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Scoring alignments

Let A1, . . . , An and B1, . . . , Bm be two independent iid sequences of letters
(words) in finite alphabet A e.g. {A,C, T,G} with distributions µA and
µB respectively. For purpose of this lecture assume m = n.

Score function s : A×A → R measures similarity of letters:

positive s ↔ similar letters .

For independent sequences we assume

Es(A,B) < 0 and P(s(A,B) > 0) > 0 . (1)
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...GTAACTGAATCGCTTATG... 

...CACGGGCTGATTCGCTCG...

...GTAACTGAATCGCTTATG... 

...CGGGCTGATTCGCTCGAA...

i

j

...GTAACTGAATCGCTTATG... 

...CACGGGCTGATTCGCTCG...
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For any i, j ∈ Z+ one compares sequences A and B up to these two
positions by calculating

Si,j =

(
sup
m<i,j

m∑
0

s(Ai−k, Bj−k))

)
+

.

It turns out one can ignore the edge effects and index the sequences over
Z, i.e. set

Si,j =

(
sup
m

m∑
0

s(Ai−k, Bj−k))

)
+

.

Clearly array (Si,j) is stationary and for Zi,j = s(Ai, Bj) on the diagonal
Lindley recursion applies

Si,j = (Si−1,j−1 + Zi,j)+ . (2)
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It is easy to show that under (1) there exists a unique α∗ > 0 such that

Eeα
∗Z = Eeα

∗s(A,B) = 1

Thus if Z = s(A,B) has nonarithmetic distribution, Cramér’s argu-
ments show that scores (Si,j) form a stationary array with asymptotically
exponential tail , i.e. as u→∞

P(S > u) ∼ Ce−α
∗u .
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In particular as n→∞ for any x

n2P(S > log n2/α∗ + x)→ Ce−α
∗x

thus one may expect that Mn = supi,j≤n Si,j under some conditions satisfies

Mn − log n2/α∗ d→ G , (3)

where
G(x) = e−ϑCe

−α∗x
,

for some ϑ ∈ [0, 1].
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Actually, under conditions on s and µA, µB above, Dembo, Karlin and
Zeitouni showed

Mn/ log n
2/α∗ a.s.→ γ ≤ 1 .

Under (3) γ = 1, but this is not always the case — dependence is the key.

Dependence in such an array is indeed typically weak and one can often
show that (3) holds i.e. the distribution of its maxima Mn over finite
rectangle {1, . . . , n} × {1, . . . , n} after centering tends to the Gum-
bel distribution (cf. Karlin & Altschul, Dembo et al., Arratia et al.,
Neuhauser, Siegmund & Yakir, Hansen,...).
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Thus extreme value theory is used to test unrelatedness in evolutionary
biology −→ still, biologist use more than just the maximum.
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human eyeless cf.A.Coghlan

dot plot, cf. Metzler et al.
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i

...GTAACTGAATCGCTTATG... 

...CGGGCTGATTCGCTCGAA...

...GTAACTGAATCGCTTATG... 

...CGGGCTGATTCGCTCGAA...

j+1

...GTAACTGAATCGCTTATG... 

...GGGCTGATTCGCTCGAAG...
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Recall Kulback-Leibler divergence between probability measures ν and µ
on finite set A0 is defined by

H(ν | µ) =
∑
a′∈A′

log ν(a′)
ν(a′)

µ(a′)
.

On A0 = A×A if µ is the law of the pair (A,B) with marginals µA and
µB, the quantity

H(µ | µA × µB) ≥ 0

is called mutual information, it equals 0 iff µ = µA × µB .
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Probability measure µ = µA × µB can be tilted to

µ∗(a, b) = eα
∗s(a,b)µ(a, b) = eα

∗s(a,b)µA(a)µB(b) .

Under measure µ∗

I pairs (Ai, Bi) are still iid, but with possible mutual dependence, thus
in general µ∗ 6= µ∗A × µ∗B.
I tilting gives positive drift to diagonal random walk in (2).

The case µ∗ = µ∗A × µ∗B is degenerate

H(µ∗ | µ) = H(µ∗A | µA) +H(µ∗B|µB)

which further equals 2max{H(µ∗A | µA), H(µ∗B|µB)} when everything sym-
metric.
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It turns out that we need the following (cf. Dembo et al. 1994) assumption

H(µ∗ | µ) > 2max{H(µ∗A | µA), H(µ∗B|µB)} . (4)
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This excludes scoring functions of the form

s(a, b) = s1(a) + s2(b) .

and degenerate distributions for A or B.
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Theorem Under assumptions above on µA, µB and s on [0, 1]2 × R

Nn =
∑
i,j

δ i,j
n ,Si,j−log n2/α

∗
d→
∑
i

∑
j

δ(Ti,P̂i+Q̂i,j) .

Where

B
∑

i δ(Ti,P̂i) is PRM(Leb×ν) where ν(x,∞) = ϑCe−α
∗x and

B ((Q̂i,j)) is a sequence of iid random elements in RZ such that

supj Q̂i,j = 0 a.s.

planinić, b. (2018)
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Poisson approximation
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Assume that an array of independent rv’s Xn,i, i ∈ In is such that for all
(i.e. ”bounded”) sets of interest K ,

lim
n
max
i

P(Xn,i ∈ K) = 0 and
∑
i

P(Xn,i ∈ · )
v→ ν .

Then ∑
In

δXn,i

d→ N ∼ PRM(ν).

In special cases, Chen–Stein method gives a rate of convergence as well,
and handles dependence even for point process convergence on compact
spaces (cf. Arratia et al. and Barbour and Brown).
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Recall the convergence of point processes in distribution (wrt vague topol-
ogy) is equivalent to convergence of Laplace functionals, i.e.

Nn =
∑
In

δXn,i

d→ N

iff

E exp(−Nnf ) = E exp

(
−
∑
In

f (Xn,i)

)
→ E exp(−Nf )

for all nonneg. continuous f with support in some bounded set K.
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Arrays and neighbourhoods

In = sequence of index sets, e.g. In = {1, . . . , kn} , kn→∞
Xn,i = sequence of random elements in a Polish space X′

Bi = Bn,i = predetermined neighbourhoods of each i, i ∈ Bi

σ(In \Bi) = σ − algebra generated by Xn,i 6∈ Bi
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Consider bounded K ⊆ X ⊆ X′ and

Measures of clustering: for fixed K and f nonneg. bounded continuous
with support in K, i.e. ∈ CK

b1 =
∑
i∈In

∑
j∈Bi\{i}

P(Xn,i ∈ K) · P(Xn,j ∈ K)

b2 =
∑
i∈In

∑
j∈Bi\{i}

P(Xn,i ∈ K,Xn,j ∈ K)

b3 =
∑
i∈In

E
∣∣∣E [e−f(Xn,i) | σ(In \Bi)

]
− E[e−f(Xn,i)]

∣∣∣ .
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Theorem If

lim
n
max
i
P (Xn,i ∈ K) = 0 and

∑
i∈In

P(Xn,i ∈ ·)
v→ λ

and for all bounded K and f ∈ CK

b1, b2, b3 −→ 0.

Then
Nn =

∑
In

δXn,i

d→ N ,

where N is PRM(λ).

planinić, b. (2018)
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Corollary Suppose In = {1, . . . , kn}d, and Xn,i are identically dis-
tributed, if

kdnP(Xn,1 ∈ ·)
v→ ν

and for all bounded K and f ∈ CR

b1, b2, b3 −→ 0.

Then
Nn =

∑
In

δ i
kn
,Xn,i

d→ N ,

where N is PRM(Leb×ν).

planinić, b. (2018)
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Regularly varying arrays

Consider a stationary array of random variables X = (Xi : i ∈ Zd).

We observe X over large (and increasing) section of Zd, for instance a
square

{1, . . . , n} × {1, . . . , n}
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Independent observations indexed over Z
cf. Leadbetter-Rootzén, Resnick

Take a sequence (an) s.t.

nP (X0/an ∈ ·)
v→ µ ,

for measure µ s.t. for x > 0

µ(−∞,−x) = qx−α and µ(x,∞) = px−α .

Theorem For iid Xt, regular variation is equivalent to

Nn =
n∑
1

δ i
n ,
Xi
an

d→ N =
∑
i

δTi,Pi ,

where N is PRM(Leb×µ).
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Stationary array X is regularly varying with index α > 0 if all of its fidi’s
are multivariate regularly varying with index α.

Or equivalently if there exists a tail process/array such that as x→∞(
Xt

x

)
t∈Zd

∣∣∣∣ |X0| > x
d→ (Yt)t∈Zd

Clearly
|Y0| ∼ Pareto(α) .
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On Zd we will consider the lexicographic order

e.g. for d = 2 and i = (i1, i2), j = (j1, j2) ∈ Z2

i ≤ j ⇐⇒ i1 < j1 or (i1 = j1 and i2 ≤ j2).

For m = 1, 2, . . . introduce rectangular section of the array

Xm = (Xk : k = (k1, . . . , kd) , 1 ≤ ki ≤ m).
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Restricting dependence

Take an→∞ such that

ndP(X0/an ∈ ·)
v→ µ.

And assume for some rn→∞ and rn/n→ 0

lim
m→∞

lim sup
n→∞

P

 ∨
m≤‖i‖≤rn

|Xi| > anu

∣∣∣∣∣∣ |X0| > anu

 = 0 , u > 0 . (AC)

(AC) implies

Yi
a.s.→ 0, as ‖i‖→ ∞ , and ϑ = P(sup

j<0
|Yj| ≤ 1) > 0.
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Dependent observations indexed over Z

Building on Davis & Resnick, Davis & Hsing, Davis & Mikosch,... Planinić,
Soulier, B.(2018), Tafro, B.(2016) & Krizmanić, Segers, B. (2012) prove
convergence of point processes.
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Blocks of data

Consider a block
Xrn

an
as an element of

l̃0 = {x = (xi)i∈Zd : lim
|i|→∞

xi = 0}/ ∼

where we set x ∼ y if they are equal up to a shift. With sup norm l̃0 is a
separable complete metric space.
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Limits of blocks

Lemma

Under assumption (AC) as n→∞(
Xrn

an

∣∣∣∣∣Mrn > an

)
⇒
(
Yi, i ∈ Zd

∣∣∣∣∣ supj<0
|Yj| ≤ 1

)

in l̃0.

planinić, soulier, b.
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Note, conditionally on supj<0 |Yj| ≤ 1, random variable LY = supi∈Zd |Yi|
and random cluster

Q = (Qi)i = (Yi/LY )i

are independent.

Then, for some homogeneous measure ν = νϑ,α,Q on l̃0, (AC) implies

kdnP
(
Xrn

an
∈ ·

)
v→ ν .
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Convergence theorem
for blocks of data

Set kn = bn/rnc and for i ∈ Kn = {1, . . . , kn}d introduce rectangular
section of the array

Xn,i = (Xk : k ∈ ((i− 1)rn, irn]).

Consider the point process of clusters, on [0, 1]d × l̃0 defined by

N ′′n =
∑
i∈Kn

δ i
kn
,
Xn,i
an

.
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Theorem Suppose (AC) holds if for all bounded K and f ∈ CR

b1, b2, b3 −→ 0.

Then
N ′′n

d→ N ′′ =
∑
i

δ(Ti,Pi · Qi) .

and N is PRM(Leb×ν).

planinić, b. (2018)

In particular

P
(
Mn

an
≤ x

)
d→ e−ϑx

−α
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Probabilistic model for the dot-plots

Step 1 transformation Sij 7→ Xij = eSij gives a stationary regularly
varying field.

Step 2 (Xij) satisfies (AC) except in degenerate case s(a, b) =
s1(a) + s2(b).

Step 3 Blocking observations (Xij) into rn × rn squares is justified.

Step 4 Under (4) one can show

b1, b2, b3 −→ 0.

for all bounded K in space l̃0 and corresponding f ’s.
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¡ Muchas gracias !
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Approximation with m–dependent arrays

Assume there exists a sequence of m–dependent regularly varying arrays
(X

(m)
i ) such that

ndP(|X (m)| > an)→ d(m) > 0 .

Then on l̃0 \ {0}

kdnP

(
X (m)

rn

an
∈ ·

)
v→ ν(m) .

Assume further

(i) measures ν(m) converge in vague-topology to a nonzero measure ν .

(ii) for any u > 0

lim
m→∞

lim sup
n→∞

P(max
|i|≤n
|X (m)

i −Xi| > anu) = 0 .

40



Theorem Under assumptions above, as n→∞,

N ′′n
d→ N ′′ =

∑
i

δ(Ti,Pi · Qi) .
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Example
Spatial moving average process, assume ξi are iid RegVar(α) and for some
(ct)

Xt =
∑
Zd
ciξt−i ,

e.g.
Xt,s =

∑
i,j

ci,jξt−i,s−j .

is regularly varying if
∑

j∈Z2 |cj|δ < ∞ for some δ < α ∧ 1 (Davis and
Resnick 1985). Appropriate approximation is of course

X
(m)
t,s =

∑
|i|,|j|<m/2

ci,jξt−i,s−j .
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Thank you very much!
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