = \{ \text{ space of all measures on } \mathcal{M} \}.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - の へ ()

- Consider the space $\mathbb{M} = \{ \text{ space of all measures on } \mathcal{M} \}.$
- $(r_n \mathbb{P}(N_n \in \cdot) : n \ge 1)$ is a sequence of elements in \mathbb{M} .

Image: A math a math

- Consider the space $\mathbb{M} = \{ \text{ space of all measures on } \mathcal{M} \}.$
- $(r_n \mathbb{P}(N_n \in \cdot) : n \ge 1)$ is a sequence of elements in \mathbb{M} .
- M₀ = {ξ ∈ M : ξ(A) < ∞ for all measurable subsets A ⊂ M \ {∅}}.

- Consider the space $\mathbb{M} = \{ \text{ space of all measures on } \mathcal{M} \}.$
- $(r_n \mathbb{P}(N_n \in \cdot) : n \ge 1)$ is a sequence of elements in \mathbb{M} .
- M₀ = {ξ ∈ M : ξ(A) < ∞ for all measurable subsets A ⊂ M \ {∅}}.

Consider a complete separable metric space \mathbb{S} and an element $s_0 \in \mathbb{S}$.

イロト 不得下 イヨト イヨト 二日

- Consider the space $\mathbb{M} = \{ \text{ space of all measures on } \mathcal{M} \}.$
- $(r_n \mathbb{P}(N_n \in \cdot) : n \ge 1)$ is a sequence of elements in \mathbb{M} .
- M₀ = {ξ ∈ M : ξ(A) < ∞ for all measurable subsets A ⊂ M \ {∅}}.

Consider a complete separable metric space \mathbb{S} and an element $s_0 \in \mathbb{S}$. Let M_0 be the space of all locally finite measures on the space $\mathbb{S} \setminus \{s_0\}$.

イロト 不得下 イヨト イヨト 二日

- Consider the space $\mathbb{M} = \{ \text{ space of all measures on } \mathcal{M} \}.$
- $(r_n \mathbb{P}(N_n \in \cdot) : n \ge 1)$ is a sequence of elements in \mathbb{M} .
- M₀ = {ξ ∈ M : ξ(A) < ∞ for all measurable subsets A ⊂ M \ {∅}}.

Consider a complete separable metric space \mathbb{S} and an element $s_0 \in \mathbb{S}$. Let \mathbf{M}_0 be the space of all locally finite measures on the space $\mathbb{S} \setminus \{s_0\}$. A sequence of measures $(\xi_n : n \ge 1)$ is said to converge in M_0 to a measure $\xi \in \mathbf{M}_0$ if $\int fd\xi_n \to \int fd\xi$ for every bounded, continuous positive function $f : \mathbb{S} \to [0, \infty)$ such that f vanishes in a neighbourhood of s_0 .

- Consider the space $\mathbb{M} = \{ \text{ space of all measures on } \mathcal{M} \}.$
- $(r_n \mathbb{P}(N_n \in \cdot) : n \ge 1)$ is a sequence of elements in \mathbb{M} .
- M₀ = {ξ ∈ M : ξ(A) < ∞ for all measurable subsets A ⊂ M \ {∅}}.

Consider a complete separable metric space \mathbb{S} and an element $s_0 \in \mathbb{S}$. Let \mathbf{M}_0 be the space of all locally finite measures on the space $\mathbb{S} \setminus \{s_0\}$. A sequence of measures $(\xi_n : n \ge 1)$ is said to converge in M_0 to a measure $\xi \in \mathbf{M}_0$ if $\int fd\xi_n \to \int fd\xi$ for every bounded, continuous positive function $f : \mathbb{S} \to [0, \infty)$ such that f vanishes in a neighbourhood of s_0 .

• We can use M_0 convergence with $\mathbb{S} = \mathscr{M}$ and $s_0 = \emptyset$.

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙
More questions

Ayan Bhattacharya (C.W.I.)

Ξ.

イロン 不聞と 不同と 不同と

• Can we write down r_n in terms of c_n ?

э

イロト イポト イヨト イヨト

- Can we write down r_n in terms of c_n ?
- Can we identify the limit measure λ ?

3

Image: A matrix

- Can we write down r_n in terms of c_n ?
- Can we identify the limit measure λ ?

Consequence: $r_n \mathbb{P}(M_n > c_n x)$ converges to some non-null function f of x. The function f can also be identified.

Literature on large deviation for extremes

- Large deviation results for maxima in BRW with light-tailed displacement (exponentially decaying tail) have been derived by Gantert and Höfelsauer (2018).
- Large deviation for extremal process Hult and Samorodnitsky (2010) and Fasen and Roy (2016). (Regularly varying case).

Theorem (B. 2018(arXiv:1802.05938v1))

There exists r_n such that for every "nice set" $A \subset \mathcal{M}$,

$$r_n \mathbb{P}(N_n \in A) \stackrel{M_0}{\longrightarrow} \lambda(A)$$

where

$$\lambda(A) = \sum_{l=1}^{\infty} m^{-l} \mathbb{E} \Big[\nu_{\alpha} (x \in \mathbb{R} : Z_l \delta_x \in A) \Big].$$

Ayan Bhattacharya (C.W.I.)

3

▲ □ ► < □ ► </p>

Main result

Theorem (B. 2018(arXiv:1802.05938v1))

There exists $r_n (= (m^n \mathbb{P}(|X| > c_n))^{-1})$ such that for every "nice set" $A \subset \mathcal{M}$,

$$r_n \mathbb{P}(N_n \in A) \xrightarrow{M_0} \lambda(A)$$

where

$$\lambda(A) = \sum_{l=1}^{\infty} m^{-l} \mathbb{E}\Big[\nu_{\alpha}(x \in \mathbb{R} : Z_l \delta_x \in A)\Big].$$

<□> <同> <同> <同> <同> <同> <同> <同> <同> <

Main result

Theorem (B. 2018(arXiv:1802.05938v1))

There exists $r_n (= (m^n \mathbb{P}(|X| > c_n))^{-1})$ such that for every "nice set" $A \subset \mathcal{M},$ $\mathbb{P}(M \in A) \xrightarrow{M_0} \mathcal{N}(A)$

$$\Gamma_n \mathbb{P}(N_n \in A) \xrightarrow{M_0} \lambda(A)$$

where

$$\lambda(A) = \sum_{l=1}^{\infty} m^{-l} \mathbb{E} \Big[\nu_{\alpha}(x \in \mathbb{R} : Z_l \delta_x \in A) \Big].$$

• W (martingale limit) does not appear in the limit measure ν .

Ayan Bhattacharya (C.W.I.)

LDP for BRW

June 20, 2018 28 / 37

Large deviation for the topmost position

Corollary

Recall that M_n denotes the position of the topmost particle in the nth generation.

Large deviation for the topmost position

Corollary

Recall that M_n denotes the position of the topmost particle in the nth generation. Then

$$\lim_{n\to\infty}r_n\mathbb{P}(M_n>c_nx)=p\frac{1}{m-1}x^{-\alpha}\qquad\text{for all }x>0.$$

э

<**A**₽ ► < **B** ►

Fix x > 0.

 $r_n \mathbb{P}(M_n > c_n x)$

Ayan Bhattacharya (C.W.I.)

LDP for BRW

∃ → June 20, 2018 30 / 37

э

Fix x > 0.

$$r_n \mathbb{P}\Big(M_n > c_n x\Big)$$

= $r_n \mathbb{P}\Big(N_n(x,\infty) \ge 1\Big)$

э

Fix x > 0.

$$r_{n}\mathbb{P}\Big(M_{n} > c_{n}x\Big)$$

= $r_{n}\mathbb{P}\Big(N_{n}(x,\infty) \ge 1\Big)$
= $r_{n}\mathbb{P}\Big(N_{n} \in \{\xi \in \mathscr{M} : \xi(x,\infty) \ge 1\}\Big)$

э

Fix x > 0.

$$r_{n}\mathbb{P}\left(M_{n} > c_{n}x\right)$$

= $r_{n}\mathbb{P}\left(N_{n}(x,\infty) \ge 1\right)$
= $r_{n}\mathbb{P}\left(N_{n} \in \{\xi \in \mathcal{M} : \xi(x,\infty) \ge 1\}\right)$
 $\xrightarrow{n \to \infty} \lambda\left(\{\xi : \xi(x,\infty) \ge 1\}\right)$

э

Fix x > 0.

$$r_{n}\mathbb{P}\left(M_{n} > c_{n}x\right)$$

$$= r_{n}\mathbb{P}\left(N_{n}(x,\infty) \ge 1\right)$$

$$= r_{n}\mathbb{P}\left(N_{n} \in \left\{\xi \in \mathscr{M} : \xi(x,\infty) \ge 1\right\}\right)$$

$$\stackrel{n \to \infty}{\longrightarrow} \lambda\left(\left\{\xi : \xi(x,\infty) \ge 1\right\}\right)$$

$$= p\frac{1}{m-1}x^{-\alpha}$$

э

Fix x > 0.

$$r_{n}\mathbb{P}\left(M_{n} > c_{n}x\right)$$

$$= r_{n}\mathbb{P}\left(N_{n}(x,\infty) \geq 1\right)$$

$$= r_{n}\mathbb{P}\left(N_{n} \in \left\{\xi \in \mathscr{M} : \xi(x,\infty) \geq 1\right\}\right)$$

$$\stackrel{n \to \infty}{\longrightarrow} \lambda\left(\left\{\xi : \xi(x,\infty) \geq 1\right\}\right)$$

$$= p\frac{1}{m-1}x^{-\alpha}$$

• This can be done for the joint distribution of topmost and bottommost position, first *k*-order statistics.

Ayan Bhattacharya (C.W.I.)

June 20, 2018 30 / 37

Proof strategy: Principle of single large disp.

Ayan Bhattacharya (C.W.I.)

LDP for BRW

June 20, 2018 31 / 37

Proof strategy: Principle of single large disp.

• Step 1 - One large displacement. It is enough to study another point process of the displacements upto *n*th generation due to at most one large jump in every path.

Step 2 - Cutting the tree (locate the large displacement). Cut the tree at the (n - K)th generation and forget whatever happened in the first (n - K) generations. With high probability, one large displacement is contained in the last K generations.

- Advantages of cutting: Get Z_{n-K} independent copies of the independently and identically point processes.
- Each of the subtrees have equal probability to contain the large jump.

Proof strategy: contd......

Ayan Bhattacharya (C.W.I.)

LDP for BRW

June 20, 2018 34 / 37

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Compute the contribution of the large jump at the Kth generation of the subtrees.

Compute the contribution of the large jump at the Kth generation of the subtrees.

• Step 3 - Pruning

Compute the contribution of the large jump at the Kth generation of the subtrees.

- Step 3 Pruning
- Step 4 Regularization

• No leaf assumption is not necessary.

< 🗗 🕨

• No leaf assumption is not necessary.

Large deviation for $\mathbb{P}(N_n \in A|$ survival of tree).

< 47 ▶

• The displacements associated to the children from same parent can be dependent.

э

Image: A matrix

- The displacements associated to the children from same parent can be dependent.
 - If the number of children of a particle is bounded almost surely, then it is easy to use multivariate regular variation.

- The displacements associated to the children from same parent can be dependent.
 - If the number of children of a particle is bounded almost surely, then it is easy to use multivariate regular variation.

- The displacements associated to the children from same parent can be dependent.
 - If the number of children of a particle is bounded almost surely, then it is easy to use multivariate regular variation.

The limit measure λ changes.

Thank you

3

イロト イヨト イヨト イヨト