Large deviation for extremes in BRW with regularly varying displacements

Ayan Bhattacharya

Centrum Wiskunde \& Informatica, Amsterdam

June 20, 2018

CWI

Branching random walk on real line

Branching random walk on real line

- It starts with a single particle at the origin of the real line.

Branching random walk on real line

- It starts with a single particle at the origin of the real line. This is referred as the 0th generation.

Branching random walk on real line

- After unit time the particle at origin produces a random number of particles according to a distribution (progeny distribution) on $\mathbb{N}=\{1,2,3, \ldots\}$ (no leaf) and dies immediately. The new particles form generation 1 .

Branching random walk on real line

- After unit time the particle at origin produces a random number of particles according to a distribution (progeny distribution) on $\mathbb{N}=\{1,2,3, \ldots\}$ (no leaf) and dies immediately. The new particles form generation 1 .

Branching random walk on real line

- After unit time the particle at origin produces a random number of particles according to a distribution (progeny distribution) on $\mathbb{N}=\{1,2,3, \ldots\}$ and dies immediately. The new particles form generation 1.
- Each new particle comes with a random real-valued displacement being independent of others.

Branching random walk on real line

- After unit time the particle at origin produces a random number of particles according to a distribution (progeny distribution) on $\mathbb{N}=\{1,2,3, \ldots\}$ and dies immediately. The new particles form generation 1 .
- Each new particle comes with a random real-valued displacement being independent of others. Displacements are identically distributed according to the law of X.

Branching random walk on real line

- After unit time, each particle in the first generation produces a random number of particles according to progeny distribution

Branching random walk on real line

- After unit time, each particle in the first generation produces a random number of particles according to progeny distribution being independent of others and

Branching random walk on real line

- After unit time, each particle in the first generation produces a random number of particles according to progeny distribution being independent of others and whatever happened in the first generation.

Branching random walk on real line

- After unit time, each particle in the first generation produces a random number of particles according to progeny distribution being independent of others and whatever happened in the first generation. The new particles form second generation.

Branching random walk on real line

- After unit time, each particle in the first generation produces a random number of particles according to progeny distribution being independent of others and whatever happened in the first generation. The new particles form second generation. Each new particle comes with a random displacement being independent of others.

Branching random walk on real line

- After unit time, each particle in the first generation produces a random number of particles according to progeny distribution being independent of others and whatever happened in the first generation. The new particles form second generation. Each new particle comes with a random displacement being independent of others.

Branching random walk on real line

- After unit time, each particle in the first generation produces a random number of particles according to progeny distribution being independent of others and whatever happened in the first generation. The new particles form second generation. Each new particle comes with a random displacement being independent of others.

Branching random walk on real line

- This mechanism goes on.

Branching random walk on real line

- This mechanism goes on.
- The position of a particle is defined to be its displacement translated by position of its parent.

Branching random walk on real line

- This mechanism goes on.
- The position of a particle is defined to be its displacement translated by position of its parent.

- The collection of positions in the system is called branching random walk (BRW).

- In this talk, we shall focus on the position of the topmost particle in the nth generation.

Why BRW?

- BRW is considered to be very important in the context of probability, statistical physics, algorithms etc. It has connection to Gaussian multplicative chaos, Gaussian free field, random polymers, percolation etc.

An easy to state problem

An easy to state problem

- Suppose that X is positive almost surely.

An easy to state problem

- Suppose that X is positive almost surely.
- The displacement of a particle is the lifetime of a bacteria.

An easy to state problem

- Suppose that X is positive almost surely.
- The displacement of a particle is the lifetime of a bacteria.
- The position of the topmost particle in the nth generation can be interpreted as the last time one can see an nth generation bacteria.

Challenges

- Phase transition in the asymptotic behavior of extremes.

Challenges

- Phase transition in the asymptotic behavior of extremes.
- Reason: Non-trivial dependence structure. (Durrett(1979))

Assumptions on genealogical structure

Assumptions on genealogical structure

- The genealogy of the particles is given by a Galton-Watson process.

Assumptions on genealogical structure

- The genealogy of the particles is given by a Galton-Watson process.
- We shall assume that the underlying GW process is supercritical and satisfies the Kesten-Stigum condition.

Assumptions on genealogical structure

- The genealogy of the particles is given by a Galton-Watson process.
- We shall assume that the underlying GW process is supercritical and satisfies the Kesten-Stigum condition.
- Z_{n} denotes the number of particles in the nth generation for every $n \geq 1$.
- $1<m=\mathbb{E}\left(Z_{1}\right)<\infty$.
- $1<m=\mathbb{E}\left(Z_{1}\right)<\infty$.
- ($\left.m^{-n} Z_{n}: n \geq 1\right)$ is a non-negative martingale sequence and hence $m^{-n} Z_{n}$ converges to a random variable W almost surely as $n \rightarrow \infty$.
- $1<m=\mathbb{E}\left(Z_{1}\right)<\infty$.
- ($\left.m^{-n} Z_{n}: n \geq 1\right)$ is a non-negative martingale sequence and hence $m^{-n} Z_{n}$ converges to a random variable W almost surely as $n \rightarrow \infty$.
- Kesten-Stigum condition $\left(\mathbb{E}\left(Z_{1} \log ^{+} Z_{1}\right)<\infty\right)$ implies that W is positive almost surely due to "no leaf" assumption.

Assumptions on the displacements

Assumptions on the displacements

- The displacements are real-valued. For every $x>0$,

$$
\mathbb{P}(|X|>x)=x^{-\alpha} L(x)
$$

where L is slowly varying function and satisfies tail-balancing conditions

$$
\lim _{x \rightarrow \infty} \frac{\mathbb{P}(X>x)}{\mathbb{P}(|X|>x)}=p \quad \text { and } \quad \lim _{x \rightarrow \infty} \frac{\mathbb{P}(X<-x)}{\mathbb{P}(|X|>x)}=1-p
$$

for some $p \in[0,1]$.

Assumptions on the displacements

- The displacements are real-valued. For every $x>0$,

$$
\mathbb{P}(|X|>x)=x^{-\alpha} L(x)
$$

where L is slowly varying function and satisfies tail-balancing conditions

$$
\lim _{x \rightarrow \infty} \frac{\mathbb{P}(X>x)}{\mathbb{P}(|X|>x)}=p \quad \text { and } \quad \lim _{x \rightarrow \infty} \frac{\mathbb{P}(X<-x)}{\mathbb{P}(|X|>x)}=1-p
$$

for some $p \in[0,1]$.

- Consider a sequence of constants $\left(b_{n}: n \geq 1\right)$ such that $m^{n} \mathbb{P}\left(b_{n}^{-1} X \in \cdot\right) \xrightarrow{v} \nu_{\alpha}(\cdot)$ in the space $[-\infty, \infty] \backslash\{0\}$ and

$$
\nu_{\alpha}(d x)=\alpha\left(p x^{-\alpha-1} \mathbb{1}(x>0)+(1-p)(-x)^{-\alpha} \mathbb{1}(x<0)\right) .
$$

Literature

Literature

- Pioneering work on extremes of BRW has been done by Hammerseley-Kingman-Biggins.

Literature

- Pioneering work on extremes of BRW has been done by Hammerseley-Kingman-Biggins.
- Weak convergence of extremes and extremal processes for light-tailed displacements are known. See Bachman (2000), Eidekon (2011), Maillard (2015), Madaule (2017), Mallein (2016).

Literature

- Pioneering work on extremes of BRW has been done by Hammerseley-Kingman-Biggins.
- Weak convergence of extremes and extremal processes for light-tailed displacements are known. See Bachman (2000), Eidekon (2011), Maillard (2015), Madaule (2017), Mallein (2016).
- Large deviation is derived for topmost particle in branching Brownian motion (BBM). See Chauvin and Rouault (1988).

Literature

- Pioneering work on extremes of BRW has been done by Hammerseley-Kingman-Biggins.
- Weak convergence of extremes and extremal processes for light-tailed displacements are known. See Bachman (2000), Eidekon (2011), Maillard (2015), Madaule (2017), Mallein (2016).
- Large deviation is derived for topmost particle in branching Brownian motion (BBM). See Chauvin and Rouault (1988).
- Large deviation for topmost position in different variants of the model BBM: Derrida and Shi(2017).

Regularly varying displacements

Regularly varying displacements

- Let M_{n} be the position of the topmost particle in the nth generation.

Regularly varying displacements

- Let M_{n} be the position of the topmost particle in the nth generation.
- $b_{n}^{-1} M_{n} \Rightarrow M$ where M is a W-mixture of Frechet distributions. (Durrett(1983))

Regularly varying displacements

- Let M_{n} be the position of the topmost particle in the nth generation.
- $b_{n}^{-1} M_{n} \Rightarrow M$ where M is a W-mixture of Frechet distributions. (Durrett(1983))
- Let \mathbf{v} denote the generic vertex, $|\mathbf{v}|$ denote generation of the vertex v and $S(\mathrm{v})$ denote the position. Consider

$$
\mathscr{P}_{n}=\sum_{|\mathbf{v}|=n} \delta_{b_{n}^{-1}} S(\mathbf{v})
$$

Regularly varying displacements

- Let M_{n} be the position of the topmost particle in the nth generation.
- $b_{n}^{-1} M_{n} \Rightarrow M$ where M is a W-mixture of Frechet distributions. (Durrett(1983))
- Let \mathbf{v} denote the generic vertex, $|\mathbf{v}|$ denote generation of the vertex v and $S(\mathrm{v})$ denote the position. Consider

$$
\mathscr{P}_{n}=\sum_{|\mathbf{v}|=n} \delta_{b_{n}^{-1} S(\mathbf{v})}
$$

- Let $\mathscr{M}=\{$ space of all measures on $[-\infty, \infty] \backslash\{0\}\}$

Weak convergence of \mathscr{P}_{n}

Theorem (B. Hazra and Roy (2016))

There exists a Cox cluster process \mathscr{P} such that $\mathscr{P}_{n} \Rightarrow \mathscr{P}$ as $n \rightarrow \infty$ in the space \mathscr{M} where

$$
\mathscr{P} \stackrel{d}{=} \sum_{l=1}^{\infty} Z_{G_{l}} \delta_{W^{1 /} / \alpha_{l}}
$$

with $\left(j_{1}: I \geq 1\right)$ be the atoms of the $\operatorname{PRM}\left(\nu_{\alpha}\right)$ on \mathbb{R}.

Aim

Aim

- Consider an increasing sequence $\left(c_{n}: n \geq 1\right)$ such that

$$
\lim _{n \rightarrow \infty} c_{n}^{-1} b_{n}=0
$$

Aim

- Consider an increasing sequence $\left(c_{n}: n \geq 1\right)$ such that

$$
\lim _{n \rightarrow \infty} c_{n}^{-1} b_{n}=0
$$

- $c_{n}^{-1} M_{n}$ converges to 0 in probability.

Aim

- Consider an increasing sequence $\left(c_{n}: n \geq 1\right)$ such that

$$
\lim _{n \rightarrow \infty} c_{n}^{-1} b_{n}=0
$$

- $c_{n}^{-1} M_{n}$ converges to 0 in probability.

Question
 What is the rate of convergence for $\mathbb{P}\left(M_{n}>c_{n} x\right)$?

Generalization

- Same questions can be asked for second, third, ... topmost positions in the nth generation.

Generalization

- Same questions can be asked for second, third, ... topmost positions in the nth generation.
- Joint distribution of the first k largest positions and gap statistics.

Generalization

- Same questions can be asked for second, third, ...topmost positions in the nth generation.
- Joint distribution of the first k largest positions and gap statistics.
- Consider the sequence of point processes

$$
N_{n}=\sum_{|\mathbf{v}|=n} \delta_{c_{n}^{-1} S(\mathbf{v})}
$$

Question

How does N_{n} behave asymptotically?

- Hult and Samorodnitsky (2010). Large deviation of extremal processes.

Aim

- Recall $\mathscr{M}=\{$ space of all point measures on $[-\infty, \infty] \backslash\{0\}\}$.

Aim

- Recall $\mathscr{M}=\{$ space of all point measures on $[-\infty, \infty] \backslash\{0\}\}$.
- Vague convergence on the space \mathscr{M} is metrizable and \mathscr{M} equipped with vague topology is complete and separable.

Aim

- Recall $\mathscr{M}=\{$ space of all point measures on $[-\infty, \infty] \backslash\{0\}\}$.
- Vague convergence on the space \mathscr{M} is metrizable and \mathscr{M} equipped with vague topology is complete and separable.
- N_{n} converges to null measure (\emptyset) in the space \mathscr{M} almost surely.

Aim

- Recall $\mathscr{M}=\{$ space of all point measures on $[-\infty, \infty] \backslash\{0\}\}$.
- Vague convergence on the space \mathscr{M} is metrizable and \mathscr{M} equipped with vague topology is complete and separable.
- N_{n} converges to null measure (\emptyset) in the space \mathscr{M} almost surely.
- Consider $A \subset \mathscr{M}$ such that $\emptyset \notin \bar{A}$.

Aim

- Recall $\mathscr{M}=\{$ space of all point measures on $[-\infty, \infty] \backslash\{0\}\}$.
- Vague convergence on the space \mathscr{M} is metrizable and \mathscr{M} equipped with vague topology is complete and separable.
- N_{n} converges to null measure (\emptyset) in the space \mathscr{M} almost surely.
- Consider $A \subset \mathscr{M}$ such that $\emptyset \notin \bar{A}$. Then it is clear that $\mathbb{P}\left(N_{n} \in A\right) \rightarrow 0$.

Question

Does there exist $\left(r_{n}: n \geq 1\right)$ and a non-trivial measure λ on \mathscr{M} such that $r_{n} \mathbb{P}\left(N_{n} \in A\right)$ converges to $\lambda(A)$ for every nice measurable set $A \subset \mathscr{M}$?

Question

Does there exist $\left(r_{n}: n \geq 1\right)$ and a non-trivial measure λ on \mathscr{M} such that $r_{n} \mathbb{P}\left(N_{n} \in A\right)$ converges to $\lambda(A)$ for every nice measurable set $A \subset \mathscr{M}$?

- "nice measurable set" A means
- $\lambda(\partial A)=0 .(\partial A$ means boundary of $A)$

Question

Does there exist $\left(r_{n}: n \geq 1\right)$ and a non-trivial measure λ on \mathscr{M} such that $r_{n} \mathbb{P}\left(N_{n} \in A\right)$ converges to $\lambda(A)$ for every nice measurable set $A \subset \mathscr{M}$?

- "nice measurable set" A means
- $\lambda(\partial A)=0 .(\partial A$ means boundary of $A)$
- "bounded away" means $\emptyset \notin \bar{A}(\emptyset$ is the null measure in $\mathscr{M})$

Question

Does there exist $\left(r_{n}: n \geq 1\right)$ and a non-trivial measure λ on \mathscr{M} such that $r_{n} \mathbb{P}\left(N_{n} \in A\right)$ converges to $\lambda(A)$ for every nice measurable set $A \subset \mathscr{M}$?

- "nice measurable set" A means
- $\lambda(\partial A)=0$. $(\partial A$ means boundary of $A)$
- "bounded away" means $\emptyset \notin \bar{A}$ (\emptyset is the null measure in \mathscr{M})
- "non-trivial measure" λ means the measure λ such that $0<\lambda(A)<\infty$ for a "nice" set A.
- Consider the space $\mathbb{M}=\{$ space of all measures on $\mathscr{M}\}$.
- Consider the space $\mathbb{M}=\{$ space of all measures on $\mathscr{M}\}$.
- $\left(r_{n} \mathbb{P}\left(N_{n} \in \cdot\right): n \geq 1\right)$ is a sequence of elements in \mathbb{M}.
- Consider the space $\mathbb{M}=\{$ space of all measures on $\mathscr{M}\}$.
- $\left(r_{n} \mathbb{P}\left(N_{n} \in \cdot\right): n \geq 1\right)$ is a sequence of elements in \mathbb{M}.
- $\mathbb{M}_{0}=\{\xi \in \mathbb{M}: \xi(A)<\infty$ for all measurable subsets $A \subset$ $\mathscr{M} \backslash\{\emptyset\}\}$.
- Consider the space $\mathbb{M}=\{$ space of all measures on $\mathscr{M}\}$.
- $\left(r_{n} \mathbb{P}\left(N_{n} \in \cdot\right): n \geq 1\right)$ is a sequence of elements in \mathbb{M}.
- $\mathbb{M}_{0}=\{\xi \in \mathbb{M}: \xi(A)<\infty$ for all measurable subsets $A \subset$ $\mathscr{M} \backslash\{\emptyset\}\}$.

Definition (Hult and Lindskog (2006), Lindskog, Resnick and Roy (2014))

Consider a complete separable metric space \mathbb{S} and an element $s_{0} \in \mathbb{S}$.

- Consider the space $\mathbb{M}=\{$ space of all measures on $\mathscr{M}\}$.
- $\left(r_{n} \mathbb{P}\left(N_{n} \in \cdot\right): n \geq 1\right)$ is a sequence of elements in \mathbb{M}.
- $\mathbb{M}_{0}=\{\xi \in \mathbb{M}: \xi(A)<\infty$ for all measurable subsets $A \subset$ $\mathscr{M} \backslash\{\emptyset\}\}$.

Definition (Hult and Lindskog (2006), Lindskog, Resnick and Roy (2014))

Consider a complete separable metric space \mathbb{S} and an element $s_{0} \in \mathbb{S}$. Let M_{0} be the space of all locally finite measures on the space $\mathbb{S} \backslash\left\{s_{0}\right\}$.

- Consider the space $\mathbb{M}=\{$ space of all measures on $\mathscr{M}\}$.
- $\left(r_{n} \mathbb{P}\left(N_{n} \in \cdot\right): n \geq 1\right)$ is a sequence of elements in \mathbb{M}.
- $\mathbb{M}_{0}=\{\xi \in \mathbb{M}: \xi(A)<\infty$ for all measurable subsets $A \subset$ $\mathscr{M} \backslash\{\emptyset\}\}$.

Definition (Hult and Lindskog (2006), Lindskog, Resnick and Roy (2014))

Consider a complete separable metric space \mathbb{S} and an element $s_{0} \in \mathbb{S}$. Let M_{0} be the space of all locally finite measures on the space $\mathbb{S} \backslash\left\{s_{0}\right\} . A$ sequence of measures $\left(\xi_{n}: n \geq 1\right)$ is said to converge in M_{0} to a measure $\xi \in \mathbf{M}_{0}$ if $\int f d \xi_{n} \rightarrow \int f d \xi$ for every bounded, continuous positive function $f: \mathbb{S} \rightarrow[0, \infty)$ such that f vanishes in a neighbourhood of s_{0}.

- Consider the space $\mathbb{M}=\{$ space of all measures on $\mathscr{M}\}$.
- $\left(r_{n} \mathbb{P}\left(N_{n} \in \cdot\right): n \geq 1\right)$ is a sequence of elements in \mathbb{M}.
- $\mathbb{M}_{0}=\{\xi \in \mathbb{M}: \xi(A)<\infty$ for all measurable subsets $A \subset$ $\mathscr{M} \backslash\{\emptyset\}\}$.

Definition (Hult and Lindskog (2006), Lindskog, Resnick and Roy (2014))

Consider a complete separable metric space \mathbb{S} and an element $s_{0} \in \mathbb{S}$. Let M_{0} be the space of all locally finite measures on the space $\mathbb{S} \backslash\left\{s_{0}\right\} . A$ sequence of measures $\left(\xi_{n}: n \geq 1\right)$ is said to converge in M_{0} to a measure $\xi \in \mathrm{M}_{0}$ if $\int f d \xi_{n} \rightarrow \int f d \xi$ for every bounded, continuous positive function $f: \mathbb{S} \rightarrow[0, \infty)$ such that f vanishes in a neighbourhood of s_{0}.

- We can use M_{0} convergence with $\mathbb{S}=\mathscr{M}$ and $s_{0}=\emptyset$.

More questions

More questions

- Can we write down r_{n} in terms of c_{n} ?

More questions

- Can we write down r_{n} in terms of c_{n} ?
- Can we identify the limit measure λ ?

More questions

- Can we write down r_{n} in terms of c_{n} ?
- Can we identify the limit measure λ ?

Consequence: $r_{n} \mathbb{P}\left(M_{n}>c_{n} x\right)$ converges to some non-null function f of x. The function f can also be identified.

Literature on large deviation for extremes

- Large deviation results for maxima in BRW with light-tailed displacement (exponentially decaying tail) have been derived by Gantert and Höfelsauer (2018).
- Large deviation for extremal process Hult and Samorodnitsky (2010) and Fasen and Roy (2016). (Regularly varying case).

Main result

Theorem (B. 2018(arXiv:1802.05938v1))

There exists r_{n} such that for every "nice set" $A \subset \mathscr{M}$,

$$
r_{n} \mathbb{P}\left(N_{n} \in A\right) \xrightarrow{M_{0}} \lambda(A)
$$

where

$$
\lambda(A)=\sum_{l=1}^{\infty} m^{-l} \mathbb{E}\left[\nu_{\alpha}\left(x \in \mathbb{R}: Z_{l} \delta_{x} \in A\right)\right]
$$

Main result

Theorem (B. 2018(arXiv:1802.05938v1))

There exists $r_{n}\left(=\left(m^{n} \mathbb{P}\left(|X|>c_{n}\right)\right)^{-1}\right)$ such that for every "nice set" $A \subset \mathscr{M}$,

$$
r_{n} \mathbb{P}\left(N_{n} \in A\right) \xrightarrow{M_{0}} \lambda(A)
$$

where

$$
\lambda(A)=\sum_{l=1}^{\infty} m^{-l} \mathbb{E}\left[\nu_{\alpha}\left(x \in \mathbb{R}: Z_{l} \delta_{x} \in A\right)\right]
$$

Main result

Theorem (B. 2018(arXiv:1802.05938v1))

There exists $r_{n}\left(=\left(m^{n} \mathbb{P}\left(|X|>c_{n}\right)\right)^{-1}\right)$ such that for every "nice set" $A \subset \mathscr{M}$,

$$
r_{n} \mathbb{P}\left(N_{n} \in A\right) \xrightarrow{M_{0}} \lambda(A)
$$

where

$$
\lambda(A)=\sum_{l=1}^{\infty} m^{-1} \mathbb{E}\left[\nu_{\alpha}\left(x \in \mathbb{R}: Z_{l} \delta_{x} \in A\right)\right] .
$$

- W (martingale limit) does not appear in the limit measure ν.

Large deviation for the topmost position

Corollary

Recall that M_{n} denotes the position of the topmost particle in the nth generation.

Large deviation for the topmost position

Corollary

Recall that M_{n} denotes the position of the topmost particle in the nth generation. Then

$$
\lim _{n \rightarrow \infty} r_{n} \mathbb{P}\left(M_{n}>c_{n} x\right)=p \frac{1}{m-1} x^{-\alpha} \quad \text { for all } x>0
$$

Proof of consequence: large deviation for maxima

Fix $x>0$.

$$
r_{n} \mathbb{P}\left(M_{n}>c_{n} x\right)
$$

Proof of consequence: large deviation for maxima

Fix $x>0$.

$$
\begin{aligned}
& r_{n} \mathbb{P}\left(M_{n}>c_{n} x\right) \\
= & r_{n} \mathbb{P}\left(N_{n}(x, \infty) \geq 1\right)
\end{aligned}
$$

Proof of consequence: large deviation for maxima

Fix $x>0$.

$$
\begin{aligned}
& r_{n} \mathbb{P}\left(M_{n}>c_{n} x\right) \\
= & r_{n} \mathbb{P}\left(N_{n}(x, \infty) \geq 1\right) \\
= & r_{n} \mathbb{P}\left(N_{n} \in\{\xi \in \mathscr{M}: \xi(x, \infty) \geq 1\}\right)
\end{aligned}
$$

Proof of consequence: large deviation for maxima

Fix $x>0$.

$$
\begin{aligned}
& r_{n} \mathbb{P}\left(M_{n}>c_{n} x\right) \\
&= r_{n} \mathbb{P}\left(N_{n}(x, \infty) \geq 1\right) \\
&= r_{n} \mathbb{P}\left(N_{n} \in\{\xi \in \mathscr{M}: \xi(x, \infty) \geq 1\}\right) \\
& \xrightarrow{n \rightarrow \infty} \lambda(\{\xi: \xi(x, \infty) \geq 1\})
\end{aligned}
$$

Proof of consequence: large deviation for maxima

Fix $x>0$.

$$
\begin{aligned}
& r_{n} \mathbb{P}\left(M_{n}>c_{n} x\right) \\
&= r_{n} \mathbb{P}\left(N_{n}(x, \infty) \geq 1\right) \\
&= r_{n} \mathbb{P}\left(N_{n} \in\{\xi \in \mathscr{M}: \xi(x, \infty) \geq 1\}\right) \\
& \xrightarrow{n \rightarrow \infty} \lambda(\{\xi: \xi(x, \infty) \geq 1\}) \\
&= p \frac{1}{m-1} x^{-\alpha}
\end{aligned}
$$

Proof of consequence: large deviation for maxima

Fix $x>0$.

$$
\begin{aligned}
& r_{n} \mathbb{P}\left(M_{n}>c_{n} x\right) \\
&= r_{n} \mathbb{P}\left(N_{n}(x, \infty) \geq 1\right) \\
&= r_{n} \mathbb{P}\left(N_{n} \in\{\xi \in \mathscr{M}: \xi(x, \infty) \geq 1\}\right) \\
& \xrightarrow{n \rightarrow \infty} \lambda(\{\xi: \xi(x, \infty) \geq 1\}) \\
&= p \frac{1}{m-1} x^{-\alpha}
\end{aligned}
$$

- This can be done for the joint distribution of topmost and bottommost position, first k-order statistics.

Proof strategy: Principle of single large disp.

Proof strategy: Principle of single large disp.

- Step 1 - One large displacement. It is enough to study another point process of the displacements upto nth generation due to at most one large jump in every path.

Proof strategy: contd.......

- Step 2 - Cutting the tree (locate the large displacement). Cut the tree at the $(n-K)$ th generation and forget whatever happened in the first $(n-K)$ generations. With high probability, one large displacement is contained in the last K generations.

Proof strategy: continued

- Advantages of cutting: Get Z_{n-K} independent copies of the independently and identically point processes.
- Each of the subtrees have equal probability to contain the large jump.

Proof strategy: contd.......

Proof strategy: contd.......

Compute the contribution of the large jump at the K th generation of the subtrees.

Proof strategy: contd.......

Compute the contribution of the large jump at the K th generation of the subtrees.

- Step 3 - Pruning

Proof strategy: contd.......

Compute the contribution of the large jump at the K th generation of the subtrees.

- Step 3 - Pruning
- Step 4 - Regularization

Weakening assumptions

- No leaf assumption is not necessary.

Weakening assumptions

- No leaf assumption is not necessary.

Large deviation for $\mathbb{P}\left(N_{n} \in A \mid\right.$ survival of tree $)$.

- The displacements associated to the children from same parent can be dependent.
- The displacements associated to the children from same parent can be dependent.
- If the number of children of a particle is bounded almost surely, then it is easy to use multivariate regular variation.
- The displacements associated to the children from same parent can be dependent.
- If the number of children of a particle is bounded almost surely, then it is easy to use multivariate regular variation.
- In general, it is not customary to have bounded number of children of a particle. Remedy: regular variation on the space $\mathbb{R}^{\mathbb{N}}$ developed in Hult and Lindskog (2006), Lindskog, Resnick and Roy (2014).
- The displacements associated to the children from same parent can be dependent.
- If the number of children of a particle is bounded almost surely, then it is easy to use multivariate regular variation.
- In general, it is not customary to have bounded number of children of a particle. Remedy: regular variation on the space $\mathbb{R}^{\mathbb{N}}$ developed in Hult and Lindskog (2006), Lindskog, Resnick and Roy (2014).

The limit measure λ changes.

Thank you

