Volatility derivatives in (rough) forward variance models

S. De Marco

CMAP, Ecole Polytechnique

Stochastic Analysis and its Applications, Oaxaca, Mai 2018

Reminders on forward variances

- Forward variance V_{t}^{T} are fair strikes of variance swaps :
payoff of Var swap over $[t, T]=\frac{1}{T-t} \sum_{t_{i} \in[t, T]}^{N}\left(\log \left(S_{t_{i+1}}\right)-\log \left(S_{t_{i}}\right)\right)^{2}-V_{t}^{T}$ where : $t_{i}=$ market opening days in $[t, T]$, and $T-t$ is measured in years

Reminders on forward variances

- Forward variance V_{t}^{T} are fair strikes of variance swaps :
payoff of Var swap over $[t, T]=\frac{1}{T-t} \sum_{t_{i} \in[t, T]}^{N}\left(\log \left(S_{t_{i+1}}\right)-\log \left(S_{t_{i}}\right)\right)^{2}-V_{t}^{T}$
where : $t_{i}=$ market opening days in $[t, T]$, and $T-t$ is measured in years
- The value of V_{t}^{T} is set so that

$$
\operatorname{price}_{t}(\operatorname{var} \operatorname{swap})=0 .
$$

Reminders on forward variances

- Forward variance V_{t}^{T} are fair strikes of variance swaps :
payoff of Var swap over $[t, T]=\frac{1}{T-t} \sum_{t_{i} \in[t, T]}^{N}\left(\log \left(S_{t_{i+1}}\right)-\log \left(S_{t_{i}}\right)\right)^{2}-V_{t}^{T}$
where : $t_{i}=$ market opening days in $[t, T]$, and $T-t$ is measured in years
- The value of V_{t}^{T} is set so that

$$
\operatorname{price}_{t}(\operatorname{var} \operatorname{swap})=0 .
$$

- Take $T_{2}>T_{1}$. By combining positions in var swaps over $\left[t, T_{2}\right]$ and $\left[t, T_{1}\right]$, we construct the payoff

$$
\frac{1}{T_{2}-T_{1}} \sum_{t_{i} \in\left[T_{1}, T_{2}\right]}\left(\log \left(S_{t_{i+1}}\right)-\log \left(S_{t_{i}}\right)\right)^{2}-V_{t}^{T_{1}, T_{2}}
$$

where

$$
V_{t}^{T_{1}, T_{2}}=\frac{\left(T_{2}-t\right) V_{t}^{T_{2}}-\left(T_{1}-t\right) V_{t}^{T_{1}}}{T_{2}-T_{1}}
$$

is the forward variance over [T_{1}, T_{2}].

Forward variances can be traded

- By entering in the opposite positions in variance swaps at a date $t^{\prime} \geq t$, we remove the realized variance part.
- We materialize a position depending only on forward variances :

$$
\text { portfolio value at } T_{2}=V_{t^{\prime}}^{T_{1}, T_{2}}-V_{t}^{T_{1}, T_{2}}
$$

Forward variances can be traded

- By entering in the opposite positions in variance swaps at a date $t^{\prime} \geq t$, we remove the realized variance part.
- We materialize a position depending only on forward variances :

$$
\text { portfolio value at } T_{2}=V_{t^{\prime}}^{T_{1}, T_{2}}-V_{t}^{T_{1}, T_{2}}
$$

- The initial cost to construct this position was: zero

Otherwise said

$$
\operatorname{price}_{t}\left(V_{t^{\prime}}^{T_{1}, T_{2}}-V_{t}^{T_{1}, T_{2}}\right)=0, \quad \forall t \leq t^{\prime} \leq T_{1}
$$

Forward variances can be traded at zero cost.

Forward variances can be traded

- By entering in the opposite positions in variance swaps at a date $t^{\prime} \geq t$, we remove the realized variance part.
- We materialize a position depending only on forward variances :

$$
\text { portfolio value at } T_{2}=V_{t^{\prime}}^{T_{1}, T_{2}}-V_{t}^{T_{1}, T_{2}}
$$

- The initial cost to construct this position was: zero

Otherwise said

$$
\operatorname{price}_{t}\left(V_{t^{\prime}}^{T_{1}, T_{2}}-V_{t}^{T_{1}, T_{2}}\right)=0, \quad \forall t \leq t^{\prime} \leq T_{1}
$$

Forward variances can be traded at zero cost.

- Under a pricing measure, the $\left(V_{t}^{T_{1}, T_{2}}\right)_{0 \leq t \leq T_{1}}$ have to be martingales

Instantaneous forward variance ξ_{t}^{T}

- Define instantaneous forward variance by

$$
\xi_{t}^{T}=\frac{d}{d T}\left((T-t) V_{t}^{T}\right), \quad t<T
$$

so that

$$
V_{t}^{T}=\frac{1}{T-t} \int_{t}^{T} \xi_{t}^{u} d u, \quad t<T
$$

and

$$
V_{t}^{T_{1}, T_{2}}=\frac{1}{T_{2}-T_{1}} \int_{T_{1}}^{T_{2}} \xi_{t}^{u} d u, \quad t<T_{1}<T_{2}
$$

- Note that if Δ is small, then

$$
V_{t}^{T, T+\Delta} \approx \xi_{t}^{T}
$$

A class of models based on Gaussian processes

$$
\xi_{t}^{T}=\xi_{0}^{T} \exp \left(\int_{0}^{t} K(T-s) \cdot d W_{s}-\frac{1}{2} \int_{0}^{t} K(T-s) \cdot \rho K(T-s) d s\right) \quad t \leq T
$$

A class of models based on Gaussian processes

$\xi_{t}^{T}=\xi_{0}^{T} \exp \left(\int_{0}^{t} K(T-s) \cdot d W_{s}-\frac{1}{2} \int_{0}^{t} K(T-s) \cdot \rho K(T-s) d s\right) \quad t \leq T$

- $\left(\xi_{0}^{T}\right)_{T \geq 0}$ is the initial forward variance curve - a market parameter.
- W is a Brownian motion in \mathbb{R}^{n} with correlation matrix ρ, and

$$
\begin{aligned}
& \int_{0}^{t} K(T-s) \cdot d W_{s}=\sum_{i=1}^{n} \int_{0}^{t} K_{i}(T-s) d W_{s}^{i} \\
& \int_{0}^{t} K(T-s) \cdot \rho K(T-s) d s=\sum_{i, j=1}^{n} \int_{0}^{t} K_{i}(T-s) \rho_{i, j} K_{j}(T-s) d s
\end{aligned}
$$

- Deterministic kernels $K_{i} \in L_{\text {loc }}^{2}\left(\mathbb{R}_{+}, \mathbb{R}_{+}^{*}\right)$.

A class of models based on Gaussian processes

$$
\xi_{t}^{T}=\xi_{0}^{T} \exp \left(\int_{0}^{t} K(T-s) \cdot d W_{s}-\frac{1}{2} \int_{0}^{t} K(T-s) \cdot \rho K(T-s) d s\right) \quad t \leq T
$$

A class of models based on Gaussian processes

$\xi_{t}^{T}=\xi_{0}^{T} \exp \left(\int_{0}^{t} K(T-s) \cdot d W_{s}-\frac{1}{2} \int_{0}^{t} K(T-s) \cdot \rho K(T-s) d s\right) \quad t \leq T$

- For every $T,\left(\xi_{t}^{T}\right)_{t \leq T}$ is the solution of the SDE

$$
\xi_{t}^{T}=\xi_{t}^{T} K(T-t) \cdot d W_{t}, \quad t \leq T
$$

- Does not belong to the affine family.
- Interest for simulation/calibration : only Gaussian r.v. are involved.

Choice of kernels in practice : $\tau \mapsto K(\tau)$ decreasing.

Parametric examples (I)

- Bergomi's model [Bergomi 05], [Dupire 93] with $n=1$ factor

$$
K(\tau)=\omega e^{-k \tau}
$$

with $\omega, k>0$.

$$
\begin{aligned}
\xi_{t}^{T} & =\xi_{0}^{T} \mathcal{E}\left(\omega \int_{0}^{t} e^{-k(T-s)} d W_{s}\right) \\
& =\xi_{0}^{T} \mathcal{E}\left(\omega e^{-k(T-t)} \int_{0}^{t} e^{-k(t-s)} d W_{s}\right) \\
& =\xi_{0}^{T} \exp \left(K(T-t) X_{t}-\frac{1}{2} \int_{0}^{t} K(T-s)^{2} d s\right)
\end{aligned}
$$

where X is the OU process $d X_{t}=-k X_{t}+d W_{t}$.

- For every $t, \xi_{t}^{T}=\Phi\left(T-t, X_{t}\right)$: the forward variance curve ξ^{T} is a function of one single Markov factor X.

Parametric examples (I)

- Bergomi's model [Bergomi 05], [Dupire 93] with $n=1$ factor

$$
K(\tau)=\omega e^{-k \tau}
$$

with $\omega, k>0$.

$$
\begin{aligned}
\xi_{t}^{T} & =\xi_{0}^{T} \mathcal{E}\left(\omega \int_{0}^{t} e^{-k(T-s)} d W_{s}\right) \\
& =\xi_{0}^{T} \mathcal{E}\left(\omega e^{-k(T-t)} \int_{0}^{t} e^{-k(t-s)} d W_{s}\right) \\
& =\xi_{0}^{T} \exp \left(K(T-t) X_{t}-\frac{1}{2} \int_{0}^{t} K(T-s)^{2} d s\right)
\end{aligned}
$$

where X is the OU process $d X_{t}=-k X_{t}+d W_{t}$.

- For every $t, \xi_{t}^{T}=\Phi\left(T-t, X_{t}\right)$: the forward variance curve ξ^{T} is a function of one single Markov factor X.
- Bergomi's n-factor model [Bergomi 05] is the n-dim extension :

$$
K_{i}(\tau)=\omega_{i} e^{-k_{i} \tau}
$$

Parametric examples (II)

- The rough Bergomi model of [Bayer, Friz, Gatheral 2016] :

$$
K(\tau)=\frac{\omega}{\tau^{\frac{1}{2}-H}}, \quad H \in(0,1 / 2)
$$

so that

$$
\xi_{t}^{T}=\xi_{0}^{T} \exp \left(\omega \int_{0}^{t} \frac{1}{(T-s)^{\frac{1}{2}-H}} d W_{s}-\frac{1}{2} \omega^{2} \int_{0}^{t} \frac{1}{(T-s)^{1-2 H}} d s\right)
$$

- Do not have a low-dimensional Markovian representation of the curve

$$
T \mapsto\left(\xi_{t}^{T}\right)_{T \geq t}
$$

Parametric examples (II)

- The rough Bergomi model of [Bayer, Friz, Gatheral 2016] :

$$
K(\tau)=\frac{\omega}{\tau^{\frac{1}{2}-H}}, \quad H \in(0,1 / 2)
$$

so that

$$
\xi_{t}^{T}=\xi_{0}^{T} \exp \left(\omega \int_{0}^{t} \frac{1}{(T-s)^{\frac{1}{2}-H}} d W_{s}-\frac{1}{2} \omega^{2} \int_{0}^{t} \frac{1}{(T-s)^{1-2 H}} d s\right)
$$

- Do not have a low-dimensional Markovian representation of the curve

$$
T \mapsto\left(\xi_{t}^{T}\right)_{T \geq t}
$$

- For the moment (in this presentation), nothing in this model is rough.

For every T, the processes

$$
\left(\xi_{t}^{T}\right)_{t \leq T} \text { are martingales }
$$

Constructing a consistent model for S_{t}

Reminders: in a general stochastic volatility model

$$
d S_{t}=\mu S_{t} d t+\sigma_{t} S_{t} d W_{t}^{\mathrm{hist}}
$$

- Realized variance can be replicated with the underlying + a log-contract

Constructing a consistent model for S_{t}

Reminders : in a general stochastic volatility model

$$
d S_{t}=\mu S_{t} d t+\sigma_{t} S_{t} d W_{t}^{\text {hist }}
$$

- Realized variance can be replicated with the underlying + a log-contract
- Indeed, by Itô's formula applied to $\log (S)$

$$
\frac{1}{T-t}\langle\log S\rangle_{[t, T]}=\frac{1}{T-t} \int_{t}^{T} \sigma_{u}^{2} d u=\frac{2}{T-t}\left(-\log \frac{S_{T}}{S_{t}}+\int_{t}^{T} \frac{1}{S_{u}} d S_{u}\right)
$$

Almost sure replication of $\langle\log S\rangle_{[t, T]}$

- This yields (taking interest rates to be zero)

$$
V_{t}^{T}=\operatorname{price}_{t}\left(\frac{1}{T-t} \int_{t}^{T} \sigma_{u}^{2} d u\right)=\operatorname{price}_{t}\left(-\frac{2}{T-t} \log \frac{S_{T}}{S_{t}}\right)
$$

A consistent model for S_{t}

Given instantaneous forward variances ξ_{t}^{T}

- The model

$$
d S_{t}=S_{t} \sqrt{\xi_{t}^{t}} d Z_{t}
$$

where Z is a Brownian motion, is consistent with the given ξ_{t}^{T}

A consistent model for S_{t}

Given instantaneous forward variances ξ_{t}^{T}

- The model

$$
d S_{t}=S_{t} \sqrt{\xi_{t}^{t}} d Z_{t}
$$

where Z is a Brownian motion, is consistent with the given ξ_{t}^{T}
In the sense : the price of the log-contract in this model is

$$
\begin{aligned}
\operatorname{price}_{t}\left(\frac{-2}{T-t} \log \frac{S_{T}}{S_{t}}\right)= & \mathbb{E}\left[\left.\frac{1}{T-t} \int_{t}^{T} \xi_{u}^{u} d u \right\rvert\, \mathcal{F}_{t}\right] \\
& =\frac{1}{T-t} \int_{t}^{T} \mathbb{E}\left[\xi_{u}^{u} \mid \mathcal{F}_{t}\right] d u=\frac{1}{T-t} \int_{t}^{T} \xi_{t}^{u} d u
\end{aligned}
$$

where $\mathcal{F}_{t}=\mathcal{F}_{t}^{W, z}$

A consistent model for S_{t}

Given instantaneous forward variances ξ_{t}^{T}

- The model

$$
d S_{t}=S_{t} \sqrt{\xi_{t}^{t}} d Z_{t}
$$

where Z is a Brownian motion, is consistent with the given ξ_{t}^{T}
In the sense : the price of the log-contract in this model is

$$
\begin{aligned}
\operatorname{price}_{t}\left(\frac{-2}{T-t} \log \frac{S_{T}}{S_{t}}\right)= & \mathbb{E}\left[\left.\frac{1}{T-t} \int_{t}^{T} \xi_{u}^{u} d u \right\rvert\, \mathcal{F}_{t}\right] \\
& =\frac{1}{T-t} \int_{t}^{T} \mathbb{E}\left[\xi_{u}^{u} \mid \mathcal{F}_{t}\right] d u=\frac{1}{T-t} \int_{t}^{T} \xi_{t}^{u} d u
\end{aligned}
$$

where $\mathcal{F}_{t}=\mathcal{F}_{t}^{W, Z}$

- Hedging of European options on S with underlying + forward variances

Rough Bergomi model, again

- To see what is rough in rough Bergomi
we have to look at the consistent model for S :

$$
d S_{t}=S_{t} \sqrt{\xi_{t}^{t}} d Z_{t}
$$

The instantaneous volatility ξ_{t}^{t} of S is rough because

$$
\xi_{t}^{t}=\exp \left(\omega x_{t}^{t}-\frac{1}{2} \omega^{2} \int_{0}^{t} \frac{1}{(t-s)^{1-2 H}} d s\right)
$$

and

$$
x_{t}^{t}=\int_{0}^{t} \frac{1}{(t-s)^{\frac{1}{2}-H}} d W_{s}
$$

is a Volterra process which admits a β-Hölder modification for $\beta<H$

The VIX index

- The VIX is the price of the log-contract with 30 days maturity written on the SP500 :

$$
\operatorname{VIX}_{t}:=\sqrt{\operatorname{mkt~price}_{t}\left(-\frac{2}{\Delta} \log \frac{S_{t+\Delta}}{S_{t}}\right)}
$$

where $\Delta=30$ days

The VIX index

- The VIX is the price of the log-contract with 30 days maturity written on the SP500 :

$$
\operatorname{VIX}_{t}:=\sqrt{\text { mkt price}_{t}\left(-\frac{2}{\Delta} \log \frac{S_{t+\Delta}}{S_{t}}\right)} \quad \text { where } \Delta=30 \text { days }
$$

- The value of VIX is quoted by the Chicago Option Exchange, by static replication of the payoff $\log (S)$:

$$
\mathrm{VIX}_{t}=\sqrt{\frac{2}{\Delta}\left(\int_{0}^{S_{t}} \frac{1}{K^{2}} \mathrm{P}_{t}(t+\Delta, K) d K+\int_{S_{t}}^{\infty} \frac{1}{K^{2}} \mathrm{C}_{t}(t+\Delta, K) d K\right)}
$$

where $\mathrm{P}_{t}(T, K)$ and $\mathrm{C}_{t}(T, K)$ are market prices of put and call options on S, observed at t.

The VIX index

- The VIX is the price of the log-contract with 30 days maturity written on the SP500 :

$$
\operatorname{VIX}_{t}:=\sqrt{\text { mkt price}_{t}\left(-\frac{2}{\Delta} \log \frac{S_{t+\Delta}}{S_{t}}\right)} \quad \text { where } \Delta=30 \text { days }
$$

- The value of VIX is quoted by the Chicago Option Exchange, by static replication of the payoff $\log (S)$:

$$
\operatorname{VIX}_{t}=\sqrt{\frac{2}{\Delta}\left(\int_{0}^{S_{t}} \frac{1}{K^{2}} \mathrm{P}_{t}(t+\Delta, K) d K+\int_{S_{t}}^{\infty} \frac{1}{K^{2}} \mathrm{C}_{t}(t+\Delta, K) d K\right)}
$$

where $\mathrm{P}_{t}(T, K)$ and $\mathrm{C}_{t}(T, K)$ are market prices of put and call options on S, observed at t.

- Is VIX an implied volatility?

The VIX index

- The VIX is the price of the log-contract with 30 days maturity written on the SP500 :

$$
\operatorname{VIX}_{t}:=\sqrt{\operatorname{mkt~price}_{t}\left(-\frac{2}{\Delta} \log \frac{S_{t+\Delta}}{S_{t}}\right)} \quad \text { where } \Delta=30 \text { days }
$$

- The value of VIX is quoted by the Chicago Option Exchange, by static replication of the payoff $\log (S)$:

$$
\mathrm{VIX}_{t}=\sqrt{\frac{2}{\Delta}\left(\int_{0}^{S_{t}} \frac{1}{K^{2}} \mathrm{P}_{t}(t+\Delta, K) d K+\int_{S_{t}}^{\infty} \frac{1}{K^{2}} \mathrm{C}_{t}(t+\Delta, K) d K\right)}
$$

where $\mathrm{P}_{t}(T, K)$ and $\mathrm{C}_{t}(T, K)$ are market prices of put and call options on S, observed at t.

- Is VIX an implied volatility? Yes, it is precisely the implied volatility of the log-contract.

History of VIX (2006-2011)

VIX in a stochastic volatility model

- In general, VIX and forward variances of variance swaps do not coincide

$$
\mathrm{VIX}_{t}^{2} \neq V_{t}^{t+\Delta}=\frac{1}{\Delta} \int_{t}^{t+\Delta} \xi_{t}^{u} d u
$$

because the replication of variance swaps with log-contracts is only approximate in practice.

VIX in a stochastic volatility model

- In general, VIX and forward variances of variance swaps do not coincide

$$
\mathrm{VIX}_{t}^{2} \neq V_{t}^{t+\Delta}=\frac{1}{\Delta} \int_{t}^{t+\Delta} \xi_{t}^{u} d u
$$

because the replication of variance swaps with log-contracts is only approximate in practice.

- Within a stochastic volatility model, on the contrary

$$
\mathrm{VIX}_{t}^{2}=V_{t}^{t+\Delta}=\frac{1}{\Delta} \int_{t}^{t+\Delta} \xi_{t}^{u} d u
$$

because the replication of variance swaps with log-contracts is exact in this case.

VIX in a stochastic volatility model

- In general, VIX and forward variances of variance swaps do not coincide

$$
\mathrm{VIX}_{t}^{2} \neq V_{t}^{t+\Delta}=\frac{1}{\Delta} \int_{t}^{t+\Delta} \xi_{t}^{u} d u
$$

because the replication of variance swaps with log-contracts is only approximate in practice.

- Within a stochastic volatility model, on the contrary

$$
\mathrm{VIX}_{t}^{2}=V_{t}^{t+\Delta}=\frac{1}{\Delta} \int_{t}^{t+\Delta} \xi_{t}^{u} d u
$$

because the replication of variance swaps with log-contracts is exact in this case.

- Consequence : in general, we will be able to calibrate a forward variance model $\left(S_{t}, \xi_{t}\right)$ to at most 2 of the 3 different markets :
- VIX market
- SP500 options market
- Variance swap market on SP500

Pricing of VIX derivatives at $t=0$

The price at $t=0$ of a VIX option with payoff φ is

$$
\mathbb{E}\left[\varphi\left(\mathrm{VIX}_{\mathrm{T}}\right)\right]=\mathbb{E}\left[\varphi\left(\sqrt{V_{T}^{T+\Delta}}\right)\right]=\psi\left(0, \xi_{0}\right)
$$

where

$$
\Psi\left(0, x^{\cdot}\right)=\mathbb{E}\left[\varphi\left(\left(\frac{1}{\Delta} \int_{T}^{T+\Delta} x^{u} e^{\int_{0}^{T} K(u-s) \cdot d W_{s}-\frac{1}{2} h(0, T, u)} d u\right)^{1 / 2}\right)\right]
$$

and $h(t, T, u)=\int_{t}^{T} K(u-s) \cdot \rho K(u-s) d s$.

Pricing of VIX derivatives at $t=0$

The price at $t=0$ of a VIX option with payoff φ is

$$
\mathbb{E}\left[\varphi\left(\mathrm{VIX}_{\mathrm{T}}\right)\right]=\mathbb{E}\left[\varphi\left(\sqrt{V_{T}^{T+\Delta}}\right)\right]=\Psi\left(0, \xi_{0}^{\dot{\circ}}\right)
$$

where

$$
\Psi\left(0, x^{\cdot}\right)=\mathbb{E}\left[\varphi\left(\left(\frac{1}{\Delta} \int_{T}^{T+\Delta} x^{u} e^{\int_{0}^{T} K(u-s) \cdot d W_{s}-\frac{1}{2} h(0, T, u)} d u\right)^{1 / 2}\right)\right]
$$

and $h(t, T, u)=\int_{t}^{T} K(u-s) \cdot \rho K(u-s) d s$.

- If Markov repr (e.g. classical Bergomi), $\int_{0}^{T} K(u-s) \cdot d W_{s}=K(u-T) X_{T}$

Pricing of VIX derivatives at $t=0$

The price at $t=0$ of a VIX option with payoff φ is

$$
\mathbb{E}\left[\varphi\left(\mathrm{VIX}_{\mathrm{T}}\right)\right]=\mathbb{E}\left[\varphi\left(\sqrt{V_{T}^{T+\Delta}}\right)\right]=\Psi\left(0, \xi_{0}^{\dot{\circ}}\right)
$$

where

$$
\Psi\left(0, x^{\cdot}\right)=\mathbb{E}\left[\varphi\left(\left(\frac{1}{\Delta} \int_{T}^{T+\Delta} x^{u} e^{\int_{0}^{T} K(u-s) \cdot d W_{s}-\frac{1}{2} h(0, T, u)} d u\right)^{1 / 2}\right)\right]
$$

and $h(t, T, u)=\int_{t}^{T} K(u-s) \cdot \rho K(u-s) d s$.

- If Markov repr (e.g. classical Bergomi), $\int_{0}^{T} K(u-s) \cdot d W_{s}=K(u-T) X_{T}$
- Otherwise : finite point $\left(u_{i}\right)_{i=1, \ldots, N}$ quadrature formula + simulation of the correlated Gaussian vector

$$
\left(\int_{0}^{T} K\left(u_{1}, s\right) \cdot d W_{s}, \ldots, \int_{0}^{T} K\left(u_{N}, s\right) \cdot d W_{s}\right)
$$

\sim see A. Jacquier's talk for rates of convergence.

Term structure of volatility of volatility

- Denote

$$
\hat{\sigma}(t, T)
$$

the at-the-money implied volatility of an option on the forward volatility $\sqrt{V_{t}^{\top}}$.
Proposition (ATM implied volatility of forward volatility)
The following asymptotics hold : for every T

$$
\hat{\sigma}(t, T) \underset{t \rightarrow 0}{\longrightarrow} \hat{\sigma}(0, T):=\frac{1}{2 \int_{0}^{T} \xi_{0}^{u} d u} \sqrt{\int_{0}^{T} \xi_{0}^{u} K(u) \cdot \rho \int_{0}^{T} \xi_{0}^{u^{\prime}} K\left(u^{\prime}\right) d u^{\prime}}
$$

- By choosing the kernels K, we can reach a prescribed target behavior of $\hat{\sigma}(0, T)$

Term structure of volatility of volatility

- Black dots : target behavior for $\hat{\sigma}(0, T)$, as a function of T (months).
- Very well described by a power law $\frac{1}{T^{\alpha}}, \alpha \approx 0.4-0.5$

Term structure of volatility of volatility

- Choice $1: n=1$ power kernel $K(u)=\frac{\omega}{u^{\frac{1}{2}-H}}$

Then, if $u \mapsto \xi_{0}^{u}$ is constant,

$$
\hat{\sigma}(0, T)=\frac{\text { const. }}{T^{\frac{1}{2}-H}}
$$

which is exactly our target term-structure, when $H \approx 0.1$.

Term structure of volatility of volatility

- Choice $1: n=1$ power kernel $K(u)=\frac{\omega}{u^{\frac{1}{2}-H}}$

Then, if $u \mapsto \xi_{0}^{u}$ is constant,

$$
\hat{\sigma}(0, T)=\frac{\text { const. }}{T^{\frac{1}{2}-H}}
$$

which is exactly our target term-structure, when $H \approx 0.1$.

- Choice 2 : $n=2$ exponential kernels

$$
K_{i}(u)=\omega e^{-k_{i} u} \quad \text { and } d\left\langle W^{1}, W^{2}\right\rangle_{t}=\rho d t
$$

with $k_{1} \ll 1, k_{2} \gg 1$.
The resulting behavior of $\hat{\sigma}(0, T)$ is shown by the blue curves

Term structure of volatility of volatility

- Choice $1: n=1$ power kernel $K(u)=\frac{\omega}{u^{\frac{1}{2}-H}}$

Then, if $u \mapsto \xi_{0}^{u}$ is constant,

$$
\hat{\sigma}(0, T)=\frac{\text { const. }}{T^{\frac{1}{2}-H}}
$$

which is exactly our target term-structure, when $H \approx 0.1$.

- Choice 2 : $n=2$ exponential kernels

$$
K_{i}(u)=\omega e^{-k_{i} u} \quad \text { and } d\left\langle W^{1}, W^{2}\right\rangle_{t}=\rho d t
$$

with $k_{1} \ll 1, k_{2} \gg 1$.
The resulting behavior of $\hat{\sigma}(0, T)$ is shown by the blue curves

- A model with fractional kernel reaches the target behavior with $n=1$ factor and two parameters ω, H.
- A classical Bergomi model does this with $n=2$ factors and four parameters $k_{1}, k_{2}, \rho, \omega$.

An extended class of forward variance models

As mentioned by Antoine, in the class of models above

- The ξ_{t}^{T} are log-normal. Forward variances $\frac{1}{\Delta} \int_{T}^{T+\Delta} \xi_{T}^{u} d u$ are close to log-normal.
- Incapability of generate a reasonable smile for VIX options.

An extended class of forward variance models

As mentioned by Antoine, in the class of models above

- The ξ_{t}^{T} are log-normal. Forward variances $\frac{1}{\Delta} \int_{T}^{T+\Delta} \xi_{T}^{u} d u$ are close to log-normal.
- Incapability of generate a reasonable smile for VIX options.
- Inspired by [Bergomi 2008], we set

$$
\xi_{t}^{T}=\xi_{0}^{T} f^{T}\left(t, x_{t}^{T}\right)
$$

where x_{t}^{T} denotes our Gaussian factor

$$
x_{t}^{T}=\int_{0}^{t} K(T-s) \cdot d W_{s}
$$

and the $f^{T}(\cdot, \cdot)$ are smooth functions to be determined.

An extended class of forward variance models

- We need to impose some conditions on f^{T} :
- $f^{T}(t, x) \geq 0$
- Initial condition $\xi_{0}^{T} \Rightarrow=f^{T}(0,0)=1, \forall T$
- $\left(\xi_{t}^{T}\right)_{0 \leq t \leq T}$ needs to be martingale :

$$
d \xi_{t}^{T}=\left(\partial_{t} f^{T}\left(t, x_{t}^{T}\right)+\frac{1}{2} K \cdot \rho K \partial_{x x} f^{T}\left(t, x_{t}^{T}\right)\right) d t+\partial_{x} f^{T}\left(t, x_{t}^{T}\right) d x_{t}^{T}
$$

Therefore, we require that the $f^{T}(\cdot)$ solve the family of PDE

$$
\partial_{t} f^{T}(t, x)+\frac{1}{2} K(T-t) \cdot \rho K(T-t) \partial_{x x} f(t, x)=0, \quad \forall(t, x) \in[0, T] \times \mathbb{R} .
$$

An extended class of forward variance models

- A simple representation : any $C^{1,2}([0, T) \times \mathbb{R})$ function f^{T} with exponential growth satisfying the PDE above can be written in terms of its terminal condition

$$
f^{T}(t, x)=\mathbb{E}\left[f^{T}(T, x+\sqrt{h(t, T, T)} G)\right]
$$

where G is a standard Gaussian random variable (and recall that $\left.h(t, T, T)=\int_{t}^{T} K(T-s) \cdot \rho K(T-s) d s\right)$.

- Positive solutions $f^{T}(\cdot, \cdot)$ are parametrized by positive final conditions $f^{T}(T, \cdot)$
- We can generate several parametric families of solutions.

Parametric choice 1 : polynomials

- The terminal condition:

$$
f^{T}(T, y)=a(T) y^{2}+b(T) y+c(T)
$$

leads to a quadratic Gaussian model

$$
\xi_{t}^{T}=\xi_{0}^{T} f^{T}\left(t, x_{t}^{T}\right)=\xi_{0}^{T}\left(a(T)\left[\left(x_{t}^{T}\right)^{2}-h(t, T)\right]+b(T) x_{t}^{T}+1\right)
$$

where $h(t, T)=\int_{0}^{t} K(T-s) \cdot \rho K(T-s) d s$

- We are free to choose $a(T), b(T)$ s.t. $1-a(T) h(T, T)-\frac{b(T)^{2}}{4 a(T)} \geq 0$ (positivity condition).
- Example : if $b(T)=0, \xi_{t}^{T}$ has a χ^{2} distribution.

Parametric choice 1 : polynomials

- The terminal condition :

$$
f^{T}(T, y)=a(T) y^{2}+b(T) y+c(T)
$$

leads to a quadratic Gaussian model

$$
\xi_{t}^{T}=\xi_{0}^{T} f^{T}\left(t, x_{t}^{T}\right)=\xi_{0}^{T}\left(a(T)\left[\left(x_{t}^{T}\right)^{2}-h(t, T)\right]+b(T) x_{t}^{T}+1\right)
$$

where $h(t, T)=\int_{0}^{t} K(T-s) \cdot \rho K(T-s) d s$

- We are free to choose $a(T), b(T)$ s.t. $1-a(T) h(T, T)-\frac{b(T)^{2}}{4 a(T)} \geq 0$ (positivity condition).
- Example: if $b(T)=0, \xi_{t}^{T}$ has a χ^{2} distribution.
- The more general terminal condition :

$$
f^{T}(T, y)=\sum_{k=0}^{n} a_{k}^{T} y^{2 k}
$$

leads to polynomial functions $x \mapsto f^{T}(t, x)$.

Parametric choice 2 : exponentials

- The terminal condition :

$$
f^{T}(T, y)=\sum_{k=1}^{m} \gamma_{k} e^{\omega_{k} y} \quad \text { where } \quad \sum_{k=1}^{m} \gamma_{k}=1, \quad m \in \mathbb{N}
$$

Parametric choice 2 : exponentials

- The terminal condition :

$$
f^{T}(T, y)=\sum_{k=1}^{m} \gamma_{k} e^{\omega_{k} y} \quad \text { where } \quad \sum_{k=1}^{m} \gamma_{k}=1, \quad m \in \mathbb{N}
$$

leads to a linear combination of Laplace transforms of a Gaussian r.v.

$$
f^{T}(t, x)=\sum_{k=1}^{m} \gamma_{k} e^{\omega_{k} x-\frac{1}{2}\left(\omega_{k}\right)^{2} h(t, T)}
$$

- The class of models we started from corresponds to $m=1$.

Parametric choice 2 : exponentials

- The terminal condition :

$$
f^{T}(T, y)=\sum_{k=1}^{m} \gamma_{k} e^{\omega_{k} y} \quad \text { where } \quad \sum_{k=1}^{m} \gamma_{k}=1, \quad m \in \mathbb{N}
$$

leads to a linear combination of Laplace transforms of a Gaussian r.v.

$$
f^{T}(t, x)=\sum_{k=1}^{m} \gamma_{k} e^{\omega_{k} x-\frac{1}{2}\left(\omega_{k}\right)^{2} h(t, T)}
$$

- The class of models we started from corresponds to $m=1$.
- With this choice, forward variances

$$
\xi_{t}^{T}=f^{T}\left(t, x_{t}^{T}\right)
$$

are sums of log-normals which can be made very different from a single log-normal

- We have expressions and numerical methods for VIX derivatives similar to the previous case (where $m=1$).

A simple version of the rough model where forward variances are not log-normal

Rough_model ($n=1, m=2$) : $n=1$ gaussian factor, and $m=2$ basis functions

$$
\begin{gathered}
f^{T}(t, x)=\left(1-\gamma^{T}\right) \exp \left(\omega_{1}^{T} x-\frac{1}{2}\left(\omega_{1}^{T}\right)^{2} h(t, T)\right)+\gamma^{T} \exp \left(\omega_{2}^{T} x-\frac{1}{2}\left(\omega_{2}^{T}\right)^{2} h(t, T)\right) \\
\xi_{t}^{T}=\xi_{0}^{T} f^{T}\left(t, x_{t}^{T}\right) \\
x_{t}^{T}=\int_{0}^{t} K(T-s) d W_{s}, \quad K(T-s)=\frac{1}{(T-s)^{\frac{1}{2}-H}}
\end{gathered}
$$

A simple version of the rough model where forward variances are not log-normal

Rough_model ($n=1, m=2$) : $n=1$ gaussian factor, and $m=2$ basis functions

$$
\begin{gathered}
f^{T}(t, x)=\left(1-\gamma^{T}\right) \exp \left(\omega_{1}^{T} x-\frac{1}{2}\left(\omega_{1}^{T}\right)^{2} h(t, T)\right)+\gamma^{T} \exp \left(\omega_{2}^{T} x-\frac{1}{2}\left(\omega_{2}^{T}\right)^{2} h(t, T)\right) \\
\xi_{t}^{T}=\xi_{0}^{T} f^{T}\left(t, x_{t}^{T}\right) \\
x_{t}^{T}=\int_{0}^{t} K(T-s) d W_{s}, \quad K(T-s)=\frac{1}{(T-s)^{\frac{1}{2}-H}}
\end{gathered}
$$

- This model depends on the global parameter
H
and on the four term-structure parameters

$$
\xi_{0}^{T}, \gamma^{T}, \omega_{1}^{T}, \omega_{2}^{T}
$$

which we can use to fit an initial term-structure of VIX Futures and the smiles of VIX options.

Calibration to VIX market ($m=2$ exponential fcts)

VIX Futures (left) and VIX implied volatilities (right) on 22 Nov 2017, $\mathrm{T}=20$ Dec

$$
H=0.1 \text { (fixed) }\left.\quad \xi_{0}^{u}\right|_{T \leq u \leq T+\Delta}=0.0145 \quad \gamma=0.689 \quad \omega_{1}=2.074 \quad \omega_{2}=0.215
$$

Non-parametric choices of f leading to exact calibration

are possible

Conclusion \& further directions

- The consistent model for the SP500 :

$$
d S_{t}=S_{t} \sqrt{\xi_{t}^{t}} d Z_{t}
$$

might be a good candidate for a joint calibration of VIX and SP500 options

- See the talk of J. Guyon at QuantMinds conference 2018 (former Global Derivatives), taking place this week, for some considerations about the feasibility of this joint calibration.

Conclusion \& further directions

- The consistent model for the SP500 :

$$
d S_{t}=S_{t} \sqrt{\xi_{t}^{t}} d Z_{t}
$$

might be a good candidate for a joint calibration of VIX and SP500 options

- See the talk of J. Guyon at QuantMinds conference 2018 (former Global Derivatives), taking place this week, for some considerations about the feasibility of this joint calibration.

In summary :

- Volterra Gaussian processes offer a considerable flexibility in the modeling of forward variances.
- Using more general functions than single exponentials allows to accomodate smiles of options on VIX, while keeping the Gaussian framework.
- "Rough" power kernels inevitably make the pricing of VIX Futures \& options less tractable.
- Still accessible via Monte-Carlo + variance reduction.

Thank you for your attention

Direct modeling of VIX Futures

Instead of instantaneous forward variances ξ_{t}^{T}, we can apply the framework above to model VIX Futures $\left(\mathrm{FVIX}_{t}^{i}\right)_{t \leq T_{i}}$ directly :

$$
\mathrm{FVIX}_{t}^{i}=\mathrm{FVIX}_{0}^{i} f^{i}\left(t, x_{t}^{T_{i}}\right) \quad T_{i}=\mathrm{VIX} \text { maturities }
$$

Direct modeling of VIX Futures

Instead of instantaneous forward variances ξ_{t}^{T}, we can apply the framework above to model VIX Futures $\left(\mathrm{FVIX}_{t}^{i}\right)_{t \leq T_{i}}$ directly :

$$
\mathrm{FVIX}_{t}^{i}=\mathrm{FVIX}_{0}^{i} f^{i}\left(t, x_{t}^{T_{i}}\right) \quad T_{i}=\mathrm{VIX} \text { maturities }
$$

- We want VIX Futures processes to be martingales, hence the choices of $f^{i}(\cdot)$ above are possible.

Direct modeling of VIX Futures

Instead of instantaneous forward variances ξ_{t}^{T}, we can apply the framework above to model VIX Futures $\left(\mathrm{FVIX}_{t}^{i}\right)_{t \leq T_{i}}$ directly :

$$
\mathrm{FVIX}_{t}^{i}=\mathrm{FVIX}_{0}^{i} f^{i}\left(t, x_{t}^{T_{i}}\right) \quad T_{i}=\mathrm{VIX} \text { maturities }
$$

- We want VIX Futures processes to be martingales, hence the choices of $f^{i}(\cdot)$ above are possible.
- This opens the way to non-parametric choices of f^{i} :

Direct modeling of VIX Futures

Instead of instantaneous forward variances ξ_{t}^{T}, we can apply the framework above to model VIX Futures $\left(\mathrm{FVIX}_{t}^{i}\right)_{t \leq T_{i}}$ directly :

$$
\mathrm{FVIX}_{t}^{i}=\mathrm{FVIX}_{0}^{i} f^{i}\left(t, x_{t}^{T_{i}}\right) \quad T_{i}=\mathrm{VIX} \text { maturities }
$$

- We want VIX Futures processes to be martingales, hence the choices of $f^{i}(\cdot)$ above are possible.
- This opens the way to non-parametric choices of f^{i} :
- VIX option prices imply a distribution $\mathbb{P}^{m k t}\left(\mathrm{FVIX}_{T_{i}}^{i} \leq K\right)$

Direct modeling of VIX Futures

Instead of instantaneous forward variances ξ_{t}^{T}, we can apply the framework above to model VIX Futures $\left(\mathrm{FVIX}_{t}^{i}\right)_{t \leq T_{i}}$ directly :

$$
\operatorname{FVIX}_{t}^{i}=\operatorname{FVIX}_{0}^{i} f^{i}\left(t, x_{t}^{T_{i}}\right) \quad T_{i}=\text { VIX maturities }
$$

- We want VIX Futures processes to be martingales, hence the choices of $f^{i}(\cdot)$ above are possible.
- This opens the way to non-parametric choices of f^{i} :
- VIX option prices imply a distribution $\mathbb{P}^{\mathrm{mkt}}\left(\mathrm{FVIX}_{T_{i}}^{i} \leq K\right)$
- Which we can exactly fit with the distribution of

$$
\operatorname{FVIX}_{T_{i}}^{i}=\operatorname{FVIX}_{0}^{i} f^{i}\left(T_{i}, x_{T_{i}}^{T_{i}}\right)
$$

by choosing a monotone terminal function $f^{i}\left(T_{i}, \cdot\right)$ (and using the fact that $x_{T_{i}}^{T_{i}}$ is Gaussian).

