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Branching random walk on real line

It starts with a single particle at the origin of the real line. This
is referred as the 0th generation.

0 time•
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Branching random walk on real line

After unit time the particle at origin produces a random number
of particles according to a distribution (progeny distribution) on
N = {1, 2, 3, . . .} (no leaf ) and dies immediately. The new
particles form generation 1.
Each new particle comes with a random real-valued
displacement being independent of others. Displacements are
identically distributed according to the law of X .
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Branching random walk on real line

After unit time, each particle in the first generation produces a
random number of particles according to progeny distribution

being independent of others and whatever happened in the first
generation. The new particles form second generation. Each
new particle comes with a random displacement being
independent of others.
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Branching random walk on real line

This mechanism goes on.

The position of a particle is defined to be its displacement
translated by position of its parent.
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The collection of positions in the system is called branching
random walk (BRW).
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In this talk, we shall focus on the position of the topmost
particle in the nth generation.
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Why BRW?

BRW is considered to be very important in the context of
probability, statistical physics, algorithms etc. It has connection
to Gaussian multplicative chaos, Gaussian free field, random
polymers, percolation etc.
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An easy to state problem

Suppose that X is positive almost surely.

The displacement of a particle is the lifetime of a bacteria.

The position of the topmost particle in the nth generation can
be interpreted as the last time one can see an nth generation
bacteria.
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Challenges

Phase transition in the asymptotic behavior of extremes.

Reason: Non-trivial dependence structure. (Durrett(1979))
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Assumptions on genealogical structure

The genealogy of the particles is given by a Galton-Watson
process.

We shall assume that the underlying GW process is supercritical
and satisfies the Kesten-Stigum condition.

Zn denotes the number of particles in the nth generation for
every n ≥ 1.
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1 < m = E(Z1) <∞.

(m−nZn : n ≥ 1) is a non-negative martingale sequence and
hence m−nZn converges to a random variable W almost surely
as n→∞.

Kesten-Stigum condition (E(Z1 log
+ Z1) <∞) implies that W is

positive almost surely due to “no leaf” assumption.
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Assumptions on the displacements

The displacements are real-valued. For every x > 0,

P(|X | > x) = x−αL(x)

where L is slowly varying function and satisfies tail-balancing
conditions

lim
x→∞

P(X > x)

P(|X | > x)
= p and lim

x→∞

P(X < −x)

P(|X | > x)
= 1− p

for some p ∈ [0, 1].

Consider a sequence of constants (bn : n ≥ 1) such that
mnP(b−1

n X ∈ ·) v→ να(·) in the space [−∞,∞] \ {0} and

να(dx) = α
(
px−α−1

1(x > 0) + (1− p)(−x)−α1(x < 0)
)
.
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Literature

Pioneering work on extremes of BRW has been done by
Hammerseley-Kingman-Biggins.

Weak convergence of extremes and extremal processes for
light-tailed displacements are known. See Bachman (2000),
Eidekon (2011), Maillard (2015), Madaule (2017), Mallein
(2016).

Large deviation is derived for topmost particle in branching
Brownian motion (BBM). See Chauvin and Rouault (1988).

Large deviation for topmost position in different variants of the
model BBM: Derrida and Shi(2017).
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Regularly varying displacements

Let Mn be the position of the topmost particle in the nth
generation.

b−1
n Mn ⇒ M where M is a W -mixture of Frechet distributions.

(Durrett(1983))

Let v denote the generic vertex, |v| denote generation of the
vertex v and S(v) denote the position. Consider

Pn =
∑
|v|=n

δb−1
n S(v)

Let M = { space of all measures on [−∞,∞] \ {0}}
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Weak convergence of Pn

Theorem (B. Hazra and Roy (2016))
There exists a Cox cluster process P such that Pn ⇒P as n→∞
in the space M where

P
d
=
∞∑
l=1

ZGl δW 1/αjl

with (jl : l ≥ 1) be the atoms of the PRM(να) on R.
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Aim

Consider an increasing sequence (cn : n ≥ 1) such that

lim
n→∞

c−1
n bn = 0.

c−1
n Mn converges to 0 in probability.

Question
What is the rate of convergence for P(Mn > cnx) ?
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Generalization

Same questions can be asked for second, third, . . . topmost
positions in the nth generation.

Joint distribution of the first k largest positions and gap
statistics.
Consider the sequence of point processes

Nn =
∑
|v|=n

δc−1
n S(v)

Question
How does Nn behave asymptotically?

Hult and Samorodnitsky (2010). Large deviation of extremal
processes.
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Aim

Recall M = {space of all point measures on [−∞,∞] \ {0}}.

Vague convergence on the space M is metrizable and M
equipped with vague topology is complete and separable.

Nn converges to null measure (∅) in the space M almost surely.

Consider A ⊂M such that ∅ /∈ Ā. Then it is clear that
P(Nn ∈ A)→ 0.
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Question
Does there exist (rn : n ≥ 1) and a non-trivial measure λ on M such
that rnP(Nn ∈ A) converges to λ(A) for every nice measurable set
A ⊂M ?

“nice measurable set” A means

λ(∂A) = 0. (∂A means boundary of A)

“bounded away” means ∅ /∈ Ā (∅ is the null measure in M )

“non-trivial measure” λ means the measure λ such that
0 < λ(A) <∞ for a “nice” set A.
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Consider the space M = { space of all measures on M }.
(rnP(Nn ∈ ·) : n ≥ 1) is a sequence of elements in M.
M0 = {ξ ∈M : ξ(A) <∞ for all measurable subsets A ⊂
M \ {∅}}.

Definition (Hult and Lindskog (2006), Lindskog, Resnick
and Roy (2014))
Consider a complete separable metric space S and an element s0 ∈ S.
Let M0 be the space of all locally finite measures on the space
S \ {s0}.A sequence of measures (ξn : n ≥ 1) is said to converge in
M0 to a measure ξ ∈M0 if

∫
fdξn →

∫
fdξ for every bounded,

continuous positive function f : S→ [0,∞) such that f vanishes in a
neighbourhood of s0.

We can use M0 convergence with S = M and s0 = ∅.
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More questions

Can we write down rn in terms of cn?

Can we identify the limit measure λ?

Consequence: rnP(Mn > cnx) converges to some non-null function
f of x . The function f can also be identified.
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Literature on large deviation for extremes

Large deviation results for maxima in BRW with light-tailed
displacement (exponentially decaying tail) have been derived by
Gantert and Höfelsauer (2018).

Large deviation for extremal process Hult and Samorodnitsky
(2010) and Fasen and Roy (2016). (Regularly varying case).
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Main result

Theorem (B. 2018(arXiv:1802.05938v1))
There exists rn such that for every “nice set” A ⊂M ,

rnP(Nn ∈ A)
M0−→ λ(A)

where

λ(A) =
∞∑
l=1

m−lE
[
να(x ∈ R : Zlδx ∈ A)

]
.
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There exists rn(=
(
mnP(|X | > cn)

)−1
) such that for every “nice set”

A ⊂M ,
rnP(Nn ∈ A)

M0−→ λ(A)

where

λ(A) =
∞∑
l=1

m−lE
[
να(x ∈ R : Zlδx ∈ A)

]
.

W (martingale limit) does not appear in the limit measure ν.
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Large deviation for the topmost position

Corollary
Recall that Mn denotes the position of the topmost particle in the
nth generation.

Then

lim
n→∞

rnP(Mn > cnx) = p
1

m − 1
x−α for all x > 0.
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Proof of consequence: large deviation for maxima

Fix x > 0.
rnP
(
Mn > cnx

)

= rnP
(
Nn(x ,∞) ≥ 1

)
= rnP

(
Nn ∈

{
ξ ∈M : ξ(x ,∞) ≥ 1

})
n→∞−→ λ

({
ξ : ξ(x ,∞) ≥ 1

})
= p 1

m−1x
−α

This can be done for the joint distribution of topmost and
bottommost position, first k-order statistics.
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Proof strategy: Principle of single large disp.

Step 1 - One large displacement. It is enough to study another
point process of the displacements upto nth generation due to at
most one large jump in every path.

0 time•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•
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Proof strategy: contd.......

Step 2 - Cutting the tree (locate the large displacement). Cut
the tree at the (n − K )th generation and forget whatever
happened in the first (n−K ) generations. With high probability,
one large displacement is contained in the last K generations.

0 time

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•
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Proof strategy: continued ......

Advantages of cutting: Get Zn−K independent copies of the
independently and identically point processes.
Each of the subtrees have equal probability to contain the large
jump.

0 time

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•
•
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Proof strategy: contd.......

Compute the contribution of the large jump at the K th generation of
the subtrees.

Step 3 - Pruning

Step 4 - Regularization
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Weakening assumptions

No leaf assumption is not necessary.

Large deviation for P(Nn ∈ A| survival of tree).
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The displacements associated to the children from same parent
can be dependent.

If the number of children of a particle is bounded almost surely,
then it is easy to use multivariate regular variation.

In general, it is not customary to have bounded number of
children of a particle. Remedy: regular variation on the space
RN developed in Hult and Lindskog (2006), Lindskog, Resnick
and Roy (2014).

The limit measure λ changes.
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Thank you
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